Pyarmor Documentation
Release 8.3.4

Jondy Zhao

Aug 21, 2023

Contents

How the documentation is organized

Getting help

Table of Contents

3.1 Tutorialso
3.1.1 Getting Started
3.1.2 Imstallation
3.1.3 BasicTutorial
3.14 Advanced Tutorial
3.1.5 Customization and Extension

32 HowTo e
3.2.1 Highest security and performance
3.2.2 Protecting Runtime Memory Data
3.23 Packingwithouterkey
3.24 Building obfuscated wheel
3.2.5 Protecting system packages,
32.6 Fixencodingerror
3.277 Removingdocstring.,
3.2.8 Work with Third-Party Libraries
329 Using Pyarmor License

33 References e
331 Concepts e e e e
332 ManPage
3.3.3 Building Environments
334 Target Environments
335 ErrorMessages

34 TOPICS e
34.1 Insight Into Obfuscation
3.4.2 Understanding Obfuscated Script
3.4.3 Insight Into Pack Command
344 InsightIntoRFTMode
345 InsightIntoBCCMode
34.6 Security and Performance
3.4.7 Localization and Internationalization

3.5 License Types v v v i i i i e e
35.1 Introduction oL

352 LACENSE LYPES '+ v v v v o e
3.5.3 Purchasinglicense e e e e e e
3.54 Upgradingoldlicense e e e e e e
36 FAQ . . . o
3.6.1 AskingquestionsinGitHub
3.6.2 Segmentfaultin Apple
3.6.3 RegiStering o i e e e e e e e e e e e e e e
3.6.4 Packing e e e e e
3.6.5 LACense e e
3.6.6 Purchasing e e e
3.6.7 MISC. . . o o e e
4 Indices and tables
Python Module Index
Index

Pyarmor Documentation, Release 8.3.4

Version 8.3.4

Homepage https://pyarmor.dashingsoft.com/
Contact pyarmor@ 163.com

Authors Jondy

Copyright This document has been placed in the public domain.

Contents 1

https://pyarmor.dashingsoft.com/
mailto:pyarmor@163.com

Pyarmor Documentation, Release 8.3.4

2 Contents

CHAPTER 1

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s organized will help you know where to look
for certain things:

Part 1: Tutorials takes you by the hand through a series of steps to obfuscate Python scripts and packages. Start
here if you’re new to Pyarmor. Also look at the Getting Started

Part 2: How To guides are recipes. They guide you through the steps involved in addressing key problems and
use-cases. They are more advanced than tutorials and assume some knowledge of how Pyrhon works.

Part 3: References guides contain key concepts, man page, configurations and other aspects of Pyarmor ma-
chinery.

Part 4: Topics guides insight into key topics and provide useful background information and explanation. They
describe how it works and how to use it but assume that you have a basic understanding of key concepts.

Part 5: Licenses describes EULA of Pyarmor, the different Pyarmor licenses and how to purchase Pyarmor
license.

Pyarmor Documentation, Release 8.3.4

4 Chapter 1. How the documentation is organized

CHAPTER 2

Getting help

Having trouble?

Try the FAQ — it’s got answers to many common questions.

Looking for specific information? Try the genindex, or the detailed table of contents.
Not found anything? See asking questions in github.

Report bugs with Pyarmor in issues

https://pypi.python.org/pypi/pyarmor/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.3.4

6 Chapter 2. Getting help

CHAPTER 3

Table of Contents

3.1 Tutorials

3.1.1

Getting Started

Content

What’s Pyarmor
Installation from PyPI
Obfuscating one script

— Distributing the obfuscated script
Obfuscating one package

— Distributing the obfuscated package
Expiring obfuscated scripts
Binding obfuscated scripts to device
Packaging obfuscated scripts
Something need to know

What to read next

How the documentation is organized

New to Pyarmor? Well, you came to the right place: read this material to quickly get up and running.

Pyarmor Documentation, Release 8.3.4

What’s Pyarmor

Pyarmor is a command-line tool designed for obfuscating Python scripts, binding obfuscated scripts to specific ma-
chines, and setting expiration dates for obfuscated scripts.

Key Features:

* Seamless Replacement: Obfuscated scripts remain as standard .py files, allowing them to seamlessly replace
the original Python scripts in most cases.

* Balanced Obfuscation: Offers multiple ways to obfuscate scripts to balance security and performance.
¢ Irreversible Obfuscation: Renames functions, methods, classes, variables, and arguments.

* C Function Conversion: Converts some Python functions to C functions and compiles them into machine
instructions using high optimization options for irreversible obfuscation.

* Script Binding: Binds obfuscated scripts to specific machines or sets expiration dates for obfuscated scripts.

* Themida Protection: Protects obfuscated scripts using Themida (Windows only).

Installation from PyPI

Pyarmor packages are published on the PyPI. The preferred tool for installing packages from PyPI is pip. This tool
is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

’$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win—-r and type emd) and run the same command:

’C:\> pip install -U pyarmor

After installation, type pyarmor —-version onthe command prompt. If everything worked fine, you will see the
version number for the Pyarmor package you just installed.

Not all the platforms are supported, more information check Building Environments

Obfuscating one script

Here it’s the simplest command to obfuscate one script foo . py:

$ pyarmor gen foo.py

The command gen could be replaced with g or generate:

$ pyarmor g foo.py
$ pyarmor generate foo.py

This command generates an obfuscated script dist/foo.py, which is a valid Python script, run it by Python inter-
preter:

$ python dist/foo.py

Check all generated files in the default output path:

8 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.3.4

$ 1s dist/
foo.py
pyarmor_runtime_000000

There is an extra Python package pyarmor_runtime_000000, which is required to run the obfuscated script.

Distributing the obfuscated script

Only copy dist/foo.py to another machine doesn’t work, instead copy all the files in the dist /.

Why? It’s clear after checking the content of dist/foo.py:

from pyarmor_runtime_ 000000 import __ pyarmor_
__pyarmor__ (__name__, _ file , ...)

Actually the obfuscated script can be taken as normal Python script with dependent package
pyarmor_runtime_000000, use it as it’s not obfuscated.

Important: Please run this obfuscated in the machine with same Python version and same platform, otherwise it
doesn’t work. Because pyarmor_runtime_000000 has an extension module, it’s platform-dependent and bind to
Python version.

Note: DO NOT install Pyarmor in the 7arget Device, Python interpreter could run the obfuscated scripts without
Pyarmor.

Obfuscating one package

Now let’s do a package. —O is used to set output path dist2 different from the default:

$ pyarmor gen -0 dist2 src/mypkg

Check the output:

$ 1s dist2/

mypkg
pyarmor_runtime_000000

$ 1s dist2/mypkg/
__init__ .py

All the obfuscated scripts in the dist2/mypkg, test it:

$ cd dist2/
$ python -C '"import mypkg'

If there are sub-packages, using —r to enable recursive mode:

$ pyarmor gen -0 dist2 -r src/mypkg

3.1. Tutorials 9

Pyarmor Documentation, Release 8.3.4

Distributing the obfuscated package

Also it works to copy the whole path dist2 to another machine. But it’s not convenience, the better way is using —1
to generate all the required files inside package path:

$ pyarmor gen -0 dist3 -r -i src/mypkg

Check the output:

$ 1s dist3/
mypkg

$ 1ls dist3/mypkg/
__init__ .py
pyarmor_runtime_000000

Now everything is in the package path dist3/mypkg, just copy the whole path to any target machine.

Note: Comparing current dist3/mypkg/__init___.py with above section dist2/mypkg/__init__ .py
to understand more about obfuscated scripts

Expiring obfuscated scripts

It’s easy to set expire date for obfuscated scripts by —e. For example, generate obfuscated script with the expire date
to 30 days:

’$ pyarmor gen -0 dist4d -e 30 foo.py ‘

Run the obfuscated scripts dist4/foo.py to verify it:

’$ python dist4/foo.py ‘

It checks network time, make sure your machine is connected to internet.

Let’s use another form to set past date 2020-12-31:

’$ pyarmor gen -0 dist4 -e 2020-12-31 foo.py

Now dist4/foo.py should not work:

’$ python dist4/foo.py ‘

If expire date has a leading ., it will check local time other than NTP server. For examples:

$ pyarmor gen -0 dist4 -e .30 foo.py
$ pyarmor gen -0 distd -e .2020-12-31 foo.py

For this form internet connection is not required in target machine.

Distributing the expired script is same as above, copy the whole directory dist4/ to target machine.

Binding obfuscated scripts to device

Suppose got target machine hardware information:

10 Chapter 3. Table of Contents

http://www.ntp.org

Pyarmor Documentation, Release 8.3.4

IPv4: 128.16.4.10
Ethernet Addr: 00:16:3e:35:19:3d
Hard Disk Serial Number: HXS2000CN2A

Using —b to bind hardware information to obfuscated scripts. For example, bind dist5/foo . py to Ethernet address:

$ pyarmor gen -0 dist5 -b 00:16:3e:35:19:3d foo.py

So dist5/foo.py only could run in target machine.

It’s same to bind IPv4 and serial number of hard disk:

$ pyarmor gen -0 dist5 -b 128.16.4.10 foo.py
$ pyarmor gen -O dist5 -b HXS2000CN2A foo.py

It’s possible to combine some of them. For example:

$ pyarmor gen -0 dist5 -b "00:16:3e:35:19:3d HXS2000CN2A" foo.py

Only both Ethernet address and hard disk are matched machine could run this obfuscated script.
Distributing scripts bind to device is same as above, copy the whole directory dist5/ to target machine.
Packaging obfuscated scripts

Remember again, the obfuscated script is normal Python script, use it as it’s not obfuscated.

Suppose package mypkg structure like this:

projects/
L— src/
L— nmypkg/
__init__ .py
utils.py

config. json

First make output path projects/dist 6 for obfuscated package:

$ cd projects
$ mkdir disté6

Then copy package data files to output path:

’$ cp —a src/mypkg dist6/

Next obfuscate scripts to overwrite all the . py files in dist 6/mypkg:

’$ pyarmor gen -O dist6 -i src/mypkg

The final output:

projects/
|: README . md
src/

L— nmypkg/

__init__ .py
utils.py

3.1. Tutorials 11

(continues on next page)

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

L config. json
L— disté/
L— mypkg/
__init__ _.py
utils.py
config. json
pyarmor_runtime_000000/__init__ .py

Comparing with src/mypkg, the only difference is dist6/mypkg has an extra sub-package
pyarmor_runtime_000000. The last thing is packaging dist 6/mypkg as your prefer way.

New to Python packaging? Refer to Python Packaging User Guide
Something need to know

There is binary extension module pyarmor_runtime in extra sub-package pyarmor_runtime_000000, here
it’s package content:

$ 1s dist6/mypkg/pyarmor_runtime_000000
__init__ .py
pyarmor_runtime.so

Generally using binary extensions means the obfuscated scripts require pyarmor_runtime be created for different
platforms, so they

* only works for platforms which provides pre-built binaries, refer to Building Environments

* may not be compatible with different builds of CPython interpreter. For example, when obfuscating scripts by
Python 3.8, they can’t be run by Python 3.7, 3.9 etc.

* often will not work correctly with alternative interpreters such as PyPy, IronPython or Jython

Another disadvantage of relying on binary extensions is that alternative import mechanisms (such as the ability to
import modules directly from zipfiles) often won’t work for extension modules (as the dynamic loading mechanisms
on most platforms can only load libraries from disk).

What to read next

There is a complete installation guide that covers all the possibilities:
* install pyarmor by source
* call pyarmor from Python script
* clean uninstallation
Next is Basic Tutorial. It covers
* using more option to obfuscate script and package
* using outer file to store runtime key
* localizing runtime error messages
* packing obfuscated scripts and protect system packages
And then Advanced Tutorial, some of them are not available in trial pyarmor

¢ 2 irreversible obfuscation: RFT mode, BCC mode P

12 Chapter 3. Table of Contents

https://packaging.python.org
https://docs.python.org/3.11/glossary.html#term-extension-module

Pyarmor Documentation, Release 8.3.4

 Customization error handler
* runtime error internationalization
e cross platform, multiple platforms and multiple Python version

Also you may be interesting in this guide Highest security and performance

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s organized will help you know where to look
for certain things:

e Part I: Tutorials now you’re reading.

e Part 2: How To guides are recipes. They guide you through the steps involved in addressing key problems and
use-cases. They are more advanced than tutorials and assume some knowledge of how Python works.

e Part 3: References guides contain key concepts, man page, configurations and other aspects of Pyarmor ma-
chinery.

e Part 4: Topics guides insight into key topics and provide useful background information and explanation. They
describe how it works and how to use it but assume that you have a basic understanding of key concepts.

e Part 5: Licenses describes EULA of Pyarmor, the different Pyarmor licenses and how to purchase Pyarmor

license.

Looking for specific information? Try the genindex, or the detailed table of contents.

3.1.2 Installation

Contents

* Prerequisite
* Installation from PyPI
— Installed command
— Start Pyarmor by Python interpreter
 Using virtual environments
* [nstallation from source
* Installation in offline device

* Run Pyarmor from Python script

e Clean uninstallation

Prerequisite

Pyarmor requires shared Python runtime library and C library.

In Linux, please install shared Python runtime library when needed. For example, install Python 3.10 shared runtime
library:

3.1. Tutorials 13

https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.3.4

$ apt install libpython3.10

In Darwin, make sure the file @rpath/1lib/libpythonX.Y.dylib exists. X.Y stands for Python major and
minor version.

For example:

@rpath/lib/libpython3.10.dylib

@rpath is one of:
* @executable_path/..
* @loader_path/..
* /System/Library/Frameworks/Python.framework/Versions/3.10
e /Library/Frameworks/Python.framework/Versions/3.10

If there is no this file, please install necessary packages or re-build Python with enable shared option, or using in-
stall_name_tool to adapt current Python installation, refer to ../question.

Installation from PyPI

Pyarmor packages are published on the PyPI. The preferred tool for installing packages from PyPI is pip. This tool
is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

’$ pip install pyarmor

On Windows, you should open Command Prompt (Win-r and type emd) and run the same command:

’C:\> pip install pyarmor

After installation, type pyarmor —-version onthe command prompt. If everything worked fine, you will see the
version number for the Pyarmor package you just installed.

If you need generate obfuscated scripts to run in other platforms, install the corresponding packages:

pip install pyarmor.cli.core.windows
pip install pyarmor.cli.core.themida
pip install pyarmor.cli.core.linux
pip install pyarmor.cli.core.darwin
pip install pyarmor.cli.core.freebsd
pip install pyarmor.cli.core.android

v v v nn

Not all the platforms are supported, more information check Building Environments

Note: If only using Pyarmor 8+ features, installing pyarmor. c11i instead pyarmor, could significantly decrease
downloaded file size. For example:

$ pip install pyarmor.cli

14 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.3.4

Installed command

¢ pyarmor is the main command to do everything. See Man Page.
* pyarmor-7 is used to call old commands, it equals bug fixed Pyarmor 7.x

* pyarmor-auth used by Group License to support unlimited docker containers

Start Pyarmor by Python interpreter

pyarmor is same as the following command:

$ python -m pyarmor.cli

Using virtual environments

When installing Pyarmor using pip, use virtual environments which could isolate the installed packages from the
system packages, thus removing the need to use administrator privileges. To create a virtual environment in the
.venv directory, use the following command:

$ python -m venv .venv

You can read more about them in the Python Packaging User Guide.

Installation from source

Deprecated since version 8.2.9.

You can install Pyarmor directly from a clone of the Git repository. This can be done either by cloning the repo and
installing from the local clone, on simply installing directly via git:

$ git clone https://github.com/dashingsoft/pyarmor
$ cd pyarmor
$ pip install

You can also download a snapshot of the Git repo in either tar.gz or zip format. Once downloaded and extracted, these
can be installed with pip as above.

Note: Do not use this method, it may not work since v8.2.9

Installation in offline device

All the Pyarmor pacakges are published in the PyPI, download them and copy to offlice device.
First install pyarmor.cli.core
Next install pyarmor or pyarmor.cli

For example, install offline Pyarmor 8.2.9 in Linux for Python 3.10:

$ pip install pyarmor.cli.core-3.2.9-cp310-none-manylinuxl_x86_64.whl
$ pip install pyarmor-8.2.9.zip

3.1. Tutorials 15

https://pypi.python.org/pypi/pyarmor/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://pypi.python.org/pypi/pyarmor/
https://github.com/dashingsoft/pyarmor
https://github.com/dashingsoft/pyarmor/archive/master.tar.gz
https://github.com/dashingsoft/pyarmor/archive/master.zip
https://pypi.python.org/pypi/

Pyarmor Documentation, Release 8.3.4

In Android or FreeBSD, there is no wheel in pyarmor.cli.core, it should install source distribution and ex-
tra package pyarmor.cli.core.android or pyarmor.cli.core.freebsd. For example, install offline
Pyarmor in Android for Python 3.10:

$ pip install pyarmor.cli.core-3.2.9.zip
$ pip install pyarmor.cli.core.android-3.2.9-cp310-none-any.whl
$ pip install pyarmor-8.2.9.zip

If need cross platform obfuscation, also install the corresponding platform package

For example, if need Themida protection, then install themida package:

pyarmor

pyarmor.
pyarmor.
pyarmor.
pyarmor.

pyarmor.

.cli.

cli.
cli.
cli.
cli.

cli.

core.

core.

core.

core.

core.

core.

pyarmor.cli.core.

freebsd
android
windows
themida
linux
alpine

darwin

’$ pip install pyarmor.cli.themida-3.2.9-cp310-none-any.whl

In Linux to generate for Windows, install windows package:

’$ pip install pyarmor.cli.windows-3.2.9-cp310-none-any.whl

If only using Pyarmor 8+ features, it’s recommend to install pyarmor. c11i instead pyarmor, the former file size

is significantly less than the latter. For example:

’$ pip install pyarmor.cli-8.2.9.zip

Run Pyarmor from Python script

Create a script tool . py, pass arguments by yourself

args =
main_entry (args)

['gen'’

, 'foo.py'l

from pyarmor.cli.__main import main_entry

Run it by Python interpreter:

$ python tool.py

Clean uninstallation

Run the following commands to make a clean uninstallation:

$ pip uninstall pyarmor
$ pip uninstall pyarmor.cli.core

(continues on next page)

16

Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

pip uninstall pyarmor.cli.runtime

pip uninstall pyarmor.cli.core.windows
pip uninstall pyarmor.cli.core.themida
pip uninstall pyarmor.cli.core.linux
pip uninstall pyarmor.cli.core.darwin
pip uninstall pyarmor.cli.core.freebsd
pip uninstall pyarmor.cli.core.android

«w v ;e n

rm -rf ~/.pyarmor
rm -rf ./.pyarmor

v »n

Note: The path ~ may be different when logging by different user. $HOME is home path of current logon user, check
the environment variable HOME to get the real path.

3.1.3 Basic Tutorial

Contents

* Debug mode and trace log

* More options to protect script

* More options to protect package

* Copying package data files

* Checking runtime key periodically
* Binding to many machines

» Using outer file to store runtime key
* Localization runtime error

* Packing obfuscated scripts

— Packing to one file

— Packing to one folder

We’ll assume you have Pyarmor 8.0+ installed already. You can tell Pyarmor is installed and which version by running
the following command in a shell prompt (indicated by the $ prefix):

$ pyarmor —--version

If Pyarmor is installed, you should see the version of your installation. If it isn’t, you’ll get an error.

This tutorial is written for Pyarmor 8.0+, which supports Python 3.7 and later. If the Pyarmor version doesn’t match,
you can refer to the tutorial for your version of Pyarmor by using the version switcher at the bottom right corner of
this page, or update Pyarmor to the newest version.

Throughout this tutorial, assume run pyarmor in project path which includes:

project/

|— foo.py

(continues on next page)

3.1. Tutorials 17

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

|: queens.py
Jjoker/

__init__ .py
queens.py
config. json

Pyarmor uses pyarmor gen with rich options to obfuscate scripts to meet the needs of different applications.

Here only introduces common options in a short, using any combination of them as needed. About usage of each
option in details please refer to pyarmor gen

Debug mode and trace log

When something is wrong, check console log to find what Pyarmor does, and use —d to enable debug mode to print
more information:

’$ pyarmor —-d gen foo.py

Trace log is useful to check whatever protected by Pyarmor, enable it by this command:

’$ pyarmor cfg enable trace=1

After that, pyarmor gen will generate a logfile . pyarmor/pyarmor.trace.log. For example:

$ pyarmor gen foo.py
$ cat .pyarmor/pyarmor.trace.log

trace.co foo:1l:<module>
trace.co foo:5:hello
trace.co foo:9:sum2
trace.co foo:12:main

Each line starts with trace. co is reported by code object protector. The first log says foo . py module level code
is obfuscated, second says function hel1lo at line 5 is obfuscated, and so on.

Enable both debug and trace mode could show much more information:

’$ pyarmor -d gen foo.py

Disable trace log by this command:

’$ pyarmor cfg enable_trace=0

More options to protect script

For scripts, use these options to get more security:

$ pyarmor gen —--enable-jit —--mix-str --assert-call --private foo.py

Using ——enable-7jit tells Pyarmor processes some sensitive data by c function generated in runtime.

Using —-mix—-str' could mix the string constant (length > 8) in the scripts.

I ——mix-stris not available in trial version

18 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Using ——assert—call makes sure function is obfuscated, to prevent called function from being replaced by special
ways

Using —-private makes the script could not be imported by plain scripts

For example,

data = "abcefgxyz"

def fib(n):
a, b=20, 1
while a < n:
print (a, end="' ")
a, b =D>b, atb

String constant abcefgxyz and function £ib will be protected like this

data _ mix_str_ (D"xxx*x*x%")

def fib(n):
a, b=20, 1
while a < n:
print (a, end=' ")
a, b =Db, atb
if _ name_ == '_ _main__ ':
__assert_call__ (fib) (n)

If function £ib is obfuscated,
protection exception.

assert_call__ (fib) returns original function £ib. Otherwise it will raise

To check which function or which string are protected, enable trace log and check trace logfile:

$ pyarmor cfg enable trace=1
$ pyarmor gen —--mix-str —--assert-call fib.py
$ cat .pyarmor/pyarmor.trace.log

trace.assert.call fib:10:'fib"'
trace.mix.str fib:1:'abcxyz'
trace.mix.str fib:9:'_ main_ '
trace.co fib:1:<module>
trace.co fib:3:fib

More options to protect package

For package, remove ——private and append 2 extra options:

$ pyarmor gen —--enable-jit —--mix-str --assert-call —--assert-import —--restrict joker/

Using ——assert-import prevents obfuscated modules from being replaced with plain script. It checks each import
statement to make sure the modules are obfuscated.

Using ——restrict makes sure the obfuscated module is only available inside package. It couldn’t be imported
from any plain script, also not be run by Python interpreter.

3.1. Tutorials 19

Pyarmor Documentation, Release 8.3.4

By default __init__ .py is not restricted, all the other modules are invisible from outside. Let’s check this, first
create a script dist/a.py

import joker

print ('import Jjoker OK')

from joker import gqueens

print ('import Jjoker.queens OK')

Then run it:

$ cd dist
$ python a.py
import Jjoker OK
RuntimeError: unauthorized use of script

In order to export joker . queens, either removing option ——restrict, or config only this module is not restrict
like this:

’$ pyarmor cfg -p joker.queens restrict_module=0

Then obfuscate this package with restrict mode:

’$ pyarmor gen —-restrict Jjoker/

Now do above test again, it should work:

$ cd dist/

$ python a.py
import Jjoker OK
import joker.queens

Copying package data files

Many packages have data files, but they’re not copied to output path.
There are 2 ways to solve this problem:

1. Before generating the obfuscated scripts, copy the whole package to output path, then run pyarmor gen to
overwrite all the . py files:

$ mkdir dist/joker
$ cp —a joker/x dist/joker
$ pyarmor gen -O dist -r joker/

2. Changing default configuration let Pyarmor copy data files:

$ pyarmor cfg data_files=«
$ pyarmor gen -O dist -r joker/

Checking runtime key periodically

Checking runtime key every hour:

$ pyarmor gen —--period 1 foo.py

20 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Binding to many machines

Using —b many times to bind obfuscated scripts to many machines.

For example, machine A and B, the ethernet addresses are 66:77:88:9%a:cc:fa and £8:£f£f:¢c2:27:00:7f
respectively. The obfuscated script could run in both of machine A and B by this command

$ pyarmor gen -b "66:77:88:9a:cc:fa" -b "f8:ff:c2:27:00:7f" foo.py

Using outer file to store runtime key

First obfuscating script with ——outer:

’$ pyarmor gen —--outer foo.py

In this case, it could not be run at this time:

’$ python dist/foo.py

Let generate an outer runtime key valid for 3 days by this command:

’$ pyarmor gen key —-e 3

It generates a file dist /pyarmor. rkey, copy it to runtime package:

’$ cp dist/pyarmor.rkey dist/pyarmor_runtime_000000/

Now run dist/foo.py again:

’$ python dist/foo.py

Let’s generate another license valid for 10 days:

$ pyarmor gen key -0 dist/key2 —-e 10

$ 1s dist/key2/pyarmor.rkey

Copy it to runtime package to replace the original one:

$ cp dist/key2/pyarmor.rkey dist/pyarmor_runtime_000000/

The outer runtime key file also could be saved to other paths, refer to outer key.

Localization runtime error

Some of runtime error messages could be customized. When something is wrong with the obfuscated scripts, it prints
your own messages.

First create messages.cfgin the path . pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

Then edit it. It’s a . ini format file, change the error messages as needed

3.1. Tutorials 21

Pyarmor Documentation, Release 8.3.4

error_1
error_2
error_3
error_A4

[runtime.message]

this license key 1is
this license key is
missing license key
unauthorized use of

expired

not for this machine
to run the script
script

Now obfuscate the script in the current path to use customized messages:

$ pyarmor gen foo.py

If we want to show same message for all of license errors, edit it like this

error_1
error_2
error_3

[runtime.message]

invalid license key
invalid license key
invalid license key

Here no error_4, it means this error uses the default message.

And then obfuscate the scripts again.

Packing obfuscated scripts

Pyarmor need PylInstaller to pack scripts first, then replace plain scripts with obfuscated ones in bundle.

Packing to one file

First packing script to one file by PyInstaller with option -F:

’$ pyinstaller -F foo.py

It generates one bundle file dist /foo, pass this to pyarmor:

’$ pyarmor gen —-O obfdist —--pack dist/foo foo.py

This command will obfuscate foo . py first, then repack dist/foo, replace the original foo.py with obfdist/
foo.py, and append all the runtime files to bundle.

The final output is still dist /foo:

$ dist/foo

Packing to one folder

First packing script to one folder by PylInstaller:

’$ pyinstaller foo.py

It generates one bundle folder dist/foo, and an executable file dist/foo/foo, pass this executable to pyarmor:

’$ pyarmor gen —-O obfdist —--pack dist/foo/foo foo.py

22

Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Like above section, dist /foo/foo will be repacked with obfuscated scripts.

Now run it:

$ dist/foo/foo

More information about pack feature, refer to Insight Into Pack Command

3.1.4 Advanced Tutorial

Contents

» Using rftmode 7™
» Using bccmode P™

* Customization error handler
e Filter mix string

e Filter assert function and import

* Patching source by inline marker

Internationalization runtime error message

Generating cross platform scripts

Obfuscating scripts for multiple Python versions

Using rftmode P™

RFT mode could rename most of builtins, functions, classes, local variables. It equals rewriting scripts in source level.

Using ——enable-rft to enable RTF mode':

$ pyarmor gen —--enable-rft foo.py

For example, this script

import sys

def sum2(a, b):
return a + b

def main (msg) :

a =2

b =6

c = sum2(a, b)

print (' + = "% (a, b, <))
if name == '__main_ ':

main ('pass: ' % data)

transform to

! This feature is only available for Pyarmor Pro.

3.1. Tutorials 23

Pyarmor Documentation, Release 8.3.4

pyarmor__17 = __assert_armored__ (b'\x83\xda\x03sys"')

def pyarmor__ 22 (a, b):
return a + b

def pyarmor__ 16 (msg) :
pyarmor__23 = 2
pyarmor__ 24 = 6
pyarmor__ 25 = pyarmor__ 22 (pyarmor__ 23, pyarmor__24)

pyarmor__ 14 (' + = ' % (pyarmor__23, pyarmor__24, pyarmor__25))
if name_ == '_ _main__ ':
pyarmor__ 16 ('pass: ' % pyarmor__20)

By default if RFT mode doesn’t make sure this name could be changed, it will leave this name as it is.

RFT mode doesn’t change names in the module attribute __all__, it also doesn’t change function arguments.

For example, this script

import re
all = ['make_scanner']

def py_make_scanner (context) :

parse_obj = context.parse_object
parse_arr = context.parse_array
make_scanner = py_make_scanner

transform to

pyarmor__3 = _ assert_armored_ (b'\x83e\x9d')

all___ = ['make_scanner']

def pyarmor__ 1 (context):
pyarmor__4 = context.parse_object
pyarmor__5 = context.parse_array

make_scanner = pyarmor__ 1

If want to know what’re refactored exactly, enable trace rft to generate transformed script’:

$ pyarmor cfg trace_rft=1
$ pyarmor gen —--enable-rft foo.py

The transformed script will be stored in the path .pyarmor/rft:

’$ cat .pyarmor/rft/foo.py

Now run the obfuscated script:

’$ python dist/foo.py

If something is wrong, try to obfuscate it again, it may make senses:

2 This feature only works for Python 3.9+

24 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

$ pyarmor gen —--enable-rft foo.py
$ python dist/foo.py

If it still doesn’t work, or you need transform more names, refer to /nsight Into RFT Mode to learn more usage.

Using bcecmode P
BCC mode could convert most of functions and methods in the scripts to equivalent C functions, those ¢ functions will
be compiled to machine instructions directly, then called by obfuscated scripts.

It requires ¢ compiler. In Linux and Darwin, gcc and clang is OK. In Windows, only clang.exe works. It could
be configured by one of these ways:

e If there is any clang.exe, it’s OK if it could be run in other path.
¢ Download and install Windows version of LLVM

* Download https://pyarmor.dashingsoft.com/downloads/tools/clang-9.0.zip, it’s about 26M bytes, there is only
one file in it. Unzip it and save clang.exe to SHOME/ .pyarmor/. $HOME is home path of current logon
user, check the environment variable HOME to get the real path.

After compiler works, using ——enable-bcc to enable BCC mode’:

$ pyarmor gen —-enable-bcc foo.py

All the source in module level is not converted to C function.

To check which functions are converted to C function, enable trace mode before obfuscate the script:

$ pyarmor cfg enable trace=1
$ pyarmor gen —--enable-bcc foo.py

Then check the trace log:

$ 1ls .pyarmor/pyarmor.trace.log
$ grep trace.bcc .pyarmor/pyarmor.trace.log

trace.bcc foo:5:hello
trace.bcc foo:9:sum2
trace.bcc foo:12:main

The first log means foo.py line 5 function hello is protected by becc. The second log means foo.py line 9
function sum?2 is protected by bcc.

When something is wrong, enable debug mode by common option -d:

’$ pyarmor —-d gen ——-enable-bcc foo.py

Check console log and trace log, most of cases there is modname and line no in console or trace log. Assume the
problem function is sum2, then tell BCC mode does not deal with it by this way:

’$ pyarmor cfg -p foo bcc:excludes "sum2"

Use —p to specify mod-name, and option bcc : excludes for function name.

Append more functions to exclude by this way:

3 This feature is only available for Pyarmor Pro.

3.1. Tutorials 25

https://releases.llvm.org

Pyarmor Documentation, Release 8.3.4

$ pyarmor cfg -p foo bcc:excludes + "hello"

When obfuscating package, it also could exclude one script separately. For example, the following commands tell
BCC mode doesn’t handle joker/card.py, but all the other scripts in package joker are still handled by BCC
mode:

$ pyarmor cfg —-p Jjoker.card bcc:disabled=1
$ pyarmor gen —-—-enable-bcc /path/to/pkg/joker

It’s possible that BCC mode could not support some Python features, in this case, use bcc:excludes and
bcce:disabled to ignore them, and make all the others work.

If it still doesn’t work, or you want to know more about BCC mode, goto Insight Into BCC Mode.

Customization error handler

By default when something is wrong with obfuscated scripts, RuntimeError with traceback is printed:

$ pyarmor gen -e 2020-05-05 foo.py
$ python dist/foo.py

Traceback (most recent call last):
File "dist/foo.py", line 2, in <module>
from pyarmor_runtime_000000 import __pyarmor___
File "dist/pyarmor_runtime_000000/__init___.py", line 2, in <module>
from .pyarmor_runtime import _ pyarmor_
RuntimeError: this license key is expired (1:10937)

If prefer to show error message only:

$ pyarmor cfg on_error=1

$ pyarmor gen —-e 2020-05-05 foo.py
$ python dist/foo.py

this license key is expired (1:10937)

If prefer to quit directly without any message:

$ pyarmor cfg on_error=2

$ pyarmor gen -e 2020-05-05 foo.py
$ python dist/foo.py

$

Restore the default handler:

’$ pyarmor cfg on_error=0

Or reset this option:

’$ pyarmor cfg —--reset on_error

26 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Note: This only works for execute the obfuscated scripts by Python interpreter directly. If ——pack is used, the script
is loaded by PylInstaller loader, it may not work as expected.

Filter mix string

By default ——mix—str encrypts all the string length > 8.
But it can be configured to filter any string to meet various needs.

Exclude short strings by length < 10:

’$ pyarmor cfg mix.str:threshold 10

Exclude any string by regular expression with format /pattern/, the pattern syntax is same as module re. For
example, exclude all strings length > 1000:

’$ pyarmor cfg mix.str:excludes "/.{1000,}/"

Append new ruler to exclude 2 words __main___ and xyz:

’$ pyarmor cfg mix.str:excludes ~ " main_ xyz"

Reset exclude ruler:

’$ pyarmor cfg mix.str:excludes = ""

Encrypt only string length between 8 and 32 by regular expression:

’$ pyarmor cfg mix.str:includes = "/.{8,32}/"

Check trace log to find which strings are protected.

Filter assert function and import
——assert-call and ——assert—import could protect function and module, but sometimes it may make mis-
takes.

One case is that pyarmor asserts a third-party function is obfuscated, thus the obfuscated scripts always raise protection
error.

Adding an assert rule to fix this problem. For example, tell ——assert—-import ignore module json and inspect
by word list:

’$ pyarmor cfg assert.import:excludes = "json inspect"

Tell ——assert—call ignore all the function starts with wint ype_ by regular expression:

’$ pyarmor cfg assert.call:excludes "/wintype_.x/"

The other case is that some functions or modules are obfuscated, but pyarmor doesn’t protect them. refer to next
section Patching source by inline marker to fix this issue.

3.1. Tutorials 27

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.3.4

Patching source by inline marker

Before obfuscating a script, Pyarmor scans each line, remove inline marker plus the following one white space, leave
the rest as it is.

The default inline marker is # pyarmor:, any comment line with this prefix will be as a inline marker.

For example, these lines

print ('start ...")

pyarmor: print ('this script is obfuscated')
pyarmor: check_something ()

will be changed to

print ('start ...")

print ('this script is obfuscated')
check_something ()

One real case: protecting hidden imported modules

By default ——assert-import could only protect modules imported by statement import, it doesn’t handle mod-
ules imported by other methods.

For example,

m = __ _import__ ('abc')

In obfuscated script, there is a builtin function __assert_armored__ () could be used to check m is obfuscated.
In order to make sure m could not be replaced by others, check it manually:

m = __ _import__ ('abc'")
_ _assert_armored__ (m)

But this results in a problem, The plain script could not be run because __assert_armored___ is only available in
the obfuscated script.

The inline marker is right solution for this case. Let’s make a little change

m = __import__ ('abc')
pyarmor: __assert_armored__ (m)

By inline marker, both the plain script and the obfuscated script work as expected.

Sometimes —-assert—call may miss some functions, in this case, using inline marker to protect them. Here is an
example to protect extra function self.foo.meth:

pyarmor: __assert_armored__ (self.foo.meth)
self.foo.meth(x, vy, z)

Internationalization runtime error message

Create messages.cfqg in the path .pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

28 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

It’sa . ini format file, add a section runt ime .message with option languages. The language code is same as
environment variable LANG, assume we plan to support 2 languages, and only customize 2 errors:

* error_1: license is expired

e error_2: license is not for this machine

[runtime.message]

languages = zh_CN zh_ TW

error_1 = invalid license
invalid license

error_2

invalid license is default message for any non-matched language.

Now add 2 extra sections runtime.message.zh_CNand runtime.message.zh_TW

[runtime.message]

languages = zh_CN zh_ TW

error_1 = invalid license
invalid license

error_2

[runtime.message.zh_CN]

error_1 =
error_2

[runtime.message.zh_TW]

error_1 =
error_2

Then obfuscate script again to make it works.

When obfuscated scripts start, it checks LANG to get current language code. If this language code is not zh_CN or
zh_ TW, default message is used.

PYARMOR_LANG could force the obfuscated scripts to use specified language. If it’s set, the obfuscated scripts ignore
LANG. For example, force the obfuscated script dist/foo.py to use lang zh_ TW by this way:

export PYARMOR_LANG=zh_TW
python dist/foo.py

Generating cross platform scripts

New in version 8.1.
Here list all the standard platform names.

In order to generate scripts for other platform, use ——platform specify target platform. For example, building
scripts for windows.x86_64 in Darwin:

$ pyarmor gen —--platform windows.x86_64 foo.py

pyarmor.cli.runtime provides prebuilt binaries for these platforms. If it’s not installed, pyarmor
may complain of cross platform need pyarmor.cli.runtime, please run "pip install

3.1. Tutorials 29

Pyarmor Documentation, Release 8.3.4

pyarmor.cli.runtime~=2.1.0" first. Following the hint to install pyarmor.cli.runtime with the right ver-
sion.

Using —-platform multiple times to support multiple platforms. For example, generate the scripts to run in most
of x86_64 platforms:

$ pyarmor gen --platform windows.x86_64
——-platform linux.x86_64 \
——platform darwin.x86_64 \
foo.py

Obfuscating scripts for multiple Python versions

New in version 8.3.
This guide how to obfuscate the script foo.py which works with both Python 3.8 and 3.9.

First install Pyarmor for each Python version:

$ python3.8 -m pip install pyarmor
$ python3.9 -m pip install pyarmor

If you have Pyarmor license, register Pyarmor by any Python version:

’$ python3.8 -m pyarmor.cli reg pyarmor-regfile—-xxxx.zip

Enable builtin plugin MultiPythonPlugin:

’$ python3.8 -m pyarmor.cli cfg plugins + "MultiPythonPlugin"

Obfuscate the script to different output path by each Python version:

$ python3.8 -m pyarmor.cli gen -O distl foo.py
$ python3.9 -m pyarmor.cli gen -0 dist2 foo.py

Then merge 2 output paths by any Python version:

$ python3.8 -m pyarmor.cli.merge -O dist distl dist2

The final output path is dist:

$ python3.8 dist/foo.py
$ python3.9 dist/foo.py

3.1.5 Customization and Extension

Contents

* Changing runtime package name
* Appending assert functions and modules

* Using plugin to fix loading issue in darwin

» Using hook to bind script to docker id

30 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

* Using hook to check network time by other service

* Protecting extension module pyarmor_runtime

* Comments within outer key

Pyarmor provides the following ways to extend:

» Using pyarmor cfg to change default configurations
 Using plugin script to customize all generated files

» Using hook script to extend features in obfuscated scripts

Changing runtime package name

New in version 8.2:'
By default the runtime package name is pyarmor_runtime_xXxXxX

This name is variable with any valid package name. For example, set it to my_ runt ime:

pyarmor cfg package_name_format "my_runtime"

Appending assert functions and modules

New in version 8.2.

Pyarmor 8.2 introduces configuration item auto_mode to protect more functions and modules. The default value is
and, ——assert-call and ——assert—import only protect modules and functions which Pyarmor make sure
they’re obfuscated.

If set its value to or, then all the names in the configuration item includes are also protected. For example,
appending function foo koo to assert list:

$ pyarmor cfg ast.call:auto_mode "or"
$ pyarmor cfg ast.call:includes "foo koo"

$ pyarmor gen —--assert-call foo.py

For example, also protect hidden imported module joker.card:

$ pyarmor cfg ast.import:auto_mode "or"
$ pyarmor cfg ast.import:includes "Jjoker.card"

$ pyarmor gen —--assert-import joker/

Using plugin to fix loading issue in darwin

New in version 8.2.

In darwin, if Python is not installed in the standard path, the obfuscated scripts may not work because extension module
pyarmor_runtime in the runtime package could not be loaded.

Let’s check the dependencies of pyarmor_runtime. so:

! Pyarmor trial version could not change runtime package name

3.1. Tutorials 31

Pyarmor Documentation, Release 8.3.4

$ otool -L dist/pyarmor_runtime_000000/pyarmor_runtime.so
dist/pyarmor_runtime_000000/pyarmor_runtime.so:
pyarmor_runtime.so (compatibility version 0.0.0, current version 1.0.0)

@rpath/lib/libpython3.9.dylib (compatibility version 3.9.0, current version 3.9.0)

Suppose farget device hasno @rpath/1ib/libpython3.9.dylib, but @rpath/lib/libpython3.9.so,
in this case pyarmor_runtime. so could not be loaded.

We can create a plugin script . pyarmor/myplugin.py to fix this problem

all = ['CondaPlugin']

class CondaPlugin:

def _fixup(self, target):
from subprocess import check_call
check_call('install_name_tool -change @rpath/lib/libpython3.9.dylib Q@rpath/

—1lib/libpython3.9.s0 ¢s' % target)
check_call('codesign -f -s - 2s' % target)
@staticmethod

def post_runtime (ctx, source, target, platform):
if platform.startswith('darwin."'):
print ('using install_name_tool to fix %s' % target)
self._fixup (target)

Enable this plugin and generate the obfuscated script again:

$ pyarmor cfg plugins + "myplugin"
$ pyarmor gen foo.py

See also:

Plugins

Using hook to bind script to docker id

New in version 8.2.
Suppose we need bind script app . py to 2 dockers which id are docker—-al and docker-b2

First create hook script . pyarmor/hooks/app.py

def _pyarmor_check_docker () :
cid = None
with open("/proc/self/cgroup") as f:
for line in f:

if line.split(':', 2)[1l] == 'name=systemd':
cid = line.strip() .split('/") [-1]
break
docker_ids = __pyarmor__ (0, None, b'keyinfo', 1).decode('utf-8")

if cid is None or cid not in docker_ids.split(',"'):

(continues on next page)

32 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

raise RuntimeError ('license i1s not for this machine')

_pyarmor_check_docker ()

Then generate the obfuscated script, store docker ids to runtime key as private data at the same time:

$ pyarmor gen —--bind-data "docker-al,docker-b2" app.py

Run the obfuscated script to check it, please add print statements in the hook script to debug it.
See also:

Hooks __pyarmor.___ ()

Using hook to check network time by other service

New in version 8.2.

If NTP is not available in the target device and the obfuscated scripts has expired date, it may raise Runt imeError:
Resource temporarily unavailable.

In this case, using hook script to verify expired data by other time service.

First create hook script in the . pyarmor/hooks/foo.py:

def _pyarmor_check_worldtime (host, path):
from http.client import HTTPSConnection
expired = __pyarmor__ (1, None, b'keyinfo', 1)
conn = HTTPSConnection (host)
conn.request ("GET", path)
res = conn.getresponse ()
if res.code == 200:
data = res.read()
s = data.find(b'"unixtime":")
n = data.find(b', "', s)
current = int (data[s+11:n])
if current > expire:
raise RuntimeError ('license is expired')
else:
raise RuntimeError ('got network time failed'")
_pyarmor_check_worldtime ('worldtimeapi.org', '/api/timezone/Europe/Paris')

Then generate script with local expired date:

$ pyarmor gen -e .30 foo.py

Thus the obfuscated script could verify network time by itself.
See also:

Hooks __pyarmor__ ()

Protecting extension module pyarmor_runtime

New in version 8.2.

This example shows how to check the file content of an extension module to make sure it’s not changed by others.

3.1. Tutorials 33

Pyarmor Documentation, Release 8.3.4

First create a hook script .pyarmor/hooks/foo.py:

def check_pyarmor_runtime (value) :
from pyarmor_ runtime 000000 import pyarmor_runtime

with open (pyarmor_runtime. file , 'rb') as f:
if sum(bytearray (f.read())) != value:
raise RuntimeError ('unexpected ' % filename)

check_pyarmor_runtime (EXCEPTED_VALUE)

Line 7 EXCEPTED_VALUE need to be replaced with real value, but it doesn’t work to get the sum value of
pyarmor_runtime. so after building, because each build the sum value is different. We need use a post-runtime
plugin to get the expected value and update the hook script automatically

Plugin script: .pyarmor/myplugin.py

all = ['CondaPlugin', 'RuntimePlugin']

class RuntimePlugin:

@staticmethod
def post_runtime (ctx, source, target, platform):
with open(target, 'rb') as f:

value = sum(bytearray (f.read()))
with open('.pyarmor/hooks/foo.py', 'r') as f:
source = f.read()
source = source.replace ('EXPECTED_VALUE', str(value))

with open('.pyarmor/hooks/foo.py', 'r') as f:
f.write (source)

class CondaPlugin:

Then enable this plugin:

$ pyarmor cfg plugins + "myplugin"

Finally generate the obfuscated script, and verify it:

$ pyarmor gen foo.py
$ python dist/foo.py

This example is only guide how to do, it’s not safe enough to use it directly. There is always a way to bypass open
source check points, please write your private check code. There are many other methods to prevent binary file from
hacking, please learn and search these methods by yourself.

See also:

Hooks

Comments within outer key

New in version 8.2.

The outer key ignores all the printable text at the header, so it’s possible to insert some readable text in the outer key
as comments.

Post-key plugin is designed to do this. The following example plugin will print all the key information in the console,
and write expired date to outer key file:

34 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Plugin script: .pyarmor/myplugin.py
from datetime import datetime

all = ['CommentPlugin']

class CommentPlugin:

@staticmethod
def post_key(ctx, keyfile, *+keyinfo):
expired = None
for name, value in keyinfo.items():
print (name, value)
if name == 'expired':
expired = datetime.fromtimestamp (value) .isoformat ()

if expired:
print ('patching runtime key')
comment = '# expired date: \n' % expired
with open(keyfile, 'rb') as f:
keydata = f.read()
with open(keyfile, 'wb') as f:
f.write (comment.encode ())
f.write (keydata)

Enable this plugin and generate an outer key:

$ pyarmor cfg plugins + "myplugin"
$ pyarmor gen key -e 2023-05-06

Check comment:

$ head -n 1 dist/pyarmor.rkey

See also:

Plugins

3.2 How To

3.2.1 Highest security and performance

Contents

* What’s the most security pyarmor could do?
» What’s the best performance pyarmor could do?

* Recommended options for different applications

* Reforming scripts to improve security

3.2. How To 35

Pyarmor Documentation, Release 8.3.4

What’s the most security pyarmor could do?

The following options could improve security
e ——enable-rft almost doesn’t impact performance
e ——enable-bcc may be a little faster than a plain script, but it consumes more memory to load binary code
e ——enable-7jit prevents static decompilation

* ——enable-themida prevents most of debuggers, only available in Windows, and reduces performance re-
markably

* ——mix—str protects string constants in the script
e pyarmor cfg mix_argnames=1 may broken annotations
e ——obf-code 2 could make it more difficult to reverse byte code
The following options hide module attributes
e ——private for script or ——restrict for package
The following options prevent functions or modules from being replaced by hack code
* ——assert-call

* ——assert-import

What’s the best performance pyarmor could do?

Using default options and the following settings
e ——obf-code 0
e ——obf-module0
* pyarmor cfg restrict_module=0
With these options, the security is almost the same as .pyc
In order to improve security, and doesn’t reduce performance, also enable RFT mode
* ——enable-rft
If there are sensitive strings, enable mix-str with filter
e pyarmor cfg mix.str:includes "/regular expression/"
* ——mix-str

Without the filter, all of the string constants in the scripts are encrypted, which may reduce performance. Using filter
only encrypt the sensitive string may balance security and performance.

Recommended options for different applications

For Django application or serving web request
If RFT mode is safe enough, you can check the transformed scripts to make a decision, using these options
* ——enable-rft
¢ ——obf-code 0

e ——obf-module 0

36 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

e ——mix-str with filter

If RFT mode is not safe enough, using these options
* ——enable-rft
* ——no-wrap
e ——mix-str with filter

For most applications and packages

If RFT mode and BCC mode are available
* ——enable-rft
e ——enable-bcc
e ——mix-str with filter
e ——assert—-import

If RFT mode and BCC mode are not available
* ——enable-jit
e ——private for scripts, or ——restrict for packages
e ——mix-str with filter
* ——assert-import
* ——obf-code 2

If care about monkey trick, also
* ——assert—call with inline marker to make sure all the key functions are protected

If it’s not performance sensitive, using ——enable-themida prevent from debuggers

Reforming scripts to improve security

Move main script module level code to other module

Pyarmor will clear the module level code after the module is imported, the injected code could not get any module
level code because it’s gone.

But the main script module level code is never cleared, so moving unnecessary code here to another module could
improve security.

3.2.2 Protecting Runtime Memory Data
Pyarmor focuses on protecting Python scripts, through several irreversible obfuscation methods, Pyarmor makes sure
the obfuscated scripts can’t be restored by any way.

But it isn’t good at memory protection and anti-debug. If you care about runtime memory data, or runtime key
verification, generally it need extra methods to prevent debugger from hacking dynamic libraries.

Pyarmor could prevent hacker from querying runtime data by valid Python C API and other Python ways, only if
the Python interpreter and extension module pyarmor_runtime are not hacked. This is what extra tools need to
protect, the common methods include

* Signing the binary file to make sure they’re not changed by others

3.2. How To 37

Pyarmor Documentation, Release 8.3.4

e Using third-party binary protection tools to protect Python interpreter and extension module
pyarmor_runtime

» Pyarmor provides some configuration options to check interps and debuggers.

e Pyarmor provides runtime patch feature to let expert users to write C functions or python scripts to improve
security.

Basic steps

Above all, Python interpreter to run the obfuscated scripts can’t be replaced, if the obfuscated scripts could be executed
by patched Python interpreter, it’s impossible to prevent others to read any Python runtime data.

At this time Pyarmor need ——pack to implement this.

First pack the script by PyInstaller!:

$ pyinstaller foo.py

Next configure and repack the bundle, the following options are necessary”:

$ pyarmor cfg check_debugger=1 check_interp=1
$ pyarmor gen —--mix-str -—--assert-call --assert-import —--private —--pack dist/foo/foo,,
—foo.py

Then protect all the binary files in the output path dist/foo/ through external tools, make sure these binary files
can not be replaced or modified in runtime.

Available external tools: codesign, VMProtect

Note

Hook Scripts
Expert users could write ook script to check Pylnstaller bootstrap modules to improve security.

Here it’s an example to show how to do, note that it may not work in different PyInstaller version, do not use it directly.

Hook script ".pyarmor/hooks/foo.py"

def protect_self():
from sys import modules

def check_module (name, checklist):
m = modules [name]
for attr, value in checklist.items () :
if value != sum(getattr(m, attr)._ code .co_code):
raise RuntimeError ('unexpected "% m)

checklist__ frozen_importlib = {}
checklist__ frozen_importlib_external = {}
checklist_pyimodO3_importers = {}

check_module ('_frozen_importlib', checklist__frozen_importlib)
check_module (' _frozen_importlib_external', checklist__frozen_importlib_external)
check_module ('pyimod03_importers', checklist_pyimod03_importers)

(continues on next page)

L If pack to one file by PyInstaller, it’s not enough to protect this file alone. You must make sure all the binary files extracted from this file are

protected too.
2 Do not use che ck_interp in 32-bit x86 platforms, it doesn’t work

38 Chapter 3. Table of Contents

https://www.pyinstaller.org/

20

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

protect_self ()

The highlight lines need to be replaced with real check list. In order to get baseline, first replace function
check_module with this fake function

def check_module (name, checklist):
m = modules [name]

refs = {}
for attr in dir(m):
value = getattr(m, attr)
if hasattr(value, '_ _code_ "):
refs[attr] = sum(value._ code_ .co_code)
print (' checklist__ = ' % (name, refs))

Run the following command to get baseline:

$ pyinstaller foo.py
$ pyarmor gen —-pack dist/foo/foo foo.py

checklist___frozen_importlib = {'__import__': 9800, ...}

checklist__ frozen_importlib_external = {'_calc_mode': 2511, ...}
checklist_pyimod03_importers = {'imp_lock': 183, 'imp_unlock': 183, ...}

Edit hook script to restore check_module and replace empty check lists with real ones.

Using this real hook script to generate the final bundle:

$ pyinstaller foo.py
$ pyarmor gen —--pack dist/foo/foo foo.py

Runtime Patch
New in version 8.3.

Pyarmor provides runtime patch feature so that users could write one C or python script to do any anti-debug or other
checks. It will be embedded into runtime files, and called on extension module pyarmor_runt ime initialization.

First create script .pyarmor/hooks/pyarmor_runtime.py, and do some checks in the function
bootstrap (). For example:

def bootstrap(user_data):
from ctypes import windll
if windll.kernel32.IsDebuggerPresent () :
print ('found debugger')
return False

3.2.3 Packing with outer key

This example shows how to pack src/myapp . py with outer key

First pack it by PylInstaller:

$ pyinstaller myapp.py

Next obfuscate the script with outer key:

3.2. How To 39

Pyarmor Documentation, Release 8.3.4

’$ pyarmor gen —--outer --pack dist/myapp/myapp myapp.py

Then generate an outer key:

’$ pyarmor gen key -0 keylist -e 30

For one-folder mode, generally save outer key in the runtime package. For example:

’$ cp keylist/pyarmor.rkey dist/myapp/pyarmor_runtime_000000/

Thus it could run dist /myapp/myapp in any path. For example:

’$ dist/myapp/myapp

For one-file mode, generally store outer key to the same path of executable, and rename it to EXECUTABLE.
KEYNAME. For example:

pyinstaller —--onefile myapp.py

pyarmor gen —--outer —--pack dist/myapp myapp.py
pyarmor gen key -0 keylist -e 30

cp keylist/pyarmor.rkey dist/myapp.pyarmor.rkey

«w v v »n

Thus it could run dist /myapp in any path. For example:

$ dist/myapp

The outer key also could be stored in a fixed path specified by PYARMOR _RKEY. For example:

export PYARMOR_RKEY=/opt/pyarmor/runtime_data
mkdir -p /opt/pyarmor/runtime_data

cp keylist/pyarmor.rkey /opt/pyarmor/runtime_data/
dist/foo

“ v v »n

3.2.4 Building obfuscated wheel

The test-project hierarchy is as follows:

$ tree test-project

test-project
MANIFEST.in
pyproject.toml

setup.cfg

src

— parent
child
L __init___.py
__init__ .py

4 directories, 5 files

The content of MANIFEST . in is:

recursive—-include dist/parent/pyarmor_runtime_00xxxx *.SO

The content of pyproject .toml is:

40 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

[build-system]

requires = [
"setuptools>=66.1.1",
"wheel"
]
build-backend = "setuptools.build_meta"

The content of setup.cfqgis:

[metadatal]
name = parent.child
version = attr: parent.child.VERSION

[options]
package_dir =
=dist/

packages =
parent
parent.child
parent.pyarmor_runtime_00xxxx

include_package_data = True

src/parent/__init__ .pyand src/parent/child/__init__ .py are the same:

VERSION = '0.0.1"

First obfuscate the package:

$ cd test-project
$ pyarmor gen —-recursive -1 src/parent

After successful execution the output is the following directory:

$ tree dist

dist
- parent
child
|: __init__ .py
__pycache___
L __init___.cpython-311.pyc
__init__ .py
pyarmor_runtime_00xxxx

|: __init___.py
pyarmor_runtime.so

Next, build the wheel package:

$ python -m build --skip-dependency-check —--no-isolation

Unfortunately it raises exception:

« Building sdist...
Traceback (most recent call last):

File "/usr/lib/python3/dist-packages/setuptools/config/expand.py", line 81, in ___
—getattr

(continues on next page)

3.2. How To 41

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

return next (

AAAANA

StopIlteration
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/usr/lib/python3/dist-packages/setuptools/config/expand.py", line 191, in_
—read_attr
return getattr (StaticModule (module_name, spec), attr_name)

From traceback we found it uses StaticModule, then check the source /usr/lib/python3/
dist-packages/setuptools/config/expand.py at line 191 to find class StaticModule definition.
By the source code we know it uses ast . parse to parse source code directly to get locals. It’s impossible for obfus-
cated scripts, in order to fix this problem, we need insert a line in the dist/parent/child/__init__ .py like
this:

from pyarmor_runtime_ 00xxxx import __ pyarmor___
VERSION = '0.0.1"

But pyarmor doesn’t allow to change obfuscated scripts by default, it need disable this restriction by this command:

$ pyarmor cfg -p parent.child._ _init__ restrict_module = 0
$ pyarmor gen —--recursive —-i src/parent

The option pyarmor cfg —-p parent.child.__init__ lets pyarmor disable this restriction only for
parent/child/__init__ .py.

Now patch dist/parent/child/__init__ .py and rebuild wheel:

$ python —-m build --skip-dependency-check —--no-isolation

Rename runtime package and store it in sub-package

If you would rather to rename runtime package to 1ibruntime and store it in the sub-package parent.child,
you need change the content of MANIFEST. in to:

recursive-include dist/parent/child/libruntime *.so

and change the content of setup.cfg to:

[options]

packages =
parent
parent.child
parent.child.libruntime

And obfuscate the scripts by these configurations:

$ pyarmor cfg package_name_format "libruntime"
$ pyarmor gen —--recursive —--prefix parent.child src/parent

Don’t forget to patch dist/parent/child/__init__.py, then build wheel:

42 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

$ python -m build --skip-dependency-check —--no-isolation

Further more

In order to patch dist /parent/child/__init__ .py automatically, you can write a plugin script . pyarmor/
myplugin.py:

all = ['VersionPlugin']

class VersionPlugin:

@staticmethod
def post_build(ctx, inputs, outputs, pack):
script = os.path.join(outputs[0], 'parent', 'child', '__init___.py")
with open(script, 'a') as f:
f.write ("\nVERSION = '0.0.1"'")
And enable this plugin:

$ pyarmor cfg plugins + "myplugin"

After that, each build only run the following commands:

$ pyarmor gen —-recursive —--prefix parent.child src/parent
$ python -m build --skip-dependency-check —--no-isolation

3.2.5 Protecting system packages

New in version 8.2.
Changed in version 8.2.2: Do not use ——restrict with ——pack, it doesn’t work.

When packing the scripts, Pyarmor could also protect system packages in the bundle. The idea is to list all the
dependent modules and packages and obfuscate them too.

Here it’s an example to protect system packages for script foo . py.

We need generate a file file.list list all the dependent modules and packages of foo.py by using Pylnstaller
features.

First generate foo . spec:

$ pyi-makespec foo.py

Then patch foo. spec:

a = Analysis(

Patched by Pyarmor to generate file.list
_filelist = []
_package = None
for _src in sort([_src for _name, _src, _type in a.pure]):
if _src.endswith('__init___ .py"):
_package = _src.replace('__init___.py', '")
_filelist.append(_package)

(continues on next page)

3.2. How To 43

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

elif _package is None:
_filelist.append(_szrc)
elif not _src.startswith (_package):
_package = None
_filelist.append(_szrc)
with open('file.list', 'w') as _file:
_file.write('\n'.Jjoin(_filelist))
End of patch

Next pack foo.py by Pylnstaller and generate file.list at the same time:

’$ pyinstaller foo.py ‘

Finally repack the script with the following options:

’$ pyarmor gen —--assert-call —--assert—-import —--pack dist/foo/foo foo.py @file.list ‘

This example only guides how to do, please write your own patch script and use other necessary options to obfuscate
scripts. For example, you could manually edit file.list to meet needs.

3.2.6 Fix encoding error

The default encoding is ut £-8, if encoding error occurs when obfuscating the scripts, set encoding to right one. For
example, change default encoding to gbk:

’$ pyarmor cfg encoding=gbk ‘

When customizing runtime error message, it also could specify encoding for messages.cfg. For example, set
encoding to gbk by this command:

’$ pyarmor cfg messages=messages.cfg:gbk ‘

3.2.7 Removing docstring

It’s easy to remove docstring from obfuscated scripts:

$ pyarmor cfg optimize 2

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the optimization
level of the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__ is true), 1 (asserts are
removed, __debug__is false) or 2 (docstrings are removed too).

3.2.8 Work with Third-Party Libraries

Contents

 Third party libraries

— pandas

— nuitka

44 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

There are countless big packages in the Python world, many packages I never use and which I don’t know at all. It’s
also not easy for me to research a complex package to find which line conflicts with pyarmor, and it’s difficult for me
to run all of these complex packages on my local machine.

Pyarmor provides rich options to meet various needs, for complex applications, please spend some time checking Man
Page to understand all of these options, one of them may be just for your problem. I won’t learn your application
and tell you should use which options

I’ll improve pyarmor and make it work with other libraries as far as possible, but some issues can’t be fixed from
Pyarmor side.

Generally most of problems for these third party libraries are
* they try to use low level object frame to get local variable or other runtime information of obfuscated scripts

* they try to visit code object directly to get something which is just pyarmor protected. The common case is
using inspect to get source code.

* they pickle the obfuscated code object and pass it to other processes or threads.

Also check The differences of obfuscated scripts, if third party library uses any feature changed by obfuscated scripts,
it will not work with pyarmor. Especially for BCC mode, it changes more.

The common solutions to fix third-party libraries issue
* Use RFT mode with ——obf-code=0

RFT mode almost doesn’t change internal structure of code object, it transforms the script in source level.
——obf-code is also required to disable code object obfuscation. The recommended options are like this:

$ pyarmor gen —--enable-rft —--obf-code 0 /path/to/myapp

First make sure it works, then try other options. For example:

$ pyarmor gen —--enable-rft —--obf-code 0 —--mix-str /path/to/myapp
$ pyarmor gen --enable-rft --obf-code 0 —--mix-str —-—-assert-call /path/to/myapp

* Ignore problem scripts

If only a few scripts are in trouble, try to obfuscate them with ——obf-code 0. For example, if only module
config.py has problem, all the other are fine, then:

$ pyarmor cfg -p myapp.config obf ==0
$ pyarmor gen [other options] /path/to/myapp

~ |

Another way is to copy plain script to overwrite the obfuscated one roughly:

$ pyarmor gen [other options] /path/to/myapp
$ cp /path/to/myapp/config.py dist/myapp/config.py

* Patch third-party library

Here is an example

@cherrypy.expose (alias="myapi')
@cherrypy.tools. json_out ()
pylint: disable=no-member
@cherrypy.tools.authenticate ()
@cherrypy.tools.validateOptOut ()
@cherrypy.tools.validateHttpVerbs (allowedVerbs=['POST'])
pylint: enable=no-member

(continues on next page)

3.2. How To 45

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

def abc_xyz(self, argl, arg2):

mmn

This is the doc string

mmon

If call this API with alias name “myapi” it throws me 404 Error and the API’s which do not have any alias name
works perfectly. Because cherrypy .expose decorator uses

’parents = sys._getframe(1l) .f_locals

And sys._getframe (1) return unexpected frame in obfuscated scripts. But it could be fixed by patching
this decorator to

’parents = sys._getframe(2).f_locals

Note: If cheerypy is also used by others, clone private one.

Third party libraries

Here are the list of problem libraries and possible solutions. You are welcome to create a pull request to append new
libraries (sort alphabetically case insensitivity).

Table 1: Table-1. Third party libraries

Package | Status Remark
cherrypy patch work' use sys._getframe
pandas patch work! use sys._getframe
playwright | patch should work” Not verify yet
nuitka Should work with restrict_module =0 | Not verify yet

pandas

Another similar example is pandas

import pandas as pd

class Sample:
def _ init_ (self):
self.df = pd.DataFrame (

data={'name': ['Alice', 'Bob', 'Dave'l],
'age': [11, 15, 8],
'point': [0.9, 0.1, 0.4]}

def func(self, val: float = 0.5) -> None:
print (self.df.query('point > (@val'))

sampler = Sample ()
sampler.func (0.3)

! the patched package could work with Pyarmor
2 this package work with Pyarmor RFT mode

46 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

After obfuscated, it raises:

pandas.core.computation.ops.UndefinedVariableError: local variable 'val' is not,,
—defined

It could be fixed by changing sys._getframe (self.level) tosys._getframe (self.level+l), sys.
_getframe (self.level+2) or sys._getframe (self.level+3) in scope.py of pandas.

nuitka

Because the obfuscated scripts could be taken as normal scripts with an extra runtime package, they also could be
translated to C program by Nuitka.

I haven’t tested it, but it’s easy to verify it.

First disable restrict mode:

$ pyarmor cfg restrict_module=0

Now disable restrict_module, run the nuitka script may raise RuntimeError: unauthorized use of
script

Next use default options to obfuscate the scripts:

$ pyarmor gen foo.py

Finally nuitka the obfuscated script dist/foo.py, check whether it works or not.

Try more options, but I think restrict options such as —--private, —--restrict, —-—assert-call,
——assert-import may not work.

3.2.9 Using Pyarmor License

Contents

* Prerequisite

» Using Pyarmor Basic or Pro

Initial registration

Product name is not decided

Registering in other machines
— Registering in Docker or CI pipeline

* Using group license

Initial registration

Group device file

Generating offline device regfile

Registering Pyarmor in offline device

Run unlimited dockers in offline device

3.2. How To 47

Pyarmor Documentation, Release 8.3.4

» Upgrading old Pyarmor license

Prerequisite

First of all

1. An activation file of Pyarmor License like pyarmor-regcode—-xxxx .txt, refer to License Types to pur-
chase right one

2. Pyarmor 8.2+

3. Internet connection

4. Product name bind to this license, for non-commercial use, product name is non-profits
If any firewall turns on

In Windows pytransform.pyd will connect to pyarmor.dashingsoft.com port 80 to request token for
online obfuscation, in other platforms it is pytransform3.so. Refer to firewall documentation to allow it to
connect pyarmor .dashingsoft.com:80.

Using Pyarmor Basic or Pro

Basic use steps:
1. Using activation file to initial registration, set product name bind to this license
2. Once initial registration completed, a registration file is generated

3. Using registration file to register Pyarmor in other devices

Initial registration

Using —p to specify product name for this license, for non-commercial use, set product name to non-profits.

Assume this license is used to protect your product XXX, initial registration by this command:

$ pyarmor reg -p "XXX" pyarmor-regcode-xxxx.txt

Pyarmor will show registration information and ask for your confirmation. If everything is fine, type yes and Enter
to continue. Any other input aborts registration.

If initial registration is successful, it prints final license information in the console. And a registration file like
pyarmor-regfile-xxxx.zip is generated in the current path at the same time. This file is used for subsequent
registration in other machines.

Once initial registration completed, activation file pyarmor-regcode—xxxx.txt is invalid, do not use it again.
Once initial registration completed, product name can’t be changed.

Please backup registration file pyarmor-regfile-xxxx.zip carefully. If lost, Pyarmor is not responsible for
keeping this license and no lost-found service.

48 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Product name is not decided

When a product is in development, and the product name is not decided. Set product name to TBD on initial registra-
tion. For example:

’$ pyarmor reg —-p "TBD" pyarmor-regcode-xxxx.txt

In 6 months real product name must be set by this command:

’$ pyarmor reg -p "XXX" pyarmor-regcode-xxxx.txt

If it’s not changed after 6 months, the product name will be set to non—-profits automatically and can’t be changed
again.

Registering in other machines

Copy registration file pyarmor-regfile-xxxx.zip to other machines, run the following command:

’$ pyarmor reg pyarmor-regfile-xxxx.zip

Check the registration information:

’$ pyarmor -v

After successful registration, all obfuscations will automatically apply this license, and each obfuscation requires
online license verification.

Registering in Docker or Cl pipeline

It’s no problem to run Pyarmor in Docker or CI pipeline to obfuscate user’s application. Register pyarmor with
pyarmor-regfile-xxxx.zip same as above. But It’s not allowed to distribute pyarmor self and any
Pyarmor License to customer

Don’t run too many build dockers, maximum is 100 in 24 hours. If more than 100 runs one day, please use Pyarmor
Group License.

Using group license

New in version 8.2.
Each Pyarmor Group could have 100 offline devices, each device has its own number, from 1 to 100.
Basic use steps:

1. Using activation file pyarmor-regcode—-xxxx.txt to initial registration, set product name bind to this
license, and generate registration file'

2. Generating group device file separately on each offline device
3. Using registration file and group device file to generate device registration file.

4. Using device registration file to register Pyarmor on offline device’

! Pyarmor will review group license manually and enable it in 24 hours since activation file is sent.
2 The device registration file is bind to specified device, each device has its own device regfile

3.2. How To 49

Pyarmor Documentation, Release 8.3.4

Initial registration

After purchasing Pyarmor Group, an activation file pyarmor-regcode—xxxx .t xt is sent to registration email.

Initial registration need internet connection and Pyarmor 8.2+. Suppose product name is XXX, then run this command:

$ pyarmor reg -p XXX pyarmor-regcode-xxxx.txt

After initial registration completed, a registration file pyarmor—-regfile-xxxx.zip will be generated.

Group device file

On each offline device, install Pyarmor 8.2+, and generate group device file. For example, on device no. 1, run this
command:

$ pyarmor reg —-g 1

It will generate group device file pyarmor-group—-device. 1.

Generating offline device regdfile

Generating offline device regfile needs an internet connection, Pyarmor 8.2+, group device file
pyarmor-group-device. 1l and group license registration file pyarmor-regfile-xxxx.zip.

Copying group device file pyarmor—group—device. 1 to initial registration device or any computer which has in-
ternet connection and registration file, this file must be saved in the path . pyarmor/group/, then run the following
command to generate device regfile pyarmor-device-regfile-xxxx.1l.zip:

$ mkdir -p .pyarmor/group
$ cp pyarmor—-group—-device.l .pyarmor/group/

$ pyarmor reg —-g 1 /path/to/pyarmor-regfile-xxxx.zip

Registering Pyarmor in offline device

Once device regfile is generated, copy it to the corresponding device, run this command to register Pyarmor:

’$ pyarmor reg pyarmor-device-regfile-xxxx.l.zip

Check registration information:

’$ pyarmor -v

After successful registration, all obfuscations will automatically apply this group license, and each obfuscation need
not online license verification.

Run unlimited dockers in offline device

New in version 8.3.

Group license supports unlimited dockers which uses default bridge network and not highly customized, the docker
containers use same device regfile of host.

50 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Each docker host is an offlice device.

The prerequisite in docker host:
* offline device regfile pyarmor-device-regfile-xxxx.1l.zip as above
e Pyarmor 8.3.3+

The practice for group license with unlimited docker containers:
* Docker host, Ubuntu x86_64, Python 3.8
* Docker container, Ubuntu x86_64, Python 3.11

First copy the following files to docker host:
e pyarmor-8.3.3.tar.gz
 pyarmor.cli.core-4.3.1-cp38-none-manylinux1_x86_64.whl
* pyarmor.cli.core-4.3.1-cp311-none-manylinux1_x86_64.whl
* pyarmor-device-regfile-6000.1.zip

Then run the following commands in the docker host:

$ python3 --version
Python 3.8.10

$ pip install pyarmor.cli.core-4.3.1-cp38-none-manylinuxl_x86_64.whl
$ pip install pyarmor-8.3.3.tar.bgz

Next start pyarmor—auth to listen the request from docker containers:

$ pyarmor—auth pyarmor-device-regfile-6000.1.zip

2023-06-24 09:43:14,939: work path: /root/.pyarmor/docker
2023-06-24 09:43:14,940: register "pyarmor-device-regfile-6000.1.zip"
2023-06-24 09:43:15,016: listen container auth request on 0.0.0.0:29092

Do not close this console, open another console to run dockers.

For Linux container run it with extra -——add-host=host .docker.internal :host-gateway (this option is
not required for Windows and Darwin container):

$ docker run --add-host=host.docker.internal:host-gateway python bash

root@86b180b28a50:/# python —--version
Python 3.11.4
root@86b180b28a50: /#

In docker host open third console to copy files to container:

$ docker cp pyarmor-8.3.3.tar.gz 86b180b28a50:/
$ docker cp pyarmor.cli.core-4.3.1-cp3ll-none-manylinuxl_x86_64.whl 86b180b28a50:/
$ docker cp pyarmor-device-regfile-6000.1.zip 86b180b28a50:/

In docker container, register Pyarmor with same device regfile. For example:

root@86bl180b28a50:/# pip install pyarmor.cli.core-4.3.1-cp3ll-none-manylinuxl_x86_64.
—whl
root@86b180b28a50:/# pip install pyarmor-8.3.3.tar.gz

(continues on next page)

3.2. How To 51

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

root@86b180b28a50:/# pyarmor reg pyarmor—-device-regfile-6000.1.zip
root@86b180b28a50:/# echo "print ('hello world')" > foo.py
root@86b180b28a50:/# pyarmor gen --enable-rft foo.py

When need to verify license, the docker container will send request to docker host.

Upgrading old Pyarmor license

Refer to upgrade old license

3.3 References

3.3.1 Concepts

Activation File A text file used for initial registration Pyarmor License

When purchasing any Pyarmor License, an activation file is be sent to registration email after payment is com-
pleted.

BCC Mode An obfuscation method of Pyarmor by converting Python functions to C functions
extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.
Build Machine The device in which to install pyarmor, and to run pyarmor to generate obfuscated scripts.
Global Path Store Pyarmor global configuration file, defaultis ~/ .pyarmor/config/
It’s always relative to Home Path

Home Path Store Pyarmor registration file, global configuration, other data file generated by pyarmor, the default
path is in user home path ~/ . pyarmor/

Local Path Store Pyarmor local configuration file, default is in the current path . /.pyarmor/
Hook script Hook script is a python script which locates in sub-path hooks of local path or global path.

When obfuscating the scripts, if there is any same name script exists, it’s called module hook script, and will be
inserted into the obfuscated scripts.

The hook script will be executed first when running the obfuscated scripts.
JIT Abbr. JUST-IN-TIME, just generating machine instructions in run time.
Outer Key A file generally named pyarmor . rkey to store Runtime Key
The outer key file must be located in one of path
* Runtime package

* PYARMOR_RKEY, no trailing slash or backslash, and no . . in the path. Generally it’s an absolute path,
for example, /var/data

e Current path
Orafile sys.executable + .pyarmor.rkey. For example, dist /myapp.exe.pyarmor.rkey
Platform The standard platform name defined by Pyarmor. It’s composed of os.arch.
Supported platforms list:

« Windows

52 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

— windows.x86_64

— windows.x86

Many Linuxes

linux.x86_64

linux.x86

linux.aarch64

linux.armv7

Apple Intel and Silicon

— darwin.x86_64

— darwin.aarch64 or darwin.arm64
FreeBSD

— freebsd.x86_64

L]

¢ Alpine Linux (musl-c)
— alpine.x86_64
— alpine.aarch64

¢ Android

android.x86_64
android.x86

android.aarch64

android.armv7

Plugin script A python script will be called in building stage to do some customization work.

Pyarmor Pyarmor is product domain, the goal is to provide functions and services to obfuscate Python scripts in high
security and high performance. The mission of Pyarmor is let Python use easily in commercial product.

Pyarmor is composed of
e Pyarmor Home
* pyarmor package
Pyarmor Basic A Pyarmor License type
Pyarmor Group A Pyarmor License type
Pyarmor Home Host in GitHub: https://github.com/dashingsoft/pyarmor/
It serves open source part of Pyarmor, issues and documentations.
Pyarmor License Issued by Pyarmor Team to unlock some limitations in Pyarmor trial version.
Refer to Pyarmor License Types
Pyarmor Package A Python Package, it includes
* pyarmor
* pyarmor.cli

* pyarmor.cli.core

3.3. References 53

https://github.com/dashingsoft/pyarmor/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.3.4

* pyarmor.cli.runtime
Since Pyarmor 8.3, pyarmor.cli.runtime is splitinto serval packages:
* pyarmor.cli.core.freebsd
* pyarmor.cli.core.android
* pyarmor.cli.core.windows
* pyarmor.cli.core.themida
* pyarmor.cli.core.linux
* pyarmor.cli.core.alpine
* pyarmor.cli.core.darwin
All of them are published in the PyPI
Pyarmor Pro A Pyarmor License type
Pyarmor Users Developers or organizations who use Pyarmor to obfuscate their Python scripts
Python A program language.
Python Script A file that serves as an organizational unit of Python code.
Refer to https://docs.python.org/3.11/glossary.html#term-module
Python Package Refer to https://docs.python.org/3.11/glossary.html#term-package

Registration File A zip file generated after initial registration is successful. It’s used to register Pyarmor License
except initial registration.

RFT Mode An obfuscation method of Pyarmor by renaming function/class in the scripts
Runtime Files All the files required to run the obfuscated scripts.
Generally it equals Runtime Package. If outer key is used, plus this outer key file.

Runtime Key The settings of obfuscated scripts. It may include the expired date, device information of bind to
obfuscated scripts. Also include all the flags to control the behaviors of obfuscated scripts.

Generally it’s embedded into Runtime Package, but it also could be stored to an independent file outer key
Runtime Package A Python Package generally named pyarmor_runtime_000000.

When obfuscating the scripts, it’s be generated at the same time.

It’s required to run the obfuscated scripts.

Target Device In which run the obfuscated scripts distributed by Pyarmor Users, generally it’s in customer side

3.3.2 Man Page

Contents

* pyarmor
* pyarmor gen

* pyarmor gen key

* pyarmor cfg

54 Chapter 3. Table of Contents

https://pypi.python.org/pypi/
https://docs.python.org/3.11/glossary.html#term-module
https://docs.python.org/3.11/glossary.html#term-package

Pyarmor Documentation, Release 8.3.4

* pyarmor reg

e Environment Variables

Pyarmor is a powerful tool to obfuscate Python scripts with rich option set that provides both high-level operations
and full access to internals.

pyarmor
Syntax
pyarmor [options] <command> ...
Options
-h, --help show available command set then quit
-v, --version show version information then quit
-q, --silent suppress all normal output . . .
-d, --debug show more information in the console . . .
--home PATH set Pyarmor HOME path . . .

These options can be used after pyarmor but before command, here are available commands:

gen Obfuscate scripts

gen key | Generate outer runtime key

cfg Show and configure environments
reg Register Pyarmor

See pyarmor <command> -h for more information on a specific command.
Description

-q, --silent
Suppress all normal output.

For example:

pyarmor —gq gen foo.py

—-d, —-debug
Show more information in the console

When something is wrong, print more debug information in the console. For example:

pyarmor -d gen foo.py

——home PATH[, GLOBAL[,LOCAL[,REG]]]
Set Pyarmor Home Path, Global Path, Local Path and registration file path

The default paths
e Home Pathis ~/ .pyarmor/
* Global Pathis ~/ .pyarmor/config/
e Local Pathis ./ .pyarmor/

* registration file path is same as Home Path

3.3. References 55

Pyarmor Documentation, Release 8.3.4

All of them could be changed by this option. For example, change home path to ~/ . pyarmor2/:

$ pyarmor

-—home ~/.pyarmor2

Then

* Global Pathis ~/ .pyarmor2/config/

* Registration files are stored in the ~/ . pyarmor2/

e Local Path stillis ./ .pyarmor/

Another example, keep all others but only change global path to ~/ .pyarmor/config2/:

’$ pyarmor

——home ,config2

Another, keep all others but only change local path to /var/myproject:

’$ pyarmor —--home ,,/var/myproject/

Another, set registration file path to /opt /pyarmor/:

’$ pyarmor —-home ,,,/opt/pyarmor ...

It’s useful when using sudo to run pyarmor occasionally. This makes sure the registration file could be found even
switch to another user.

When there are many Pyarmor Licenses registered in one machine, set each license to different path. For example:

$ pyarmor
$ pyarmor

$ pyarmor
$ pyarmor

-—home ~/.pyarmorl
-—home ~/.pyarmorl

-—home ~/.pyarmor2
-—home ~/.pyarmor2

reg pyarmor-regfile-2051.zip
gen projectl/foo.py

reg pyarmor-regfile-2052.zip
gen project2/foo.py

Start pyarmor with clean configuration by setting Global Path and Local Path to any non-exists path x:

$ pyarmor

—-—-home ,x,x, gen foo.py

See also:

PYARMOR_HOME

pyarmor gen

Generate obfuscated scripts and all the required runtime files.

Syntax

pyarmor gen <options> <SCRIPT or PATH>

Options

-h, --help

show option list and help information then quit

-O PATH, --output PATH output path . . .

-T, --recursive

search scripts in recursive mode . . .

--exclude PATTERN exclude scripts or paths . . .
-e DATE, --expired DATE set expired date . . .

56

Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

-b DEY, --bind-device DEV bind obfuscated scripts to device . . .
--bind-data DATA store private data to runtime key . . .
--period N check runtime key periodically . . .

--outer enable outer runtime key . . .

--platform NAME cross platform obfuscation . . .

-i store runtime files inside package . . .
--prefix PREFIX import runtime package with PREFIX . . .
--obf-module <0,1> obfuscate whole module (defaultis 1) . . .
--obf-code <0,1,2> obfuscate each function (defaultis 1) . . .
--No-wrap disable wrap mode . . .

--enable <jit,rft,bcc,themida> enable different obfuscation features . . .

--mix-str protect string constant . . .

--private enable private mode for script . . .
--restrict enable restrict mode for package . . .
--assert-import assert module is obfuscated . . .
--assert-call assert function is obfuscated . . .

--pack BUNDLE repack bundle with obfuscated scripts . . .
Description

This command is designed to obfuscate all the scripts and packages in the command line. For example:

pyarmor gen foo.py

pyarmor gen foo.py goo.py koo.py

pyarmor gen src/mypkg

pyarmor gen src/pkgl src/pkg2 libs/dbpkg

pyarmor gen —-r src/mypkg

pyarmor gen —-r main.py src/*.py libs/utils.py libs/dbpkg

All the files in the command line will be taken as Python script, because a few scripts has unknown extension but it’s
still Python script.

All the paths in the command line will be taken as Python Package, package name is set to path’s basename, all the
.py files in this path are package modules. If this package has any sub-package, use —r to search recursively.

Do not use pyarmor gen src/= to obfuscate a package, it will obfuscate any file in the src, even they’re not
python scripts.

Since 8.2.2, it also supports list all the scripts and packages in one file, and pass it with prefix @. For example:

pyarmor gen -r @filelist

The content of £ilelist includes 2 scripts and 2 packages:

src/foo.py
src/utils.py
libs/dbpkg
libs/config

-0 PATH, —--output PATH

3.3. References 57

Pyarmor Documentation, Release 8.3.4

Set the output path for all the generated files, default is dist
-r, —-recursive

When obfuscating package, search all scripts recursively. No this option, only the scripts in package path are obfus-
cated.

——exclude PATTERN
Exclude scripts or paths, use this option many times to exclude more

The pattern is same as the Python standard library fnmatch

Exclude one exact script:

’$ pyarmor gen —--exclude "src/test.py" src

Exclude one exact path:

’$ pyarmor gen -r —--exclude "./test" . ‘

Exclude test . py in any path:

’$ pyarmor gen -r —-exclude "x/test.py" src

Exclude any test path:

’$ pyarmor gen -r -—-exclude "x/test" src

-i

When obfuscating package, store the runtime files inside package. For example:

’$ pyarmor gen -r —i mypkg ‘

The runtime package will be stored inside package dist /mypkg:

$ 1s dist/
mypkg/

$ 1ls dist/mypkg/
pyarmor_runtime_000000/

Without this option, the output path is like this:

$ 1s dist/
mypkg/
pyarmor_runtime_000000/

This option can’t be used to obfuscate script.
——prefix PREFIX
Only used when obfuscating many packages at the same time and still store the runtime package inside package.

In this case, use this option to specify which package is used to store runtime package. For example:

$ pyarmor gen —--prefix mypkg src/mypkg mypkgl mypkg2

This command tells pyarmor to store runtime package inside dist /mypkg, and make dist/mypkgl and dist/
mypkg?2 to import runtime package from mypkg.

Checking the content of . py files in output path to make it clear.

58 Chapter 3. Table of Contents

https://docs.python.org/3.11/library/fnmatch.html

Pyarmor Documentation, Release 8.3.4

As a comparison, obfuscating 3 packages without this option:

$ pyarmor gen -0 dist2 src/mypkg mypkgl mypkg?2

And check . py files in the path dist2.

—-e DATE, —-—-expired DATE
Expired date of obfuscated scripts.

It supports 4 forms:
* A number stands for valid days
* A date with ISO format YYYY-MM-DD
* Aleading . with above 2 forms

Without leading dot, the obfuscated scripts checks NTP server time. For example:

$ pyarmor gen —-e 30 foo.py
$ pyarmor gen -e 2022-12-31 foo.py

With leading dot, it checks local time. For example:

$ pyarmor gen -e .30 foo.py
$ pyarmor gen -e .2022-12-31 foo.py

-b DEV, —--bind-device DEV
Use this option multiple times to bind multiple machines

Bind obfuscated script to specified device. Now only hard disk serial number, Ethernet address and IPv4 address are
available.

For example:

$ pyarmor gen -b 128.16.4.10 foo.py
$ pyarmor gen -b 52:38:6a:f2:c2:ff foo.py
$ pyarmor gen -b HXS2000CN2A foo.py

Also set 30 valid days for this device:

’$ pyarmor gen —-e 30 -b 128.16.4.10 foo.py

Check all of hardware information in this device:

’$ pyarmor gen —-b "128.16.4.10 52:38:6a:f2:c2:ff HXS2000CN2A" foo.py

Using this options multiple times means binding many machines. For example, the following command makes the
obfuscated scripts could run 2 machines:

’$ pyarmor gen -b "52:38:6a:f2:c2:ff" -b "f8:ff:c2:27:00:7f" foo.py

In case there are more network cards, binding anyone by this form:

’$ pyarmor gen -b "<2a:33:50:46:8f>" foo.py

Bind all network cards by this form:

’$ pyarmor gen -b "<2a:33:50:46:8f,£f0:28:69:c0:24:3a>" foo.py

In Linux, it’s possible to bind named Ethernet card:

3.3. References 59

Pyarmor Documentation, Release 8.3.4

’$ pyarmor gen -b "ethl/fa:33:50:46:8f:3d" foo.py

If there are many hard disks. In Windows, binding anyone by sequence no:

$ pyarmor gen -b "/0:FV994730S6LLFO7AY" foo.py
$ pyarmor gen -b "/1:KDX3298FS6P5AX380" foo.py

In Linux, binding to specify name:

’$ pyarmor gen -b "/dev/vda2:KDX3298FS6P5AX380" foo.py

——bind-data DATA
DATA may be @FILENAME or string

Store any private data to runtime key, then check it in the obfuscated scripts by yourself. It’s mainly used with the
hook script to extend runtime key verification method.

If DATA has a leading @, then the rest is a filename. Pyarmor reads the binary data from file, and store into runtime
key.

For any other case, DATA is converted to bytes as private data.
—-period N
Check Runtime Key periodically.
Support units:
L
°m
*h

The default unit is hour, for example, the following examples are equivalent:

$ pyarmor gen --period 1 foo.py

$ pyarmor gen —--period 3600s foo.py
$ pyarmor gen —-period 60m foo.py

$ pyarmor gen --period lh foo.py

Note: If the obfuscated script enters an infinite loop without call any obfuscated function, it doesn’t trigger periodic
check.

——outer
Enable outer key

It tells the obfuscated scripts find runtime key in outer file.

Once this option is specified, pyarmor gen key must be used to generate an outer key file and copy to the corresponding
path in target device. Otherwise the obfuscated scripts will complain of missing license key to run the
script

The default name of outer key is pyarmor . rkey, it can be changed by this command:

$ pyarmor cfg outer_keyname=".pyarmor.key"

By this command the name of outer key is setto .pyarmor.key.

—-platform NAME
Specify target platform to run obfuscated scripts.

60 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

The name must be one of standard platform defined by Pyarmor.
It requires pyarmor.cli.runtime to get prebuilt binary libraries of other platforms.

—--private
Enable private mode for scripts.

When private mode is enabled, the obfuscated scripts could not be imported by plain script or Python interpreter.

—-restrict
Enable restrict mode for package, do not use it to obfuscate scripts.

This option implies ——private.

When restrict mode is enabled, all the modules except __init__ .py in the package could not be imported by plain
scripts.

For example, obfuscate a restrict package to dist/joker:

$ pyarmor gen —-i —-restrict Jjoker
$ 1s dist/
joker/

Then create a plaint script dist/foo.py

import joker

print ('import joker should be OK')

from joker import gqueens

print ('import joker.gueens should fail')

Run it to verify:

$ cd dist
$ python foo.py
import joker should be OK
RuntimeError: unauthorized use of script

If there are extra modules need to be exported, no restrict this module by private settings. For example, no restrict
joker/queens.py by this command:

$ pyarmor cfg -p "joker.queens" restrict_module=0

Then obfuscate the package again.

——obf-module <0, 1>
Enable the whole module obfuscation (default is 1)

——obf-code <0,1,2>
Enable each function obfuscation (default is 1)

Mode 2 is new in Pyarmor 8.2, more security than 1, it’s used to obfuscate attribute name in chains. For example:

obj.attr ==> getattr (obj, 'xxxx')
obj.attr = value ==> setattr(obj, 'xxxx', value)

Generally when RFT Mode is available, it need not this option.

—-no-wrap
Disable wrap mode

If wrap mode is enabled, when enter a function, it’s restored. but when exit, this function will be obfuscated again.

If wrap mode is disabled, once the function is restored, it’s never be obfuscated again.

3.3. References 61

Pyarmor Documentation, Release 8.3.4

If ——obf—-codeis 0, this option is meaningless.

——enable <jit,rft,bcc,themida>
Enable different obfuscation features.

——enable-jit
Use JIT to process some sensitive data to improve security.

——enable-rft
Enable RFT Mode to obfuscate the script P™

——enable-bcc
Enable BCC Mode to obfuscate the script P

——enable-themida
Use Themida to protect extension module in runtime package

Only works for Windows platform.
—-mix-str
Mix the string constant in scripts "¢

——assert-call
Assert function is obfuscated

If this option is enabled, Pyarmor scans each function call in the scripts. If the called function is in the obfuscated
scripts, protect it as below, and leave others as it is. For example,

def fib(n):
a, b=20, 1
return a, b

print ('hello'")
fib (n)

will be changed to

def fib(n):
a, b =0, 1
return a, b

print ('hello'")
__assert_armored__ (fib) (n)

The function ___assert_armored__ () is a builtin function in obfuscated script. It checks the argument, if it’s an
obfuscated function, then returns this function, otherwise raises protection exception.

In this example, £ib is protected, print is not.

—-—-assert-import
Assert module is obfuscated

If this option is enabled, Pyarmor scans each import statement in the scripts. If the imported module is obfuscated,
protect it as below, and leave others as it is. For example,

import sys
import foo

will be changed to

62 Chapter 3. Table of Contents

https://www.themida.com

Pyarmor Documentation, Release 8.3.4

import sys
import foo
_ _assert_armored__ (foo)

The function ___assert_armored__ () is a builtin function in obfuscated script. It checks the argument, if it’s an
obfuscated module, then return this module, otherwise raises protection exception.

This option neither touches statement from import, nor the module imported by function __import__ .

——pack BUNDLE
Repack bundle with obfuscated scripts

Here BUNDLE is an executable file generated by Pylnstaller

Pyarmor just obfuscates the script first.

Then unpack the bundle.

Next replace all the . pyc in the bundle with obfuscated scripts, and append all the runtime files to the bundle.

Finally repack the bundle and overwrite the original BUNDLE.

pyarmor gen key

Generate outer key for obfuscated scripts.

Syntax
pyarmor gen key <options>

Options
-O PATH, --output PATH output path
-e DATE, --expired DATE set expired date
--period N check runtime key periodically
-b DEY, --bind-device DEV bind obfuscated scripts to device
--bind-data store private data to runtime key
Description
This command is used to generate outer key, the options in this command have same meaning as in the pyarmor gen.
There must be at least one of option —e or —b for outer key.
It’s invalid that outer key is neither expired nor binding to a device. For this case, don’t use outer key.

By default the outer key is saved to dist/pyarmor. rkey. For example:

$ pyarmor gen key -e 30
$ 1ls dist/pyarmor.rkey

Save outer key to other path by this way:

$ pyarmor gen key -0 dist/mykey2 -e 10
$ 1ls dist/mykey2/pyarmor.rkey

By default the outer key name is pyarmor . rkey, use the following command to change outer key name to any
others. For example, sky.1lic:

3.3. References 63

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.3.4

$ pyarmor cfg outer_keyname=sky.lic
$ pyarmor gen key -e 30
$ 1s dist/sky.lic

The outer key must be stored in one of the following paths, the obfuscated script will search it in turn:
1. First search runtime package

2. Next search path PYARMOR RKEY, no trailing slash or backslash, and no . . in the path. Generally it’s an
absolute path, for example, /var/data

3. Next search current path

If no found in these paths, check file sys.executable + .pyarmor.rkey. For example, dist /myapp.exe.
pyarmor.rkey

Still not found raise runtime error and exits.

Special output **pipexx

If ouptput path is pipe, the generated key is not save to file, but return the key content (bytes) directly.
Generally it’s used to generate runtime key by web api and send key to customer by internet.

For example,

from pyarmor.cli. main_ _ import main_entry

args = ['gen', 'key', '-0', 'pipe', '-e', '2023-10-21"]
data = main_entry (args)

with open ('pyarmor.rkey', 'wb') as f:
f.write (data)

pyarmor cfg

Configure or show Pyarmor environments

Syntax
pyarmor cfg <options> [OPT[=VALUE]] ...
Options
-h, --help show this help message and exit
-p NAME private settings for special module or package
-g, --global do everything in global settings, otherwise local settings
-1, --reset reset option to default value

--encoding ENCODING specify encoding to read configuration file
Description

Run this command without arguments to show all available options:

’$ pyarmor cfg

Show one exact option obf_module:

’$ pyarmor cfg obf_module

64 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Show all options which start with obf:

$ pyarmor cfg obfx

Set option to int value by any of these forms:

$ pyarmor cfg obf_module 0

$ pyarmor cfg obf module=0
$ pyarmor cfg _module =0
$ pyarmor cfg obf module = 0

Set option to boolean value:

$ pyarmor
$ pyarmor

cfg wrap_mode 0
cfg wrap_mode=1

Set option to string value:

"sky.lic"
"sky.lic"

$ pyarmor
$ pyarmor

cfg outer_keyname

cfg outer_keyname =

Append word to an option. For example, pyexts has 2 words . py

. pyw, append new one to it:

" "

$ pyarmor cfg pyexts + ".pym
Current settings

pyexts = .py .pyw .pym
Remove word from option:
$ pyarmor cfg pyexts - ".pym"

Current settings
pyexts = .py .pyw

Append new line to option:

A "/Wil’l.*/"

$ pyarmor cfg rft_excludes
Current settings
rft_excludes = super

/win.x/

Reset option to default:

$ pyarmor cfg rft_excludes ""
$ pyarmor cfg rft excludes=""
$ pyarmor cfg -r rft_excludes

Change option excludes in the section finder by this form:

’s pyarmor cfg finder:excludes "ast"

If no prefix finder, for example:

’$ pyarmor cfg excludes "ast"

Not only option excludes in section finder, but also in other sections

changed.

assert.call, mix.str etc. are

3.3. References

65

Pyarmor Documentation, Release 8.3.4

Sections
Section is group name of options, here are popular sections

* finder: how to search scripts

* builder: how to obfuscate scripts, main section

* runtime: how to generate runtime package and runtime key
These are not popular sections

e mix.str: how to filter mix string

* assert.call: how to filter assert function

e assert.import: how to filter assert module

* bcc: how to convert function to C code

-p NAME
Private settings for special modules in the package

These modules need different obfuscation options.
All the settings is only applied to specified module NAME.

For example, only no restrict modules joker/__init__ .py and joker/card.py:

$ pyarmor cfg -p Jjoker._ init__ restrict_module = 0
$ pyarmor cfg -p Jjoker.card restrict_module = 0
$ pyarmor gen —-r —-restrict Jjoker

-g, —--global
Do everything in global settings

Without this option, all the changed settings are stored in Local Path, generally it’s . / .pyarmor/config. By this
option, everything is stored in Global Path, generally it’s ~/ .pyarmor/config/global

-r, —-reset
Reset option to default value

pyarmor reg

Register Pyarmor or upgrade Pyarmor license

Syntax
pyarmor reg [OPTIONS] [FILENAME]
Options
-h, --help show this help message and exit

-p NAME, --product NAME license to this product
-u, --upgrade upgrade Pyarmor license
-g ID, --device ID device no. in group license
Arguments
The FILENAME must be one of these forms:
* pyarmor-regcode-xxxx.txt got by purchasing Pyarmor license

* pyarmor-regfile—-xxxx.zip got by initial registration with above file

66 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

Description

Check the registration information:

’$ pyarmor -v

Initial registration

Initial registration by the following command, replace NAME with real product name or non-profits:

’$ pyarmor reg -—-p NAME pyarmor-regcode—xxxx.txt

A registration file pyarmor-regfile-xxxx.zip will be generated after initial registration completed. Using this
file for subsequent registration:

’$ pyarmor reg pyarmor-regfile-xxxx.zip

Upgrading old license

Upgrading old license by the following command, if product name is not same as old license, it’s ignored:

’$ pyarmor reg —-p NAME pyarmor-regcode—xxxx.txt

A registration file pyarmor—regfile—xxxx.zip will be generated after upgrade completed. Using this file for
subsequent registration:

’$ pyarmor reg pyarmor-regfile-xxxx.zip

Using group license

Pyarmor group also needs an internet connectection for initial registration, and generate the corresponding registration

file.
One group license could have 100 offline devices, each device has its own number, from 1 to 100.

For each device, first install Pyarmor 8.2+, and generate one device file. For example, run this command in device no.
1 to generate group device file pyarmor-group-device. 1:

$ pyarmor reg —-g 1

Next prepare to generate device regfile pyarmor-device-regfile-xxxx.1l.zip for this device.

It requires internet connection, group device file pyarmor—-group—-device. 1, group license registration file. For
example, copy group device file to initial registration machine, save it to path . pyarmor/group/, run the following
command to generate pyarmor—-device-regfile-xxxx.1l.zip:

$ mkdir -p .pyarmor/group
$ cp pyarmor—-group-device.l .pyarmor/group/

$ pyarmor reg —-g 1 pyarmor-regfile-xxxx.zip

Copy device regfile to device no. 1, then run the following command:

$ pyarmor reg pyarmor—-device-regfile-xxxx.l.zip

Repeat above steps for the rest device no. 2, no. 3 ...

-p NAME, —--product NAME
Set product name bind to license

For non-commercial use, set product name to non-profits

3.3. References 67

Pyarmor Documentation, Release 8.3.4

When initial registration, use this option to set product name for this license.
It’s meaningless to use this option after initial registration.

TBD is a special product name. If product name is TBD at initial registration, the product name can be changed once
in 6 months. If it’s still not set after 6 months, the product name will be set to non-profits automatically.

For any other product name, it can’t be changed any more.
Only Pyarmor basic and Pyarmor pro could set product name to TBD

-u, —-upgrade
Upgrade old license to Pyarmor 8.0 License

Not all the old license could be upgrade to new license, check License Types

-g ID, —--device ID
specify device no. in group license

Valid value is from 1 to 100

Environment Variables

The following environment variables only used in Build Machine when generating the obfuscated scripts, not in 7arget
Device.

PYARMOR_HOME
Same as pyarmor ——home

It mainly used in the shell scripts to change Pyarmor settings. If pyarmor —-home is set, this environment var is
ignored.

PYARMOR PLATFORM
Set the right Platform to run pyarmor

It’s mainly used in some platforms Pyarmor could not tell but still works.

PYARMOR_CC
Specify C compiler for BCC mode

PYARMOR_CLI
Only for compatible with Pyarmor 7.x, ignore this if you don’t use old command prior to 8.0

If you do not use new commands in Pyarmor 8.0, and prefer to only use old commands, set it to 7, for example:

In Linux
export PYARMOR_CLI=7
pyarmor -—h

Or
PYARMOR_CLI=7 pyarmor -h

In Windows
set PYARMOR_CLI=7
pyarmor -—h

It forces command pyarmor to use old cli directly.
Without it, pyarmor only recognizes new Pyarmor 8§ commands.

This only works for command pyarmor.

68 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

3.3.3 Building Environments

Command pyarmor runs in build machine to generate obfuscated scripts and all the other required files.

Here list everything related to pyarmor.

Above all it only runs in the supported platforms by supported Python versions.

Command line options, configuration options, plugins, hooks and a few environment variables control how to generate

obfuscated scripts and runtime files.

All the command line options and environment variables are described in Man Page

Supported Python versions

Table 2: Table-1. Supported Python Versions

Python Version 2.7 | 3.0~3.4 | 3.5~3.6 | 3.7~3.10 | 3.11 | 3.12+ | Remark

pyarmor 8 RFT Mode | No | No No Y Y N/y 1

pyarmor 8 BCC Mode | No | No No Y Y Nly

pyarmor 8 others No | No No Y Y Nly

pyarmor-7 Y Y Y Y No No

Supported platforms
Table 3: Table-2. Supported Platforms (1)
oS Windows Apple Linux?
Arch x86/x86_64 | x86_64 | arm64 | x86/x86_64 | aarch64 | armv7 | armvé
Themida Protection Y No No No No No No
pyarmor 8 RFT Mode | Y Y Y Y Y Y No
pyarmor 8 BCC Mode | Y Y Y Y Y N/y No
pyarmor 8 others Y Y Y Y Y Y No
pyarmor-7° Y Y Y Y Y Y Y
Table 4: Table-3. Supported Platforms (2)*
oS FreeBSD | Alpine Linux Android
Arch x86_64 x86_64 | aarch64 | x86/x86_64 | aarch64 | armv7 | armv6
pyarmor 8 RFT Mode | Y Y Y Y Y Y No
pyarmor 8 BCC Mode | Y Y Y Y Y Y No
pyarmor 8 others Y Y Y Y Y Y No
pyarmor-7 Y Y Y Y Y Y Y
notes

! N/y means not yet now, but will be supported in future.

2 This Linux is built with glibc

3 pyarmor-7 also supports more linux arches, refer to Pyarmor 7.x platforms.
4 These platforms are introduced in Pyarmor 8.3

3.3. References

69

https://pyarmor.readthedocs.io/en/v7.7/platforms.html

Pyarmor Documentation, Release 8.3.4

Important: pyarmor-7 is bug fixed Pyarmor 7.x version, it’s same as Pyarmor 7.x, and only works with old license.
Do not use it with new license, it may report HTITP 401 error.

Configuration options

There are 3 kinds of configuration files
* global: an ini file ~/ .pyarmor/config/global
¢ local: aninifile ./ .pyarmor/config

e private: each module may has one ini file in Local Path. For example, . /.pyarmor/foo.rules is private
configuration of module foo

Use command pyarmor cfg to change options in configuration files.

Plugins

New in version 8.2.
Plugin is a Python script used to do some post-build work when generating obfuscated scripts.
Plugin use cases:

» Additional processing in the output path

* Fix import statement in the obfuscated script for special cases

¢ Add comment to outer key file

* Rename binary extension pyarmor_runt ime suffix to avoid name conflicts

 In Darwin use install_name_tool to fix extension module pyarmor_runtime couldn’t be loaded if Python is
not installed in the standard path

 In Darwin codesign pyarmor runtime extensions
Plugin script must define attribute __all__ to export plugin name.
Plugin script could be any name.
Plugin script could define one or more plugin classes:

class PluginName

static post_build (ctx, inputs, outputs, pack=None)
This method is optional.

This method is called when all the obfuscated scripts and runtime files have been generated by pyarmor
gen

Parameters
* ctx (Context) — building context
* inputs (11ist) - all the input paths
* outputs (1ist)— all the output paths

* pack (str)—if not None, it’s an executable file specified by ——pack

70 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

static post_key (ctx, keyfile, **keyinfo)
This method is optional.

This method is called when outer key has been generated by pyarmor gen key
Parameters
e ctx (Context) — building context
* keyfile (str) — path of generated key file
* keyinfo (dict) — runtime key information
The possible items in the keyinfo:
Key expired expired epoch or None
Key devices a list for binding device hardware information or None
Key data binding data (bytes) or None
Key period period in seconds or None

static post_runtime (ctx, source, dest, platform)
This method is optional.

This method is called when the runtime extension module pyarmor_runtime. so in the runtime pack-
age has been generated by pyarmor gen.

It may be called many times if many platforms are specified in the command line.
Parameters
e ctx (Context) — building context
* source (str) - source path of pyarmor extension
* dest (str) - output path of pyarmor extension
* platform (str) - standard platform name

To make plugin script work, configure it with script name without extension . py by this way:

$ pyarmor cfg plugins + "script name"

Pyarmor search plugin script in these paths in turn:
* Current path
* local path, generally . /.pyarmor/
e global path, generally ~/ .pyarmor/

Here it’s an example plugin script fooplugin.py

all = ['EchoPlugin']

class EchoPlugin:

@staticmethod

def post_runtime (ctx, source, dest, platform):
print ('———————— test fooplugin —————————- ")
print ('ctx is', ctx)

print ('source is', source)

print ('dest is', dest)

print ('platform is', platform)

3.3. References 71

Pyarmor Documentation, Release 8.3.4

Store it to local path . pyarmor/fooplugin.py, and enable it:

’$ pyarmor cfg plugins + "fooplugin"

Check it, this plugin information should be printed in the console:

’$ pyarmor gen foo.py

Disable this plugin:

’$ pyarmor cfg plugins - "fooplugin"

Hooks

New in version 8.2.

Hook is a Python script which is embedded into the obfuscated script, and executed when the obfuscated script is
running.

When obfuscating the scripts, Pyarmor searches path hooks in the local path and global path in turn. If there is any
same name script exists, it’s called module hook script.

For example, .pyarmor/hooks/foo.py is hook script of foo.py, .pyarmor/hooks/joker.card.py is
hook script of joker/card.py.

When generating obfuscate script by this command:

$ pyarmor gen foo.py

.pyarmor/hooks/foo.py will be inserted into the beginning of foo.py.

A hook script is a normal Python script, it could do everything Python could do. And it could use 2 special function
_ _pyvarmor.__ () and___assert_armored__ () todo some interesting work.

Note that all the source lines in the hook script are inserted into module level of original script, be careful to avoid
name conflicts.

See also:

_ _pyarmor._ () __assert_armored__ ()

Special hook script

New in version 8.3.

If want to do something before obfuscated scripts are executed, it need use a special hook script . pyarmor/hooks/
pyarmor_runtime.py, it will be called when initializing Python extension pyarmor_runtime.

First create script .pyarmor/hooks/pyarmor_runtime.py and define all in the hook function
bootstrap (), only this function will be called.

bootstrap (user_data)
Parameters user_data (bytes) — user data in runtime key

Returns False, quit and raise protection exception Any others, continue to execute the obfuscated
scripts.

Raises

72 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

* SystemExit — quit without traceback
* ohter Exception — quit with traceback

An example script:

def bootstrap (user_data) :
Import everything in the function, not in the module level
import sys
import time
from struct import calcsize

print ('user data is', user_data)

Check platform
if sys.platform == 'win32' and calcsize('P'.encode()) % 8 == 32:
raise SystemExit ('no support for 32-bit windows')

Check debugger in Windows
if sys.platform == 'win32':
from ctypes import windll
if windll.kernel32.IsDebuggerPresent () :
print ('found debugger')
return False

In this example, user_data is timestamp
if time.time () > int (user_data.decode()):
return False

Check it, first copy this script to . pyarmor/hooks/pyarmor_runtime.py:

$ pyarmor gen —--bind-data 12345 foo.py
$ python dist/foo.py

user data is b'12345'
Traceback (most recent call last):

File "dist/foo.py", line 2, in <module>

RuntimeError: unauthorized use of script (1:10325)

3.3.4 Target Environments

Obfuscated scripts run in farget device.

Supported Python versions and platforms

Supported platforms, arches and Python versions are same as Building Environments

Environment variables

A few environment variables are used by obfuscated scripts.

LANG
OS environment variable, used to select runtime error language.

3.3. References 73

Pyarmor Documentation, Release 8.3.4

PYARMOR_LANG
It’s used to set language runtime error language.

If it’s set, LANG is ignored.

PYARMOR_RKEY
Set search path for outer key

Supported Third-Party Interpreter

About third-party interpreter, for example Jython, and any embedded Python C/C++ code, only they could work with
CPython extension module, they could work with Pyarmor. Check third-party interpreter documentation to make sure
this.

A few known issues

* On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by dlopen, otherwise obfuscated scripts
couldn’t work.

* Boost::python does not load libpythonXY.so with RTLD_GLOBAL by default, so it will raise error “No
PyCode_Type found” as running obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os.RTLD_GLOBAL) as initializing.

¢ PyPy could not work with pyarmor, it’s total different from CPython
* WASM is not supported.

Specialized builtin functions

New in version 8.2.
There are 2 specialized builtin functions, both of them could be used without import in the obfuscated scripts.
Generally they’re used with inline marker or in the hook scripts.
__pyarmor__ (arg, kwarg, name, flag)
Parameters
* name (bytes)—mustbe b'hdinfo' orb'keyinfo'
* flag(int)—mustbe 1
get hdinfo
When name is b'hdinfo"', call it to get hardware information.
Parameters
* arg (int) - query which kind of device
* kwarg (str)— None or device name
Returns arg == 0 return the serial number of first harddisk
Returns arg == | return mac address of first network card
Returns arg == 2 return ipv4 address of first network card
Returns arg == 3 return device name
Return type str

Raises RuntimeError — when something is wrong

74 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

For example,

__pyarmor__ (0, None, b'hdinfo', 1)
__pyarmor__ (1, None, b'hdinfo', 1)

In Linux, kwarg is used to get named network card or named hard disk. For example:

__pyarmor__ (0, "/dev/vda2", b'hdinfo', 1)
__pyarmor__ (1, "eth2", b'hdinfo', 1)

In Windows, kwarg is used to get all network cards and hard disks. For example:

__pyarmor__ (0, "/0", b'hdinfo', 1) # First disk
__pyarmor___ (0, "/1", b'hdinfo', 1) # Second disk

__pyarmor__ (1, "x", b'hdinfo', 1)
__pyarmor__ (1, "x", b'hdinfo', 1)

get keyinfo
When name isb'keyinfo', call it to query user data in the runtime key.
Parameters
* arg (int)— what information to get from runtime key
* kwarg — always None
Returns arg == 0 return bind data, no bind data return empty bytes
Return type Bytes
Returns arg == 1 return expired epoch, -1 if there is no expired date
Return type Long
Returns None if something is wrong

For example:

print ('bind data is', __pyarmor__ (0, None, b'keyinfo', 1))
print ('expired epoch is' __pyarmor__ (1, None, b'keyinfo', 1))

__assert_armored__ (arg)
Parameters arg (object)— arg is a module or callable object
Returns return arg if arg is obfuscated, otherwise, raise protection error.

For example

m = __ _import__ ('abc')
__assert_armored__ (m)

def hello(msg):
print (msqg)

__assert_armored__ (hello)
hello('abc')

3.3. References 75

Pyarmor Documentation, Release 8.3.4

3.3.5 Error Messages

Here are all the list of errors when running pyarmor or obfuscated scripts.

If something is wrong, search error message here to find the reason.

If no exact error message found, most likely it’s not caused by Pyarmor, search it in google or any other search engine

to find the solution.

Building Errors

Obfuscating Errors

Table 5: Table-1. Build Errors

Error

Reasons

out of license

Using not available features, for example, big script
Purchasing license to unlock the limitations, refer to License Types

not machine id

This machine is not registered, or the hardware information is changed.
Try to register Pyarmor again to fix it.

query machine id failed

Could not get hardware information in this machine
Pyarmor need query hard disk serial number, mac address etc.
If it could not get hardware information, it complains of this.

relative import “%s” overflow

Obfuscating .py script which uses relative import
Solution: obfuscating the whole package (path), instead of one module (file)
separately

Registering Errors

Table 6: Table-1.1 Register Errors

Error

Reasons

HTTP Error 400: Bad Request

Please upgrade Pyarmor to 8.2+ to get the exact error message

HTTP Error 401: Unauthorized

Using old pyarmor commands with new license
Please using Pyarmor 8 commands to obfuscate the scripts

HTTP Error 503: Service Tem-
porarily Unavailable

Invoking too many register command in 1 minute
For security reason, the license server only allows 3 register requests in 1
minute

unknown license type OLD

Using old license in Pyarmor 8, the old license only works for Pyarmor 7.x
Here are the latest licenses
Please use pyarmor—"7 or downgrade pyarmor to 7.7.4

This code has been used too many
times

If this code is used in CI/Docker pipeline, please send order information
by registration email of this code to pyarmor @ 163.com to unlock it. Do not
send this code only, it doesn’t make sense.

update license token failed (104)

Please make sure firewall doesn’t block the response of license server. If
possible, turn off the firewall to verify it.

In Windows pytransform.pyd will connect to pyarmor.
dashingsoft.com port 80 to request token for online obfuscation, in
other platforms itis pyt ransform3. so. Refer to firewall documentation
to allow it to connect pyarmor .dashingsoft.com: 80.

Runtime Errors

Error messages reported by pyarmor

76

Chapter 3. Table of Contents

mailto:pyarmor@163.com

Pyarmor Documentation, Release 8.3.4

If it has an error code, it could be customized.

Table 7: Table-2. Runtime Errors of Obfuscated Scripts

function is incorrect

Error Code Error Message Reasons
error code out of range Internal error
error_1 this license key is expired
error_2 this license key is not for
this machine
error_3 missing license key to run
the script
error_4 unauthorized use of script
error_5 this Python version is not
supported
error_6 the script doesn’t work in
this system
error_7 the. fo’m}at of obfuscated 1. the obfuscated script is made by other Pyarmor
script 1s 1ncorrect .
version
2. can not get runtime package path
error_8 the format of obfuscated

RuntimeError: Resource
temporarily unavailable

When using option —e to obfuscate the script, the obfus-
cated script need connect to NTP server to check expire
date. If network is not available, or something is wrong
with network, it raises this error.
Solutions:

1. use local time if device is not connected to inter-

net.
2. try it again it may works.

Protection Exception

If using —-assert-call or assert-import,
check section Filter assert function and import in the
Advanced Tutorial, ignore those problem functions and
modules by the traceback.

Error messages reported by Python interpreter

Generally they are not pyarmor issues. Please consult Python documentation or google error message to fix them.

Table 8: Table-2.1 Other Errors of Obfuscated Scripts

Error Message

Reasons

ImportError: attempted relative im-
port with no known parent package

1. from .pyarmor_runtime_000000 import
__pyarmor___
Do not use —i or ——prefix if you don’t know what
they’re doing.
For all the other relative import issue, please check Python documentation
to learn about relative import knowledge, then check Pyarmor Man Page to
understand how to generate runtime packages in different locations.

3.3. References

77

http://www.ntp.org

Pyarmor Documentation, Release 8.3.4

Outer Errors

Here is a list of some outer errors. Most of them are caused by missing some system libraries, or unexpected config-
uration. It has nothing to do with Pyarmor, just install necessary libraries or change system configurations to fix the
problem.

By searching error message in google or any other search engine to find the solution.

Operation did not complete successfully because the file contains a virus or is potentially unwanted software
question

It’s caused by Windows Defender, not Pyarmor. I’m sure Pyarmor is safe, but it uses some techniques
which let anti-virus tools make wrong decision. The solutions what I thought of

1. Check documentation of Windows Defender
2. Ask question in MSDN
3. Google this error message
Library not loaded: ‘ @rpath/Frameworks/Python.framework/Versions/3.9/Python’

When Python is not installed in the standard path, or this Python is not Framework, pyarmor reports this
error. The solution is using install_name_tool to change pytransform3. so. For example, in
anaconda3 with Python 3.9, first search which CPython library is installed:

$ otool -L /Users/my_username/anaconda3/bin/python

Find any line includes Python. framework, libpython3.9.dylib,or libpython3. 9. so, the
filename in this line is CPython library. Or find it in the path:

$ find /Users/my_username/anaconda3 -name "Python.framework/Versions/3.9/
—Python"

$ find /Users/my_username/anaconda3 -name "libpython3.9.dylib"

$ find /Users/my_username/anaconda3 -name "libpython3.9.so"

Once find CPython library, using install_name_tool to change and codesign it again:

$ install_name_tool -change @rpath/Frameworks/Python.framework/Versions/3.9/
—Python /Users/my_username/anaconda3/lib/libpython3.9.dylib /Users/my_
—username/anaconda3/lib/python3.9/site-packages/pyarmor/cli/core/
—pytransform3.so

$ codesign -f -s - /Users/my_username/anaconda3/lib/python3.9/site-packages/
—pyarmor/cli/core/pytransform3.so

3.4 Topics

3.4.1 Insight Into Obfuscation
Filter scripts by finder

Script ext is not .py, list it in command line. For example, my . config is a python script but not standard extension
name:

pyarmor gen main.py my.config

To include special script in package. For example:

78 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

pyarmor cfg finder:includes="1lib/my.config"
pyamor gen -r lib

To exclude “test” and all the path “test”:

pyarmor cfg finder:excludes + "x/test"

To include data files, these data file will be copied to output:

pyarmor cfg finder:data_files="lib/readme.txt"
pyamor gen -r lib

For example, the test-project hierarchy is as follows:

$ tree test-project

test-project
MANIFEST.in
pyproject.toml

setup.cfg

src

L parent
child
— __init___ .py
__init__ .py

There are 2 exclude rules x__pycache___ and »/test.py to filter scripts:

$ cd test-project
$ pyarmor cfg finder:exclude + "x_ pycache__ */test.py"
$ pyamor gen -r src/parent

It uses fnmatch to match pattern, the matched item is excluded. Here are check list:

fnmatch ("src/parent/__init__.py", "*__pycache__")
fnmatch("src/parent/__init__ .py", "*/test.py")

fnmatch ("src/parent/child", "«__pycache__")
fnmatch ("src/parent/child", "+/test.py")

fnmatch ("src/parent/child/__init__.py", "x__pycache__")
fnmatch("src/parent/child/__init__ .py", "x/test.py")

3.4.2 Understanding Obfuscated Script

Remain as standard ‘.py* files

The obfuscated scripts are normal Python scripts, it’s clear by checking the content of dist/foo.py:

from pyarmor runtime 000000 import _ pyarmor_
__pyarmor__(__name__, _ file , b'\xa...')

It’s a simple script, first imports function __pyarmor___ from package pyarmor_runtime_000000, then call
this function.

Runtime package

3.4. Topics 79

Pyarmor Documentation, Release 8.3.4

This package pyarmor_runtime_000000 is generated by Pyarmor, it’s also a normal Python package, here it’s
package content:

$ 1ls dist/pyarmor_runtime_000000
__init___.py
pyarmor_runtime.so

There is binary extension module pyarmor_runt ime, this is a big difference from plain Python script. Generally
using binary extensions means the obfuscated scripts

* may not be compatible with different builds of CPython interpreter.
* often will not work correctly with alternative interpreters such as PyPy, IronPython or Jython

For example, when obfuscating scripts by Python 3.8, they can be run by any Python 3.8.x, but can’t be run by Python
3.7, 3.9 etc.

For example, packaging pure .py script is easy, but packaging binary extension need more work.

For example, in Android pure .py script can be run in any location, but binary extensions must be in special system
paths.

The runtime package pyarmor_runtime_000000 could be in any path, it can be taken as a third-party package,
save it in any location, and import it following Python import system.

pyarmor provides several options —1, ——prefix to help generating right code to import it.
Runtime key

The runtime key generally is embedded into extension module pyarmor_runt ime, it also could be an outer file. It
stores expire date, bind devices, and user private data etc.

Extension module pyarmor_runtime will not load the obfuscated script unless the runtime key exists and is valid.

User also could store any private data in the runtime key, then use hook script to check private data in the obfuscated
scripts.

If runtime key is stored in an outer file, any readable text in the header will be ignored. User can add comment at the
header of runtime key file, the rest part are bytes data, only in the obfuscated scripts they could be read.

Restrict modes

By default the obfuscated scripts can’t be changed.
After using ——private, the obfuscated scripts could not be imported by plain script or Python interpreter.
After using ——restrict, other plain scripts could not call any method in the obfuscated modules.

Disable all the restrictions by this command:

’$ pyarmor cfg restrict_module 0

Generally only disable all the restrictions for specified module. For example, only no restrictions for module NAME:

’$ pyarmor cfg -p NAME restrict_module 0O

The differences of obfuscated scripts

Although use obfuscated scripts as they’re normal Python scripts, but the obfuscated scripts are still different from
pure Python scripts, they changes a few Python features and results in some third party packages could not work.

80 Chapter 3. Table of Contents

https://docs.python.org/3.11/glossary.html#term-extension-module

Pyarmor Documentation, Release 8.3.4

Here are major changed features:

The obfuscated scripts are bind to Python major/minor version. For example, if it’s obfuscated by Python 3.6, it
must run by Python 3.6. It doesn’t work for Python 3.5

The obfuscated scripts are platform-dependent, supported platforms and Python versions refer to Building En-
vironments

If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it will crash to run obfuscated scripts.

Any module may not work if it try to visit the byte code, or some attributes of code objects in the obfuscated
scripts. For example most of inspect function are broken.

Pass the obfuscated code object by cPickle or any third serialize tool may not work.

sys._getframe ([n]) may get the different frame. Note that many third packages uses this feature to get
local variable and broken. For example, pandas, cherrypy.

The code object attribute __file_ is <frozen name> other than real filename.

Note that module attribute ___file__ is still filename. For example, obfuscate the script foo . py and run it:

def hello (msqg):
print (msg)

The output will be 'foo.py'
print (_ file)

The output will be '<frozen foo>'
print (hello. file)

A few options may also change something:

pyarmor cfg mix_argname=1 hides annotations.

See also:

Work with Third-Party Libraries

Supported Third-Party Interpreter

About third-party interpreter, for example Jython, and any embedded Python C/C++ code, only they could work with
CPython extension module, they could work with Pyarmor. Check third-party interpreter documentation to make sure

this.

A few known issues

On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by dlopen, otherwise obfuscated scripts
couldn’t work.

Boost::python does not load libpythonXY.so with RTLD_GLOBAL by default, so it will raise error “No
PyCode_Type found” as running obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os. RTLD_GLOBAL) as initializing.

PyPy could not work with pyarmor, it’s total different from CPython
WASM is not supported.

See also:

Target Environments

3.4. Topics 81

Pyarmor Documentation, Release 8.3.4

3.4.3 Insight Into Pack Command

Pyarmor 8.0 has no command pack, but ——pack. It could specify an executable file generated by PyInstaller:

pyinstaller foo.py
pyarmor gen —-pack dist/foo/foo foo.py

If no options are set, pyarmor only obfuscates the scripts.
If this option is set, pyarmor first obfuscates the scripts, then does extra work:
» Unpacking this executable to a temporary folder
* Replacing the scripts in bundle with obfuscated ones
* Appending runtime files to the bundle in this temporary folder
* Repacking this temporary folder to an executable file and overwrite the old

Note that only list scripts are obfuscated, if need obfuscate more scripts and sub packages, list all of them in command
line. For example:

’pyarmor gen —-pack dist/foo/foo -r x.py dirl dir2

(3

In Darwin, let obfuscated scripts work in both intel and Apple Silicon by extra option ‘‘—platform dar-

win.x86_64,darwin.arm64°:

’pyarmor gen —-pack dist/foo/foo —-platform darwin.x86_64,darwin.arm64 foo.py

Packing obfuscated scripts manually

If something is wrong with ——pack, or the final bundle doesn’t work, try to pack the obfuscated scripts manually.
You need to know how to using Pylnstaller and using spec file, if not, learn it by yourself.
Here is an example to pack script foo . py in the path /path/to/src

« First obfuscating the script by Pyarmor':

cd /path/to/src
pyarmor gen -0 obfdist —-a foo.py

» Moving runtime package to current path’:

mv obfdist/pyarmor_runtime_000000 ./

* Already have foo. spec, appending runtime package to hiddenimports

a = Analysis(

hiddenimports=['pyarmor_ runtime_000000"'],

+ Otherwise generating foo . spec by Pylnstaller’:

I Do not use —i and ——prefix to obfuscate the scripts
2 Just let PyInstaller could find runtime package without extra pypath
3 Most of the other PyInstaller options could be used here

82 Chapter 3. Table of Contents

https://www.pyinstaller.org/
https://pyinstaller.org/en/stable/usage.html
https://pyinstaller.org/en/stable/spec-files.html

Pyarmor Documentation, Release 8.3.4

pyi-makespec —--hidden-import pyarmor_runtime_000000 foo.py

* Patching foo. spec by inserting extra code after a = Analysis

a = Analysis(

Patched by Pyarmor
_src = r'/path/to/src'
_obf = r'/path/to/src/obfdist'

_count = 0
for i in range(len(a.scripts)):
if a.scripts[i][1l].startswith(_src):
X = a.scripts[i][1l].replace(_src, _obf)
if os.path.exists (x):
a.scripts[i] = a.scripts[i][0], x, a.scripts([i][2]
_count += 1
if _count ==
raise RuntimeError ('No obfuscated script found')

for i in range(len(a.pure)):
if a.puref[i][1].startswith(_src):
x = a.pure[i][1l].replace(_src, _obf)
if os.path.exists (x):

if hasattr(a.pure, '_code_cache'):
with open(x) as f:
a.pure._code_cachel[a.pure[i] [0]] = compile(f.read(), a.purel[i][1l],
— 'exec')
a.purel[i] = a.purel[i] [0], x, a.purel[i][2]

Patch end.

pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

* Generating final bundle by this patched foo. spec:

pyinstaller foo.spec

If following this example, please

* Replacing all the /path/to/src with actual path

* Replacing all the pyarmor_runtime_000000 with actual name
how to verify obfuscated scripts have been packed

Inserting some print statements in the foo . spec to print which script is replaced, or add some code only works in
the obfuscated script.

For example, add one line in the main script foo . py

print ('this is __pyarmor__ ', __ _pyarmor__)

If it’s not obfuscated, the final bundle will raise error.

notes

3.4. Topics 83

Pyarmor Documentation, Release 8.3.4

Segment fault in Apple M1

In Apple M1 if the final executable segment fault, please check codesign of runtime package:

’$ codesign -v dist/foo/pyarmor_runtime_000000/pyarmor_runtime.so

And re-sign it if the code sign is invalid:

’$ codesign —-f -s dist/foo/pyarmor_runtime_000000/pyarmor_runtime.so

If you use ——enable-bcc or ——enable-7jit to obfuscate the scripts, you need enable Allow Execution of JIT-
compiled Code Entitlement

If your app doesn’t have the new signature format, or is missing the DER entitlements in the signature, you’ll need to
re-sign the app on a Mac running macOS 11 or later, which includes the DER encoding by default.

If you’re unable to use macOS 11 or later to re-sign your app, you can re-sign it from the command-line in macOS
10.14 and later. To do so, use the following command to re-sign the MyApp.app app bundle with DER entitlements
by using a signing identity named “Your Codesign Identity” stored in the keychain:

$ codesign -s "Your Codesign Identity" -f —--preserve-metadata --generate-entitlement-
—der /path/to/MyApp.app

See also:

Using the latest code signature format

3.4.4 Insight Into RFT Mode

For a simple script, pyarmor may reform the scripts automatically. In most of cases, it need extra work to make it
work.

This chapter describes how RFT mode work, it’s helpful to solve RFT mode issues of complex package and scripts.
What does RFT mode change?
* function
* class
* method
¢ global variable
* local variable
* builtin name
* import name
What does RFT mode not change?
 argument in function definition
* keyword argument name in call
* all the strings defined in the module attribute ___all___
¢ all the name starts with ___

It’s simple to decide whether or not transform a single name, but it’s difficult for each name in attribute chains. For
example,

84 Chapter 3. Table of Contents

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/documentation/xcode/using-the-latest-code-signature-format/

Pyarmor Documentation, Release 8.3.4

foo () .stack[2] .count = 3
(at+b) .tostr () .get ()

So how to handle attribute stack, count, tostr and get? The problem is that it’s impossible to confirm function
return type or expression result type. In some cases, it may be valid to return different types with different arguments.

There are 2 methods for RFT mode to handle name in the attribute chains which don’t know parent type.
* rft-auto-exclude
This is default method.

The idea is search all attribute chains in the scripts and analysis each name in the chain. If not sure it’s safe to
rename, add it to exclude table, and do not touch all the names in exclude table.

By default the file .pyarmor/rft_exclude_table is used to store exclude table.

When pyarmor rft mode first run, exclude table is empty. It scans each script and append unknown names
to exclude table. After all the scripts are obfuscated, it stores all the names in the exclude table to the file
.pyarmor/rft_exclude_table.

RFT mode doesn’t remove this file, only append new names to it repeatedly, please delete it manually when
needed.

When second run rft mode, it loads exclude table from .pyarmor/rft_exclude_table. Comparing with
the first time exclude table is empty, obviously the second time more names are kept, it may fix some name
errors.

It’s simple to use, but may leave more names not changed.
* rft-auto-include

This method first search all the functions, classes and methods in the scripts, add them to include table, and
transform all of them. If same name is used in attribute chains, but can’t make sure its type, leave attribute name
as it is.

For a simple script, Pyarmor could transform the script automatically. But for a complex script, it may raise
name binding error. For example:

$ python dist/foo.py

AttributeError: module 'foo' has no attribute 'register_namespace’

In order to fix this problem, exclude the problem name, leave it as it is by this way:

$ pyarmor cfg rft_excludes + "register namespace"
$ pyarmor gen —--enable-rft foo.py
$ python dist/foo.py

Repeat these steps to exclude all problem names, until it works.

This method could transform more names, but need more efforts to make the scripts work.

Enable RFT Mode

Enable RFT mode in command line:

$ pyarmor gen —--enable-rft foo.py

Enable it by pyarmor cfg:

3.4. Topics 85

Pyarmor Documentation, Release 8.3.4

$ pyarmor cfg enable rft=1
$ pyarmor gen foo.py

Enable rft-auto-include method by disable rft_auto_exclude:

’$ pyarmor cfg rft_auto_exclude=0

Enable rft-auto-exclude method again:

’$ pyvarmor cfg rft_auto_exclude=1

Check transformed script

When trace rft mode is enabled, RFT mode will generate transformed script in the path .pyarmor/rft with full
package name:

$ pyarmor cfg trace_rft 1
$ pyarmor gen —-enable-rft foo.py
$ 1ls .pyarmor/rft

Check the transformed script:

$ cat .pyarmor/rft/foo.py

Note: This feature only works for Python 3.9+

Trace rft log

When both of trace log and trace rft are enabled, RFT mode will log which names and attributes are transformed:

$ pyarmor cfg enable_trace=1 trace_rft=1
$ pyarmor gen —-—-enable-rft foo.py
$ grep trace.rft .pyarmor/pyarmor.trace.log

trace.rft foo:1 (import sys as pyarmor__ 1)
trace.rft foo:12 (self.wScan->self.pyarmor__4)

The first log means module sy s is transformed to pyarmor__1
The second log means wScan is transformed to pyarmor__ 4
Exclude name rule

When RFT scripts complain of name not found error, just exclude this name. For example, if no found name
mouse_keybd, exclude this name by this command:

$ pyarmor cfg rft_excludes "mouse_keybd"
$ pyarmor gen —--enable-rft foo.py

If no found name like pyarmor__ 22, find the original name in the trace log:

86 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

$ grep pyarmor__22 .pyarmor/pyarmor.trace.log

trace.rft foo:65 (self.height->self.pyarmor__22)
trace.rft foo:81 (self.height->self.pyarmor__22)

From search result, we know height is the source of pyarmor__ 22, let’s append it to exclude table:

$ pyarmor cfg rft_excludes + "height"
$ pyarmor gen —-enable-rft foo.py
$ python dist/foo.py

Repeat these step until all the problem names are excluded.

Handle wild card form of import

The wild card form of import — from module import * — is a special case.

If this module is in the obfuscated package, RFT mode will parse the source and check the module’s namespace for a
variable named ___all_

If this module is outer package, RFT mode could not get the source. So RFT mode will import it and query mod-
ule attribute __all__ . If this module could not be imported, it may raise ModuleNotFoundError, please set
PYTHONPATH or any other way let Python could import this module.

If __all__ isnotdefined, the set of public names includes all names found in the module’s namespace which do not
begin with an underscore character (‘_’).

Handle module attribute _ a1l

By default RFT mode doesn’t touch all the names in the module __all__ . If this name is defined as a Class, its
methods and attributes are not changed.

It’s possible to ignore this attribute by this command:

$ pyarmor cfg rft_export__all__ O

It will transform names in the __all__, but it may not work if it’s imported by other scripts.

Manual ruler

This is only for rft-auto-include:

$ pyarmor cfg rft_auto_exclude=0

The rule is used to transform name in chain attributes

One line one rule, the rule format:

patterns actions

patterns = patternl.pattern2.pattern3...
actions = X.X.X...

Each pattern is same as pattern in fnmatch, each action X is either char ? or any word. ? means transform the
corresponding attribute automatically, any other word means not transform this word.

3.4. Topics 87

Pyarmor Documentation, Release 8.3.4

For example, a ruler:

self.task.x self.task.?

apply to this script

class Sdipmk:

def _ init_ (self):
self.width = 100
self.height 200

def move(self, x, vy, absolute=False):
self.task.x = int (abs (x+x65536/self.width)) if absolute else int (x)
self.task.y = int (abs(y*65536/self.height)) if absolute else int (y)
return Mouse (MS_MOVE, x, V)

First configure this ruler by command:

$ pyarmor cfg rft_rulers "self.task.x self.task.?"

Then check the result:

$ pyarmor gen —--enable-rft foo.py
$ grep trace.rft .pyarmor/pyarmor.trace.log

trace.rft foo:8 (self.task.x—>self.task.pyarmor__2)

line 8 self.task.x will be transformed to self.task.pyarmor__ 2

Let’s change action to sel1f. 2. ?, and check the result:

$ pyarmor cfg rft_rulers "self.task.x self.?.?"
$ grep trace.rft .pyarmor/pyarmor.trace.log

trace.rft foo:8 (self.task.x—->self.pyarmor__1.pyarmor__2)

Let’s add new ruler to change self.task.y, here need to use " to append new line to rulers:

$ pyarmor cfg rft_rulers ""self.task.y self.?.?"
$ grep trace.rft .pyarmor/pyarmor.trace.log

trace.rft foo:8 (self.task.x->self.pyarmor__1l.pyarmor__2)
trace.rft foo:9 (self.task.y—->self.pyarmor__1l.pyarmor__3)

Actually, both of rulers can combined to one:

$ pyarmor cfg rft_rulers = "self.task.x self.?.?2"
$ grep trace.rft .pyarmor/pyarmor.trace.log

trace.rft foo:8 (self.task.x—>self.pyarmor__1l.pyarmor__2)
trace.rft foo:9 (self.task.y->self.pyarmor__1.pyarmor__3)

88 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

3.4.5 Insight Into BCC Mode

BCC mode could convert most of functions and methods in the scripts to equivalent C functions, those ¢ functions will
be compiled to machine instructions directly, then called by obfuscated scripts.

It requires ¢ compiler. In Linux and Darwin, gcc and clang is OK. In Windows, only clang.exe works. It could
be configured by one of these ways:

e If there is any clang.exe, it’s OK if it could be run in other path.
¢ Download and install Windows version of LL.VM

* Download https://pyarmor.dashingsoft.com/downloads/tools/clang-9.0.zip, it’s about 26M bytes, there is only
one file in it. Unzip it and save clang.exe to SHOME/ .pyarmor/. SHOME is home path of current logon
user, check the environment variable HOME to get the real path.

Enable BCC mode

After compiler works, using ——enable-bcc to enable BCC mode:

$ pyarmor gen —--enable-bcc foo.py

All the source in module level is not converted to C function.

Trace bcc log

To check which functions are converted to C function, enable trace mode before obfuscate the script:

$ pyarmor cfg enable trace=1
$ pyarmor gen --enable-bcc foo.py

Then check the trace log:

$ 1ls .pyarmor/pyarmor.trace.log
$ grep trace.bcc .pyarmor/pyarmor.trace.log

trace.bcc foo:5:hello
trace.bcc foo:9:sum2
trace.bcc foo:12:main

The first log means foo.py line 5 function hello is protected by bec. The second log means foo.py line 9
function sum?2 is protected by bcc.

If there is ! after trace.bcc, it means this function is ignored by BCC mode. For example:

trace.bcc ! fo0:29:Test.new (unsupported function "super")

Ignore module or function

When BCC scripts reports errors, a quick workaround is to ignore these problem modules or functions. Because
BCC mode converts some functions to C code, these functions are not compatible with Python function object. They
may not be called by outer Python scripts, and can’t be fixed in Pyarmor side. In this case use configuration option
bece:excludes and bee:disabled to ignore function or module, and make all the others work.

To ignore one module pkgname . modname by this command:

3.4. Topics 89

https://releases.llvm.org

Pyarmor Documentation, Release 8.3.4

$ pyarmor cfg -p pkgname.modname bcc:disabled=1

To ignore functions or class methods in one module:

$
$

$
$

pyarmor
pyarmor

pyarmor
pyarmor

cfg —-p pkgname.
cfg —-p pkgname.

cfg —-p pkgname.
cfg —-p pkgname.

modname bcc
modname bcc

modname bcc
modname bcc

:excludes="name"
rexcludes="namel name2 name3"

:excludes="Class.method_ 1"
cexcludes="Class.x"

If no option —p, same name function in the other scripts will be ignored too.

Here it’s an example script foo . py

def hello_al():

def hello_b{():

pass

pass

class Test (object):

def _ init_ (self):
pass

def hello_al():
pass

Exclude functions by one of forms:

$
$
$

v »

pyarmor
pyarmor
pyarmor

pyarmor
pyarmor

pyarmor

pyarmor

cfg
cfg
cfg

cfg
cfg
cfg

cfg

foo bcc:
foo bcc:
foo bcc:

foo bcc:
foo bcc:

foo bcc:

foo bcc:

excludes =
excludes =
excludes =

excludes =
excludes =
excludes =

excludes

"hello_a"
"hello_a hello_b"
"hello_x"

"Test.hello_a"
"Test.x"

"Test._ "

"hello_a Test.hello_a"

If want to BCC mode handle specified functions, use option bcc:includes:

clear excludes

pyarmor cfg bcc:excludes =

BCC mode only handles module function "hello_a"
pyarmor cfg -p foo bcc:includes = "hello_a"

Need extra settings let BCC mode handle class method "Test.hello_a"
pyarmor cfg -p foo bcc:includes + "Test.hello_a"

BCC mode handles all methods of class "Test" except method "__init_ "
pyarmor cfg -p foo bcc:includes="Test.*" bcc:excludes="Test. _init__"

Let’s enable trace mode to check these functions are ignored:

90

Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

$ pyarmor cfg enable_trace 1
$ pyarmor gen —-enable-bcc foo.py
$ grep trace.bcc .pyarmor/pyarmor.trace.log

Another example, in the following commands BCC mode ignores joker/card. py, but handle all the other scripts
in package joker:

$ pyarmor cfg -p Jjoker.card bcc:disabled=1
$ pyarmor gen —-—-enable-bcc /path/to/pkg/joker

Both bcc:includes and bec:excludes only work on top function and class method, they can’t be used to filter nest
function and methods of nest class.

For example,

def hello():

def wrap () :
pass

class Test:

def init__ (self):
pass

The nest function wrap and nest class Test can’t be ignored by the following commands:

’pyarmor cfg bcc:excludes = "wrap hello.wrap Test.__init__ hello.Test.__init__ "

The only solution is to ignore top function hello:

’pyarmor cfg bcc:excludes = hello

New in version 8.3.4: The option bcc:includes.

Changed in version 8.3.4: The option bcc:excludes, in previous version:

Exclude module function "hello_a" and any method "hello_a"
pyarmor cfg bcc:excludes="hello_a"

It doesn't work if there is class name in filter
pyarmor cfg bcc:excludes="Myclass.hello_a"

Now:

Exclude module function "hello_a" and method "hello_a" in any class
pyarmor cfg bcc:excludes="hello_a x.hello_a"

It works to ignore one method "Myclass.hello_a"
pyarmor cfg bcc:excludes="Myclass.hello_a"

Changed features

Here are some changed features in the BCC mode:

* Calling raise without argument not in the exception handler will raise different exception.

3.4. Topics 91

Pyarmor Documentation, Release 8.3.4

>>> raise
RuntimeError: No active exception to re-raise

In BCC mode
>>> raise
UnboundlocalError: local variable referenced before assignment

* Some exception messages may different from the plain script.
* Most of function attributes which starts with ___ doesn’t exists, or the value is different from the original.
Unsupported features

If a function uses any unsupported features, it could not be converted into C code.

Here list unsupported features for BCC mode:

unsupport_nodes = (
ast.ExtSlice,

ast.AsyncFunctionDef, ast.AsyncFor, ast.AsyncWith,
ast.Await, ast.Yield, ast.YieldFrom, ast.GeneratorExp,

ast .NamedExpr,
ast.MatchvValue, ast.MatchSingleton, ast.MatchSequence,

ast.MatchMapping, ast.MatchClass, ast.MatchStar,
ast.MatchAs, ast.MatchOr

And unsupported functions:
* exec
e eval
* super
* locals
* sys._getframe
* sys.exc_info

For example, the following functions are not obfuscated by BCC mode, because they use unsupported features or
unsupported functions:

async def nested():
return 42

def fool():
for n range (10):
yield n

def foo2():
frame = sys._getframe (2)
print ('parent frame is', frame)

92 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

3.4.6 Security and Performance

About Security

Pyarmor focuses on protecting Python scripts, through several irreversible obfuscation methods, Pyarmor makes sure
the obfuscated scripts can’t be restored in any way.

Pyarmor provides rich options to obfuscate scripts to balance security and performance. If anyone announces they have
broken pyarmor, please try a simple script with different security options, refer to Highest security and performance.
If any irreversible obfuscation has been broken, report this security issue to pyarmor@ 163.com. Do not paste any hack
link in pyarmor project.

However Pyarmor isn’t good at memory protection and anti-debug. Generally even debugger tracing binary extension
pyarmor_runtime could not help to restore obfuscated scripts, but it may bypass runtime key verification.

If you care about runtime memory data protection and anti-debug, check Protecting Runtime Memory Data
About Performance

Though the highest security could protect Python scripts from any hack method, it may reduce performance. In most
cases, we need to pick the right options to balance security and performance.

Here we test some options to understand their impact on performance. All the following tests use 2 scripts
benchmark.py and testben.py. Note that the test results are different even run the same test script in the
same machine twice, not speak of different test scripts in different machines. So the test data in these tables are only
guidelines, not exact.

The content of benchmark.py

import sys

class BenTest (object) :

def _ init_ (self):

self.a =1
self.b = "b"
self.c = []
self.d = {}
def fool():
ret = []

for i in range(100000) :
ret.extend(sys.version_info[:2])
ret.append (BenTest ())

return len (ret)

The content of testben.py

import benchmark
import sys
import time

def metric (func):
if not hasattr(time, 'process_time'):
time.process_time = time.clock

def wrap(xargs, =**kwargs):

(continues on next page)

3.4. Topics 93

mailto:pyarmor@163.com

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

tl = time.process_time ()

result = func(xargs, =*xkwargs)

t2 = time.process_time ()

print (' : ms' % (func._ name_ , ((t2 - tl) * 1000)))

return result
return wrap

def test_import():
tl = time.process_time ()
import benchmark2 as m2
t2 = time.process_time ()
print (' : ms' $ ('test_import', ((t2 - tl) = 1000)))
return m2

@metric
def test_foo():
benchmark. foo ()

v L

if name == main

print ('Python . ' % sys.version_info[:2])
test_import ()

test_foo ()

Different Python Version Performance

First obfuscate the scripts with default options, run it in different Python version, and compare the elapsed time with
original scripts.

In order to test the difference without and with __pycache__, run scripts twice.
There are 3 check points:

1. Import fresh module without _ pycache_

2. Import module 2nd with___pycache_

3. Run function "foo", an obfuscated class is called 10,000 times

Here are test steps:

$ rm —-rf dist _ pycache_

$ cp benchmark.py benchmark?2.py
$ python testben.py

Python 3.7
test_import : 1.303 ms
test_foo : 250.360 ms

$ python testben.py

Python 3.7
test_import : 0.290 ms
test_foo : 252.273 ms

$ pyarmor gen testben.py benchmark.py benchmark?2.py

(continues on next page)

94 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

$ python dist/testben.py

Python 3.7

test_import : 0.907
test_foo : 311.076 ms
$ python dist/testben.py

Python 3.7
test_import : 0.454
test_foo : 359.138

ms
ms

Table 9: Table-1. Pyarmor Performance with Python Version
Import fresh module Import module 2nd Run function “foo”

Time (ms)

Python

Origin

Pyarmor

Origin

Pyarmor

Origin

Pyarmor

3.7

1.303

0.907

0.290

0.454

252.2

311.0

3.8

1.305

0.790

0.286

0.338

272.232

295.973

3.9

1.198

1.681

0.265

0.449

267.561

331.668

3.10

1.070

1.026

0.408

0.300

281.603

322.608

3.11

1.510

0.832

0.464

0.616

164.104

289.866

RFT Mode Performance

RFT mode should be same fast as original scripts.

Here we compare RFT mode with default options, the test data is got by this way.

First obfuscate scripts with default options, then run it.

Then obfuscate scripts with RFT mode, and run it again:

rm —-rf dist

$
$ pyarmor gen testben.py benchmark.py benchmark?2.py
$ python dist/testben.py

vw

rm —-rf dist
pyarmor gen —-—-enable-rft testben.py benchmark.py benchmark2.py

$ python dist/testben.py

Table 10: Table-2. Performance of RFT Mode

Time (ms)

Import fresh

module

Run function “foo”

Remark

Python

Pyarmor

RFT Mode

Pyarmor

RFT Mode

3.7

1.083

1.317

334.313

324.023

3.8

0.774

1.109

239.217

241.697

39

0.775

0.809

304.838

301.789

3.10

2.182

1.049

310.046

339.414

3.11

0.882

0.984

258.309

264.070

Next, we compare RFT mode and ——obf-code 0 with original scripts by this way:

$ rm —-rf dist _ pycache_
$ python testben.py

(continues on next page)

3.4. Topics

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

$ pyarmor gen —--enable-rft —--obf-code=0 testben.py benchmark.py benchmark2.py
$ python testben.py

Table 11: Table-2.1 Performance of RFT Mode and obf-code 0

Time (ms) | Import fresh module Run function “foo” Remark
Python Pyarmor RFT Mode | Pyarmor | RFT Mode

3.7 0.757 1.844 307.325 272.672

3.8 0.791 0.747 276.865 243.436

3.9 1.276 0.986 246.407 236.138

3.10 2.563 1.142 256.583 260.196

3.11 0.952 0.938 185.435 154.390

They’re almost the same.
BCC Mode Performance

BCC mode converts some code to C function, it needs extra time to load binary code, but the function may be faster.
The following test data got by this way:

$ rm -rf dist __pycache___
$ python testben.py

$ python testben.py

$ pyarmor gen —-—-enable-bcc testben.py benchmark.py benchmark2.py
$ python dist/testben.py

$ python dist/testben.py

Table 12: Table-3. Performance of BCC Mode with Python Version

Time (ms) | Import fresh module Import module 2nd Run function “foo”
Python Origin BCC Mode | Origin BCC Mode | Origin BCC Mode
3.7 1.086 1.177 0.342 0.391 344.640 271.426

3.8 1.099 1.397 0.351 0.400 291.244 251.520

3.9 1.229 1.076 0.538 0.362 306.594 254.458
3.10 1.267 0.999 0.255 0.796 302.398 247.154
3.11 1.146 1.056 0.273 0.536 206.311 189.582

Impact of Different Options

In order to facilitate comparison, each option is used separately. For example, test ——no-wrap by this way:

$ rm -rf dist __pycache___
$ pyarmor testben.py

$ pyarmor gen —-no-wrap testben.py benchmark.py benchmark2.py

(continues on next page)

96 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

(continued from previous page)

$ pyarmor dist/testben.py

Python 3.7
test_import : 0.971 ms
test_foo : 306.261 ms

Table 13: Table-4. Impact of Different Options

Option Performance Security
——no-wrap Increase Reduce
——obf-module 0 Slightly increase Slightly reduce
——obf-code 0 Remarkable increase | Remarkable reduce
——obf-code 2 Reduce Increase
——enable-rft Almost same Remarkable increase
——enable—-themida | Remarkable reduce Remarkable increase
——mix-str Reduce Increase
——assert-call Reduce Increase
-—assert-import Slightly reduce Increase
—-—private Reduce Increase
—--restrict Reduce Increase

3.4.7 Localization and Internationalization

When building obfuscated scripts

For example:

pyarmor gen foo.py

Pyarmor first searches file messages . cfg in the local path, then searches in the global path
If messages. cfg exists, then read this file and save customized message to runtime key

If this file is not encoded by ut £-8, set the right encoding XXX by this command:

$ pyarmor cfg messages=messages.cfg:XXX

See also:
Table-2. Runtime Errors of Obfuscated Scripts
When launching obfuscated scripts

For example:

python dist/foo.py

When something is wrong, the obfuscated script need report error which has an error code:
First decide default language by checking the following items in turn
¢ PYARMOR LANG

e First part of LANG. For example, en_US or zh_CN

Then search error message table in the runtime key, if there is an error message both of language code and error code

are matched, then return it.

3.4. Topics

Pyarmor Documentation, Release 8.3.4

Otherwise return default error message.

3.5 License Types

Contents

* Introduction
* License types

— License features
* Purchasing license

— Refund policy

* Upgrading old license

— Upgrading old license to Pyarmor Basic

3.5.1 Introduction

This documentation is only apply to Pyarmor 8.0 plus.

Pyarmor is published as shareware, free trial version never expires, but there are some limitations:
(1) Can not obfuscate big scripts'
(2) Can not use feature mix-str’ to obfuscate string constant in scripts
(3) Can not use RFT Mode?, BCC Mode*

(4) Can not be used for any commercial product if the total sale income of this product is larger than 30x license
fees

(5) Can not change runtime package name “pyarmor_runtime_000000"
(6) Can not be used to provide obfuscation service in any form
(7) Can not use obf-code > 1

These limitations can be unlocked by different License Types except last one.

3.5.2 License types

Pyarmor has 3 kind of licenses:

Pyarmor Basic Basic license could unlock limitations (1) (2) (4) (5) (7).
Each obfuscation need online verify license.

Pyarmor Pro Pro license could unlock limitations (1) (2) (3) (4) (5) (7).

Each obfuscation need online verify license.

! Big Script means file size exceeds a certain value.

2 Mix Str: obfuscating string constant in script

3 RFT Mode: renaming function/class/method/variable in Python scripts

4 BCC Mode: Transforming some Python functions in scripts to ¢ functions, compile them to machine instructions directly

98 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.3.4

Pyarmor Group Group license could unlock limitations (1) (2) (3) (4) (5) (7).

Group license supports unlimited dockers which uses default bridge network and not highly customized. For
Pyarmor Basic or Pyarmor Pro, up to 100 runs in 24 hours.

Offline obfuscation, it need not internet connection when obfuscating the scripts.

Group license is bind to device hardwares, it may not work in virtual machines or any device which
hardwares are volatile

Refer to use Pyarmor License

For the obfuscated scripts run in the customer’s device, Pyarmor has no any limitations, it’s totally controlled by users.
Pyarmor only cares about build machine.

Each license has an unique number, the format is pyarmor—-vax—-xxxxxx, which x stands for a digital.
Each product requires one License No. So any product in global also has an unique number in Pyarmor world.

If user has many products, and has purchased one license for the first product. The second product could use first
product license only if sale income of the second product less than 30x license fees. Once greater than 30x license
fees, the second product need purchase its own license. It’s same to user’s other products.

One product in Pyarmor world means a product name and everything that makes up this name.
It includes all the devices to develop, build, debug, test product.
It also includes product current version, history versions and all the future versions.

One product may has several variants, each variant name is composed of product name plus feature name. As long as
the proportion of the variable part is far less than that of the common part, they’re considered as “one product”.

Pyarmor License could be installed in many machines and devices which belong to licensed product. But there is
limitation to be used at the same time.

In 24 hours only less than 100 devices can use one same Pyarmor License. Pyarmor License be used means use any
feature of Pyarmor in one machine. Running obfuscated scripts generated by Pyarmor is not considered as Pyarmor
License be used.

In details read EULA of Pyarmor
What’s one product
First of all, if not for sale, all the Python scripts are belong to one product “non-profits”.
Pyarmor is one product, it includes:
* Pyarmor basic, Pyarmor pro, and Pyarmor group
* pyarmor-webui which provides graphics interface for pyarmor.

* the order system of Pyarmor is a Django’s app running in cloud-server. This Django’s app also belongs to one
product Pyarmor.

* the laptop used to develop Pyarmor, the PCs used to test Pyarmor, the cloud-server to serve order system of
Pyarmor, all of them belong to one product Pyarmor.

* Pyarmor 7.x, Pyarmor 8.x and Pyarmor 9.x

Microsoft Office is not one product, because each product in Microsoft Office is functional independence. For exam-
ple, Microsoft Word and Microsoft Excel belong to Microsoft Office, but they re totally different.

Microsoft Word is one product, and Microsoft Word 2003Word 2007 etc. are belong to one product Microsoft word.
Hints for 3 licenses

¢ Only works for Python 3.7+ in supported platforms

3.5. License Types 99

https://github.com/dashingsoft/pyarmor/blob/master/LICENSE

Pyarmor Documentation, Release 8.3.4

* If need offline obfuscation, only Pyarmor Group license works

* Pyarmor Basic and Pro license need internet connection to verify license when obfuscating the scripts, and in
24 hours only 100 different devices are allowed for each license

¢ In 24 hours, if need more than 100 docker containers to obfuscate your scripts, only Pyarmor Group license
works.

* Pyarmor Basic, Pro and Group licenses don’t work for Pyarmor 7.

License features

Table 14: Table-1. License Features

Features Trial | Basic | Pro | Group | Remark
Basic Obfuscation Y Y Y Y 3
Expired Script Y Y Y Y 0
Bind Device Y Y Y Y 7
JIT Protection Y Y Y Y 8
Assert Protection Y Y Y Y 0
Themedia Protection | Y Y Y Y 10
Big Script No Y Y Y

Mix Str No Y Y Y

obf-code > 1 No |Y Y Y 1
RFT MODE No No Y Y

BCC MODE No No Y Y
Unlimited dockers Y No No |Y 12

notes

3.5.3 Purchasing license

Open shopping cart in any web browser:
https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg —-buy

In the shopping cart, select License Type and complete the payment online.

Please fill reg-name with personal or company name when placing order.

5 Basic Obfuscation: obfuscating the scripts by default options

6 Expired Script: obfuscated scripts has expired date

7 Bind Device: obfuscated scripts only run in specified devices

8 JIT Protection: processing some sensitive data by runtime generated binary code

9 Assert Protection: preventing others from hacking obfuscated scripts
10 Themedia Protection: using Themedia to protect Windows dlls

1 obf-code=2 is new in Pyarmor 8.2
12 This feature is introduced in Pyarmor 8.3, group license supports unlimited dockers, basic and pro licenses only allow 100 runs one day.

100 Chapter 3. Table of Contents

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

Pyarmor Documentation, Release 8.3.4

Table 15: Table-2. License Prices

License Type | Net Price($) | Remark
Basic 52

Pro 89

Group 158

An activation file named pyarmor—-regcode—xxxx . t xt will be sent by email immediately after payment is com-
pleted successfully.

Following the guide in activation file to take the purchased license effects. Or check Using Pyarmor License

There are no additional license fees, apart from the cost of the license. And it only needs to be paid once, not
periodically

Refund policy

If activation file isn’t used, and purchasing date is in 30 days, refund is acceptable. Please
1. Email to Ordersupport@mycommerce.com with order information and ask for refund.
2. Or click FindMyOrder page to submit refund request

Out of 30 days, or activation file has been used, refund request will be rejected.

3.5.4 Upgrading old license

Not all the old license could be upgraded to latest version.
The old license could be upgraded to Pyarmor Basic freely only if it matches these conditions:
* Following new EULA of Pyarmor
¢ The license no. starts with pyarmor-vax—
* The original activation file pyarmor—-regcode—xxxx.txt exists and isn’t used more than 100 times

* The old license is purchased before June 1, 2023. In principle, the old license purchased after Pyarmor 8 is
available could not be upgraded to new license.

If failed to upgrade the old license, please purchase new license to use Pyarmor latest version.

The old license can’t be upgraded to Pyarmor Pro and Group.

Upgrading old license to Pyarmor Basic

First find the activation file pyarmor-regcode—xxxx.txt, which is sent to registration email when purchasing
the license.

Next install Pyarmor 8.2+, according to new EULA of Pyarmor, each license is only for one product.

Assume this license will be used to obfuscate product XXX, run this command:

’$ pyarmor reg —-u -p "XXX" pyarmor-regcode—-xxxx.txt

Check the upgraded license information:

’$ pyarmor -v

3.5. License Types 101

mailto:Ordersupport@mycommerce.com
https://www.findmyorder.com/store?Action=DisplayEmailCustomerServicePage&Env=BASE&Locale=en_US&SiteID=findmyor
https://github.com/dashingsoft/pyarmor/blob/master/LICENSE
https://github.com/dashingsoft/pyarmor/blob/master/LICENSE

Pyarmor Documentation, Release 8.3.4

After upgrade successfully, do not use activation file pyarmor-regcode-xxxx.txt again, it’s invalid now. A
new registration file like pyarmor—-regfile—xxxx.zip will be generated at the same time.

In other devices using this new registration file to register Pyarmor by this command:

$ pyarmor reg pyarmor-regfile—-xxxx.zip

After successful registration, all obfuscations will automatically apply this license, and each obfuscation requires
online license verification.

If old license is used by many products (mainly old personal license), only one product could be used after upgrading.
For the others, it need purchase new license.

3.6 FAQ

3.6.1 Asking questions in GitHub

Before ask question, please try these solutions:
* If using pyarmor-7 or Pyarmor < 8.0, please check Pyarmor 7.x Doc
e Check the detailed table of contents
* If you have not read Getting Started, read it
* Check Error Messages
* If you have trouble in pack, check Insight Into Pack Command
* If you have trouble in RFT Mode, check Using rftmode pro
¢ If you have trouble in BCC Mode, check Using bccmode pro
* If you have trouble with third-party libraries, check Work with Third-Party Libraries
« Ifit’s related to security and performance, check Security and Performance
* Look through this page
» Enable debug mode and trace log, check console log and trace log to find more information
* Make sure the scripts work without obfuscation
* Do a simple test, obfuscate a hello world script, and run it with python
¢ If not using latest Pyarmor version, try to upgrade Pyarmor to latest version.
* Search in the Pyarmor issues
* Search in the Pyarmor discussions
Please report bug in issues and ask questions in discussions

When report bug in issues, please copy the whole command line pyarmor gen and first 4 lines in the console, do
not mask version and platform information, and do not paste snapshot image:

$ pyarmor gen -O dist --assert-call foo.py

INFO Python 3.10.0
INFO Pyarmor 8.1.1 (trial), 000000, non-profits
INFO Platform darwin.x86_64

102 Chapter 3. Table of Contents

https://pyarmor.readthedocs.io/en/v7.7/
https://github.com/dashingsoft/pyarmor/issues/
https://github.com/dashingsoft/pyarmor/discussions/
https://github.com/dashingsoft/pyarmor/issues/
https://github.com/dashingsoft/pyarmor/discussions/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.3.4

3.6.2 Segment fault in Apple

First upgrade Pyarmor to 8.3.0+ which has fixed non-system Python crash issues.

If it has been the latest version, then check both of prebuilt extensions pytransform3.so and pyarmor_runtime.so
* Make sure code sign is OK by codesign -v /path/to/xxx.so
* Check used shared libraries ofool -L /path/to/xxx.so, make sure all of them exist.

For Pyarmor prior to 8.3.0, check the following issues

Generally it’s code sign issue

If segment fault when obfuscating scripts or registering Pyarmor, try to re-sign extension pytransform3. so:

$ codesign -s - —-f /path/to/lib/pythonX.Y/site-packages/pyarmor/cli/core/pytransform3.
SO

If segment fault when launching obfuscated scripts, try to re-sign extension pyarmor_runtime. so:

$ codesign -s - —-f dist/pyarmor_runtime_000000/pyarmor_runtime.so

If your app doesn’t have the new signature format, or is missing the DER entitlements in the signature, you’ll need to
re-sign the app on a Mac running macOS 11 or later, which includes the DER encoding by default.

If you’re unable to use macOS 11 or later to re-sign your app, you can re-sign it from the command-line in macOS
10.14 and later. To do so, use the following command to re-sign the MyApp.app app bundle with DER entitlements
by using a signing identity named “Your Codesign Identity” stored in the keychain:

$ codesign -s "Your Codesign Identity" -f —--preserve-metadata —-—-generate-entitlement-—
—der /path/to/MyApp.app

Refer to Apple official documentation Using the latest code signature format
Not system Python

The prebuilt pytrnasform.so and pyarmor_runtime.so need Python shared library, if there is no found
Python shared library, it may crash.

Using command line tool otool and install_name_tool to fix Python shared library issue.

To display the names and version numbers of the shared libraries that the object file uses:

$ otool -L /path/to/lib/python3.9/site-packages/pyarmor/cli/core/pytransform3.so

/path/to/lib/python3.9/site-packages/pyarmor/cli/core/pytransform3.so:
pytransform3.so (compatibility version 0.0.0, current version 1.0.0)
@rpath/lib/libpython3.9.dylib (compatibility version 3.9.0, current version 3.9.0)

And rpath is configured by:

$ install_name_tool -id pytrnsform3.so \
—-change $deplib @rpath/lib/libpython$ver.dylib \
—add_rpath Qexecutable_path/.. \
-add_rpath @loader_path/.. \
—add_rpath /System/Library/Frameworks/Python.framework/Versions/Sver \
—add_rpath /Library/Frameworks/Python.framework/Versions/$ver \
build/$host/libs/cp$ver/$name.so

3.6. FAQ 103

https://developer.apple.com/documentation/xcode/using-the-latest-code-signature-format/

Pyarmor Documentation, Release 8.3.4

So check there is @rpath/1ib/libpython3.9.dylib. If it doesn’t exists, please adapt to current Python by
using install_name_tool. Suppose current Python shared library is /usr/local/Python. framework/
Versions/3.9/Python:

$ install_name_tool -change @rpath/lib/libpython3.9.dylib /usr/local/Python.framework/
—Versions/3.9/Python \
/path/to/lib/pythonX.Y/site-packages/pyarmor/cli/core/pytransform3.so

How to find current Python shared library, please search network to find answer. Note that some Python may not built
with shared library, it can’t work with Pyarmor, please rebuild Python with shared library to fix this kind of issue.

It’s same for dist/pyarmor_runtime_000000/pyarmor_runtime.so.
Refer to Apple official documentation Run-Path Dependent Libraries

If there are many same version Python installed, make sure pytransform3.so or pyarmor_runtime.so links to
the right one

For example, there is default Python3.9 in /Library/Frameworks/Python. framework/Versions/3.9/
and anaconda3 Python 3.9 in /Users/my_username/anaconda3/bin/python

When using /Users/my_username/anaconda3/bin/python to run the obfuscated script, it will load
dist/pyarmor_runtime_000000/pyarmor_runtime.so, and this library need Python dynamic library.
According to RPATH settings, first search /Users/my_username/anaconda3/bin/python/../1lib/
libpython3.9.dylib,ifitexists, everything is fine. If it doesn’t exists, then search /Library/Frameworks/
Python. framework/Versions/3.9/1ib/libpython3.9.dylib, load this unexpected Python dynamic
library, and results in crash issue.

In this canse using install_name_tool to modify dist /pyarmor_runtime_000000/pyarmor_runtime.so
so that it could load Python dynamic library in anaconda3.

Note that the obfuscated scripts work with system Python by default, and as possible as work with Python installed in
the other locations.

Application settings

Pyarmor uses JIT to improve security, In Apple M1, it need extra entitlements. Check Python entitlements:

$ codesign -d --entitlements - $(which python)

Refer to Apple official documentation Allow Execution of JIT-compiled Code Entitlement

Check system segment fault log, and search solution by error message

3.6.3 Registering

ERROR request license token failed (104)

Please make sure firewall doesn’t block the response of license server. If possible, turn off the firewall to
verify it.

In Windows pytransform.pyd will connect to pyarmor .dashingsoft.com port 80 to request
token for online obfuscation, in other platforms it is pyt ransform3. so. Refer to firewall documenta-
tion to allow it to connect pyarmor .dashingsoft.com: 80.

Group license raises “ERROR request license token failed”
First upgrade Pyarmor to 8.3.3+

Then register group license with debug option —d in offline device. For example:

104 Chapter 3. Table of Contents

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit

Pyarmor Documentation, Release 8.3.4

$ pyarmor -d reg pyarmor-device-regfile-6000.4.zip

Check log, make sure current machine id is inclueded by offline regfile. For example:

DEBUG group license for machines: ['tokens/
—gb04eb35dad4f5378185c8663522e0abe3']
DEBUG got machine id: gb04eb35dad4£f5378185c8663522e0ab5e3

If machine id is mismatched, please generate new device file for this device by Pyarmor 8.3.3+

For virtual machine, make sure machine id is same after reboot.

3.6.4 Packing

In the old pyarmor 7, I’m using “pyarmor pack ...”, I could not find any relate information for this in the

pyarmor 8.2. How to solve this?

There is no identical pack in Pyarmor 8, Pyarmor 8+ only provide repack function to handle bundle of
PylInstaller. Refer to basic tutorial, topic insight into pack and this solved issue Pyarmor pack missing in
pyarmor 8.0

3.6.5 License

Which license is right for my project?
Hints for all licenses:

* If using Python 2.7 or Python <= 3.6, then only Pyarmor old license works. All the new licenses
only work for Python 3.7+

» Each license only need pay once, but it may not work in Pyarmor future versions
Hints for 3 new licenses (Pyarmor Basic, Pro and Gropu license):
* If need offline obfuscation, only Pyarmor Group license works

* Pyarmor Basic and Pro license need internet connection to verify license when obfuscating the
scripts, and in 24 hours only 100 different devices are allowed for each license

* In 24 hours, if need more than 100 docker containers to obfuscate your scripts, only Pyarmor Group
license works.

* Pyarmor Basic, Pro and Group licenses don’t work for Pyarmor 7.

I am interested to know if the users are entitled to updates to ensure compatibility with future versions of

Python.

No. Pyarmor license works with current Pyarmor version forever, but may not work with future Pyarmor
version. I can’t make sure current Pyarmor version could support all the future versions of Python, so the
answer is no.

we use Docker to build/obfuscate the code locally then publish the Docker file to the client. After the build stage,
the whole environment (and the license) is gone. I wonder how the workflow would be? Can I add the license

file to the pipeline and register every time and build?

It’s no problem to run Pyarmor in Docker or CI pipeline to obfuscate application. Each build registering
pyarmor with pyarmor-regfile—-xxxx.zip which is generated in initial registration. But It’s not
allowed to distribute package pyarmor and Pyarmor Basic, Pyarmor Pro, Pyarmor Group License to
customer, and don’t run too many build dockers.

3.6. FAQ

https://pyarmor.readthedocs.io/en/stable/topic/repack.html
https://github.com/dashingsoft/pyarmor/discussions/1107
https://github.com/dashingsoft/pyarmor/discussions/1107

Pyarmor Documentation, Release 8.3.4

We are currently using a trial license for testing, but unfortunately our scripts are big and we are not able to
statistically test the operation of Pyarmor. Do you have a commercial trial license for a certain trial period so
that we can test the operation of Pyarmor for our scripts?

Sorry, Pyarmor is a small tool and only cost small money, there is no demo license plan.

Most of features could be verified in trial version, other advanced features, for example, mix-str, bcc mode
and rft mode, could be configured to ignore one function or one script so that all the others could work
with these advanced features.

Is the Internet connection only required to generate the obfuscated script? No internet connection is required
on the target device that uses such script?

No internet connection is required on target device.

Pyarmor has no any control or limitation to obfuscated scripts, the behaviors of obfuscated scripts are
totally defined by user.

Please check Pyarmor EULA 3.4.1

Our company has a suite of products that we offer together or separately to our clients. Do we need a different
license for each of them?

For a suite of products, if each product is different totally, for example, a suite “Microsoft Office” includes
“Microsoft Excel”, “Microsoft Word”, each product need one license.

If a suite of products share most of Python scripts, as long as the proportion of the variable part of each
product is far less than that of the common part, they’re considered as “one product”.

If each product in a suite of products is functionally complementary, for example, product “Editor” for
editing the file, product “Viewer” for view the file, they’re considered as “one product”

Which PyArmor 8.0 license for CI, more than 100 runs / day

In this case, it need Group License. Group License is going to support unlimited dockers in one device,
this feature is developing and may released with Pyarmor 8.3.

Upgrading

If we buy version 8 license, is it compatible with earlier versions like 6.7.2?

No. Pyarmor 8 license can’t be used with earlier versions, it may report HTTP 401 error or some unknown
errors.

Can we obfuscate our code base with the same level as current? (we are obfuscating our code using super plus
mode (P—advanced 5”°). Is that available on Pyarmor Basic?

The old license is valid for ever. In this case need not upgrade old license to Pyarmor Basic license, just
install Pyarmor 8.x, and using pyarmor-7 with old license.

Check License Types for more information about upgrading
If we upgrade the old license, will the current license expire? (no more available in terms of Pyarmor v7?

If upgrade old license to any Pyarmor 8 license, the current license is no more available in the terms of
Pyarmor 7.

How long is the current license valid? Is there a published end-of-support schedule?

The license is valid for ever with Pyarmor version when purchasing this license, but may not work for
future Pyarmor, there is no schedule about in which version current license doesn’t work.

Since the first release Pyarmor changed its license 3 times

106 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.3.4

* the initial license issued around year 2010 (I forget the exact date)
* the second license issued on 2019-10-10

e this is the third license, issued on 2023-03-10.

3.6.6 Purchasing

How to refund my order?
If this order isn’t activated and in 30 days since purchasing, you can refund the order by one of ways
1. Email to Ordersupport@mycommerce.com with order information and ask for refund.

2. Or click FindMyOrder page to submit refund request

3.6.7 Misc.

What is the ECCN or rating of Pyarmor (EAR99,5D99S,5D002 or other type ECCN)?
EAR99

Does Pyarmor contain any encryption capabilities?
Pyarmor uses AES/RSA etc., but it hasn’t its own encryption algorithms.

What is the country of origin of this package?
China

Where is the final built for Pyarmor?

All of Pyarmor packages are published in the PyPI, refer to Pyarmor Package and section Installation in
offline device in the chapter <tutorial/installation

3.6. FAQ

107

mailto:Ordersupport@mycommerce.com
https://www.findmyorder.com/store?Action=DisplayEmailCustomerServicePage&Env=BASE&Locale=en_US&SiteID=findmyor
https://pypi.python.org/pypi/

Pyarmor Documentation, Release 8.3.4

108 Chapter 3. Table of Contents

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

109

Pyarmor Documentation, Release 8.3.4

110 Chapter 4. Indices and tables

Python Module Index

P

pyarmor,
pyarmor.
pyarmor.
pyarmor.
pyarmor.
pyarmor.
pyarmor.
pyarmor.
pyarmor.
.cli

pyarmor

pyarmor.

54

cli, 54

cli
cli
cli

cli
cli

cli

cli

.core, 54
.core.alpine, 54
.core.android, 54
cli.
.core.freebsd, 54
.core.linux, 54
.core.themida, 54
.core.windows, 54
.runtime, 54

core.darwin, 54

111

Pyarmor Documentation, Release 8.3.4

112 Python Module Index

Index

Symbols

—assert-call
pyarmor—gen command

—assert—-import
pyarmor—gen command

-bind-data DATA
pyarmor—-gen command

line option, 62

line option, 62

line option, 60

—enable <jit,rft,bcc,themida>

pyarmor—gen command
—enable-bcc
pyarmor—gen command
—enable-jit
pyarmor—-gen command
—enable-rft
pyarmor—gen command
—enable-themida
pyarmor—-gen command
—exclude PATTERN
pyarmor—gen command

line option, 62
line option, 62
line option, 62
line option, 62
line

option, 62

line option, 58

—home PATH[, GLOBAL[, LOCAL[,REG]]]
pyarmor command line option,55

-mix-str
pyarmor—-gen command
—no-wrap
pyarmor—gen command
-obf-code <0,1,2>
pyarmor—gen command
-obf-module <0,1>
pyarmor-gen
—-outer
pyarmor—gen
—-pack BUNDLE
pyarmor-gen
-period N
pyarmor—-gen
-platform NAME
pyarmor—gen
-prefix PREFIX
pyarmor-gen

command

command

command

command

command

command

line option, 62
line option, 61
line option, 61
line option,61
line option, 60
line option, 63
line option, 60
line option, 60

line option, 58

-private
pyarmor—gen
-restrict
pyarmor—-gen
-0 PATH,
pyarmor—gen
-b DEV,
pyarmor—gen

-d, -debug

command line option, 6l

command line option,6l

—-output PATH

command line option,57

-bind-device DEV

command line option, 59

pyarmor command line option,55

—e DATE,
pyarmor-gen
-g ID, -device
pyarmor-reg
—global
pyarmor—-cfg

—9,

pyarmor—gen

-p NAME
pyarmor—-cfg

-p NAME,
pyarmor-reg

-gq, —-silent

—-expired DATE

command line option, 59
ID
command line option, 68

command line option, 66

command line option, 58

command line option, 66

—-product NAME

command line option, 67

pyarmor command line option,55

-r, -—recursive
pyarmor—-gen
—reset
pyarmor—-cfg
—upgrade

pyarmor-reg

-r,

-u,

command line option, 58
command line option, 66

command line option, 68

__assert_armored__ () (built-in function), 75
__pyarmor__ () (built-in function), 74

A

Activation File, 52

B

BCC Mode, 52

bootstrap () (built-in function), 72
Build Machine, 52

113

Pyarmor Documentation, Release 8.3.4

E -r, —-reset, 66
environment wvariable pyarmor—-gen command line option
LANG, 29, 73, 74, 97 —assert-call, 62
PYARMOR_CC, 68 -assert-import, 62
PYARMOR_CLI, 68 -bind-data DATA, 60
PYARMOR_HOME, 56, 68 —enable <jit,rft,bcc,themida>, 62
PYARMOR_LANG, 29, 73, 97 —enable-bcc, 62
PYARMOR_PLATFORM, 68 —enable-jit, 62
PYARMOR_RKEY, 40, 52, 64, 74 —enable-rft, 62
PYTHONPATH, 87 -enable-themida, 62

—exclude PATTERN, 58
-mix—-str, 62

G -no-wrap, 61
-obf-code <0,1,2>, 61
-obf-module <0,1>,61
H -outer, 60

-pack BUNDLE, 63

extension module, 52

Global Path, 52

Home Path, 52

- i N

Hook script,52 period N, 60
-platform NAME, 60

J -prefix PREFIX, 58
-private, 61

LT, 52 -restrict, 61

L -0 PATH, -output PATH,57

-b DEV, -bind-device DEV, 59

LANG, 29, 74,97 -e DATE, -expired DATE, 59

Local Path, 52 ~i,58
O -r, —-recursive, 58
pyarmor—-reg command line option
Outer Key, 52 -g ID, -device 1ID, 68
P -p NAME, -product NAME, 67
-u, -upgrade, 68

Platform, 52 pyarmor.cli (module), 54
Plugin script, 53 pyarmor.cli.core (module), 54
PluginName (built-in class), 70 pyarmor.cli.core.alpine (module), 54
post_build () (PluginName static method), 70 pyarmor.cli.core.android (module), 54
post_key () (PluginName static method), 70 pyarmor.cli.core.darwin (module), 54
post_runtime () (PluginName static method), 71 pyarmor.cli.core.freebsd (module), 54
Pyarmor, 53 pyarmor.cli.core.linux (module), 54
pyarmor (module), 54 pyarmor.cli.core.themida (module), 54
Pyarmor Basic, 53,98 pyarmor.cli.core.windows (module), 54
pyarmor command line option pyarmor.cli.runtime (module), 54

-home PATH[,GLOBAL[,LOCAL[,REG]]], PYARMOR_HOME, 56

55 PYARMOR_LANG, 29, 97

-d, -debug, 55 PYARMOR_RKEY, 40, 52, 64

-g, -silent,55 Python, 54
Pyarmor Group, 53,99 Python Package, 54
Pyarmor Home, 53 Python Script, 54
Pyarmor License,53 PYTHONPATH, 87
Pyarmor Package, 53
Pyarmor Pro, 54, 98 R
Pyarmor Users, 54 Registration File, 54
pyarmor-cfg command line option RFT Mode, 54

-g, —global, 66 Runtime Files, 54

—-p NAME, 66 Runtime Key, 54

114 Index

Pyarmor Documentation, Release 8.3.4

Runtime Package, 54

T

Target Device, 54

Index 115

	How the documentation is organized
	Getting help
	Table of Contents
	Tutorials
	Getting Started
	Installation
	Basic Tutorial
	Advanced Tutorial
	Customization and Extension

	How To
	Highest security and performance
	Protecting Runtime Memory Data
	Packing with outer key
	Building obfuscated wheel
	Protecting system packages
	Fix encoding error
	Removing docstring
	Work with Third-Party Libraries
	Using Pyarmor License

	References
	Concepts
	Man Page
	Building Environments
	Target Environments
	Error Messages

	Topics
	Insight Into Obfuscation
	Understanding Obfuscated Script
	Insight Into Pack Command
	Insight Into RFT Mode
	Insight Into BCC Mode
	Security and Performance
	Localization and Internationalization

	License Types
	Introduction
	License types
	Purchasing license
	Upgrading old license

	FAQ
	Asking questions in GitHub
	Segment fault in Apple
	Registering
	Packing
	License
	Purchasing
	Misc.

	Indices and tables
	Python Module Index
	Index

