
Pyarmor Documentation
Release 8.0.1

Jondy Zhao

Apr 10, 2023

Contents

1 How the documentation is organized 3

2 Getting help 5

3 Table of Contents 7
3.1 Tutorials . 7

3.1.1 Getting Started . 7
3.1.2 Installation . 13
3.1.3 Basic Obfuscation . 15
3.1.4 Advanced Tutorials . 19

3.2 How To . 23
3.2.1 Highest security and performace . 23
3.2.2 Packaging data files . 24
3.2.3 Obfuscating django app . 24
3.2.4 Building obfuscated wheel . 24
3.2.5 Packing with outer key . 24
3.2.6 Protecting system packages . 24
3.2.7 Advanced Usage . 24
3.2.8 Register Pyarmor . 24

3.3 References . 26
3.3.1 Concepts . 26
3.3.2 Man Page . 28
3.3.3 Environments . 39
3.3.4 Error Messages . 40

3.4 Topics . 42
3.4.1 Insight Into Obfuscation . 42
3.4.2 Insight Into Obfuscated Script . 42
3.4.3 Changed features by obfuscated scripts . 42
3.4.4 Localization and Internationalization . 42
3.4.5 Insight Into Pack Command . 42
3.4.6 Insight Into RFT Mode . 44
3.4.7 Insight Into BCC Mode . 44
3.4.8 Performance . 44

3.5 License Types . 44
3.5.1 Introduction . 44
3.5.2 License types . 44
3.5.3 Purchasing license . 46

i

3.5.4 Upgrading old license . 46
3.6 FAQ . 48

3.6.1 Asking Questions In Github . 48
3.6.2 Purchasing and Registration . 48

4 Indices and tables 49

Python Module Index 51

Index 53

ii

Pyarmor Documentation, Release 8.0.1

Version 8.0.1

Homepage https://pyarmor.dashingsoft.com/

Contact pyarmor@163.com

Authors Jondy

Copyright This document has been placed in the public domain.

Contents 1

https://pyarmor.dashingsoft.com/
mailto:pyarmor@163.com

Pyarmor Documentation, Release 8.0.1

2 Contents

CHAPTER 1

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s organized will help you know where to look
for certain things:

• Part 1: Tutorials takes you by the hand through a series of steps to obfuscate Python scripts and packages. Start
here if you’re new to Pyarmor. Also look at the Getting Started

• Part 2: How To guides are recipes. They guide you through the steps involved in addressing key problems and
use-cases. They are more advanced than tutorials and assume some knowledge of how Python works.

• Part 3: References guides contain key concepts, man page, configurations and other aspects of Pyarmor ma-
chinery.

• Part 4: Topics guides insight into key topics and provide useful background information and explanation. They
describe how it works and how to use it but assume that you have a basic understanding of key concepts.

• Part 5: Licneses describes EULA of Pyarmor, the different Pyarmor licenses and how to purchase Pyarmor
license.

3

Pyarmor Documentation, Release 8.0.1

4 Chapter 1. How the documentation is organized

CHAPTER 2

Getting help

Having trouble? We’d like to help!

Try the FAQ – it’s got answers to many common questions.

Looking for specific information? Try the genindex, or the detailed table of contents.

Not found anything? See asking questions in github.

Report bugs with Pyarmor in issues

5

https://pypi.python.org/pypi/pyarmor/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.0.1

6 Chapter 2. Getting help

CHAPTER 3

Table of Contents

3.1 Tutorials

3.1.1 Getting Started

New to Pyarmor? Well, you came to the right place: read this material to quickly get up and running.

Content

• What’s Pyarmor

• Installation from PyPI

• Obfuscating one script

– Distributing the obfuscated script

• Obfuscating one package

– Distributing the obfuscated package

• Expiring obfuscated scripts

• Binding obfuscated scripts to device

• Packaging obfuscated scripts

• Something need to know

• What to read next

• How the documentation is organized

7

Pyarmor Documentation, Release 8.0.1

What’s Pyarmor

Pyarmor is a command line tool used to obfuscate Python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts.

Key Features:

• The obfuscated scritpt is still a normal .py script, in most of cases the original python scripts can be replaced
with obfuscated scripts seamlessly.

• Provide many options to obfuscate the scripts to balance security and performance

• Rename functions/methods/classes/variables/arguments, irreversible obfuscation

• Convert part of Python functions to C function, irreversible obfuscation

• Bind obfuscated scripts to fixed machine or expire obfuscted scripts

• Protect obfuscated scripts by Themida (Only for Windows)

Installation from PyPI

Pyarmor packages are published on the PyPI. The preferred tool for installing packages from PyPI is pip. This tool
is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win-r and type cmd) and run the same command:

C:\> pip install -U pyarmor

After installation, type pyarmor --version on the command prompt. If everything worked fine, you will see the
version number for the Pyarmor package you just installed.

Obfuscating one script

Here it’s the simplest command to obfuscate one script foo.py:

$ pyarmor gen foo.py

The command gen could be replaced with g or generate:

$ pyarmor g foo.py
$ pyarmor generate foo.py

This command generates an obfuscated script dist/foo.py, which is a valid Python script, run it by Python inter-
preter:

$ python dist/foo.py

Check all generated files in the default output path:

$ ls dist/
... foo.py
... pyarmor_runtime_000000

There is an extra Python package pyarmor_runtime_000000, which is required to run the obfuscated script.

8 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.0.1

Distributing the obfuscated script

Only copy dist/foo.py to another machine doesn’t work, instead copy all the files in the dist/.

Why? It’s clear after checking the content of dist/foo.py:

from pyarmor_runtime_000000 import __pyarmor__
__pyarmor__(__name__, __file__, ...)

Actually the obfuscaetd script can be taken as normal Python script with dependent package pyarmor_runtime,
use it as it’s not obfuscated.

Note: The obfuscated scripts could be run by Python interpreter without Pyarmor, DO NOT install Pyarmor in the
Target Device

Obfuscating one package

Now let’s do a package. -O is used to set output path dist2 different from the default:

$ pyarmor gen -O dist2 src/mypkg

Check the output:

$ ls dist2/
... mypkg
... pyarmor_runtime_000000

$ ls dist2/mypkg/
... __init__.py

All the obfuscated scripts in the dist2/mypkg, test it:

$ cd dist2/
$ python -C 'import mypkg'

If there are sub-packages, using -r to enable recursive mode:

$ pyarmor gen -O dist2 -r src/mypkg

Distributing the obfuscated package

Also it works to copy the whole path dist2 to another machine. But it’s not convience, the better way is using -i to
generate all the required files inside package path:

$ pyarmor gen -O dist3 -r -i src/mypkg

Check the output:

$ ls dist3/
... mypkg

$ ls dist3/mypkg/

(continues on next page)

3.1. Tutorials 9

Pyarmor Documentation, Release 8.0.1

(continued from previous page)

... __init__.py

... pyarmor_runtime_000000

Now everything is in the package path dist3/mypkg, just copy the whole path to any target machine.

Note: Comparing current dist3/mypkg/__init__.py with above section dist2/mypkg/__init__.py
to understand more about obfuscated scripts

Expiring obfuscated scripts

It’s easy to set expire date for obfuscated scripts by -e. For example, generate obfuscated script with the expire date
to 30 days:

$ pyarmor gen -O dist4 -e 30 foo.py

Run the obfuscated scripts dist4/foo.py to verify it:

$ python dist4/foo.py

It checks network time, make sure your machine is connected to internet.

Let’s use another form to set past date 2020-12-31:

$ pyarmor gen -O dist4 -e 2020-12-31 foo.py

Now dist4/foo.py should not work:

$ python dist4/foo.py

If expire date has a leading ., it will check local time other than NTP server. For examples:

$ pyarmor gen -O dist4 -e .30 foo.py
$ pyarmor gen -O dist4 -e .2020-12-31 foo.py

For this form internet connection is not required in target machine.

Distributing the expired script is same as above, copy the whole directory dist4/ to target machine.

Binding obfuscated scripts to device

Suppose got target machine hardware informations:

IPv4: 128.16.4.10
Enternet Addr: 00:16:3e:35:19:3d
Hard Disk Serial Number: HXS2000CN2A

Using -e to bind hardware information to obfuscated scripts. For example, bind dist5/foo.py to enternet address:

$ pyarmor gen -O dist5 -b 00:16:3e:35:19:3d foo.py

So dist5/foo.py only could run in target machine.

It’s same to bind IPv4 and serial number of hard disk:

10 Chapter 3. Table of Contents

http://www.ntp.org

Pyarmor Documentation, Release 8.0.1

$ pyarmor gen -O dist5 -b 128.16.4.10 foo.py
$ pyarmor gen -O dist5 -b HXS2000CN2A foo.py

It’s possible to combine some of them. For example:

$ pyarmor gen -O dist5 -b "00:16:3e:35:19:3d HXS2000CN2A" foo.py

Only both enternet address and hard disk are matched machine could run this obfuscated script.

Distributing scripts bind to device is same as above, copy the whole directory dist5/ to target machine.

Packaging obfuscated scripts

Remeber again, the obfuscated script is normal Python script, use it as it’s not obfuscated.

Suppose package mypkg structure like this:

projects/
src/

mypkg/
__init__.py
utils.py
config.json

First make output path projects/dist6 for obfuscated package:

$ cd projects
$ mkdir dist6

Then copy package data files to output path:

$ cp -a src/mypkg dist6/

Next obfuscate scripts to overwrite all the .py files in dist6/mypkg:

$ pyarmor gen -O dist6 -i src/mypkg

The final output:

projects/
README.md
src/

mypkg/
__init__.py
utils.py
config.json

dist6/
mypkg/

__init__.py
utils.py
config.json
pyarmor_runtime_000000/__init__.py

Comparing with src/mypkg, the only difference is dist6/mypkg has an extra sub-package
pyarmor_runtime_000000. The last thing is packaging dist6/mypkg as your prefer way.

New to Python packaging? Refer to Python Packaging User Guide

3.1. Tutorials 11

https://packaging.python.org

Pyarmor Documentation, Release 8.0.1

Something need to know

There is binary extension module pyarmor_runtime in extra sub-package pyarmor_runtime_000000, here
it’s package content:

$ ls dist6/mypkg/pyarmor_runtime_000000
... __init__.py
... pyarmor_runtime.so

Generally using binary extensions means the obfuscated scripts require pyarmor_runtime be created for different
platforms, so they

• only works for platforms which provides pre-built binaries

• may not be compatible with different builds of CPython interpreter

• often will not work correctly with alternative interpreters such as PyPy, IronPython or Jython

For example, when obfuscating scripts by Python 3.8, they can’t be run by Python 3.7, 3.9 etc.

Another disadvantage of relying on binary extensions is that alternative import mechanisms (such as the ability to
import modules directly from zipfiles) often won’t work for extension modules (as the dynamic loading mechanisms
on most platforms can only load libraries from disk).

What to read next

There is a complete installation guide that covers all the possibilities:

• install pyarmor by source

• call pyarmor from Python script

• clean uninstallation

Next is Basic Obfuscation. It covers

• using more option to obfuscate script and package

• using outer file to store runtime key

• localizing runtime error messages

• packing obfuscated scripts and protect system packages

And then Advanced Tutorials, some of them are not available in trial pyarmor

• 2 irreversible obfuscation: RFT mode, BCC mode pyarmor-pro

• Customization error handler

• plugin and hooks

• runtime error internationalization

• cross platform, multiple platforms and multiple Python version

Also you may be instersting in this guide Highest security and performace

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s organized will help you know where to look
for certain things:

12 Chapter 3. Table of Contents

https://docs.python.org/3.11/glossary.html#term-extension-module

Pyarmor Documentation, Release 8.0.1

• Part 1: Tutorials now you’re reading.

• Part 2: How To guides are recipes. They guide you through the steps involved in addressing key problems and
use-cases. They are more advanced than tutorials and assume some knowledge of how Python works.

• Part 3: References guides contain key concepts, man page, configurations and other aspects of Pyarmor ma-
chinery.

• Part 4: Topics guides insight into key topics and provide useful background information and explanation. They
describe how it works and how to use it but assume that you have a basic understanding of key concepts.

• Part 5: Licneses describes EULA of Pyarmor, the different Pyarmor licenses and how to purchase Pyarmor
license.

Looking for specific information? Try the genindex, or the detailed table of contents.

3.1.2 Installation

Contents

• Installation from PyPI

– Installed command

– Start Pyarmor by Python interpreter

• Using virtual environments

• Installation from source

• Run Pyarmor from Python script

• Clean uninstallation

Installation from PyPI

Pyarmor packages are published on the PyPI. The preferred tool for installing packages from PyPI is pip. This tool
is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win-r and type cmd) and run the same command:

C:\> pip install -U pyarmor

After installation, type pyarmor --version on the command prompt. If everything worked fine, you will see the
version number for the Pyarmor package you just installed.

Installation from PyPI also allows you to install the latest development release. You will not generally need (or want)
to do this, but it can be useful if you see a possible bug in the latest stable release. To do this, use the --pre flag:

$ pip install -U --pre pyarmor

If you need generate obfuscated scripts to run in other platforms, install pyarmor.runtime:

3.1. Tutorials 13

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/

Pyarmor Documentation, Release 8.0.1

$ pip install pyarmor.runtime

Installed command

• pyarmor is the main command to do everything. See Man Page.

Start Pyarmor by Python interpreter

pyarmor is same as the following command:

$ python -m pyarmor.cli

Using virtual environments

When installing Pyarmor using pip, use virtual environments which could isolate the installed packages from the
system packages, thus removing the need to use administrator privileges. To create a virtual environment in the
.venv directory, use the following command:

$ python -m venv .venv

You can read more about them in the Python Packaging User Guide.

Installation from source

You can install Pyarmor directly from a clone of the Git repository. This can be done either by cloning the repo and
installing from the local clone, on simply installing directly via git:

$ git clone https://github.com/dashingsoft/pyarmor
$ cd pyarmor
$ pip install .

You can also download a snapshot of the Git repo in either tar.gz or zip format. Once downloaded and extracted, these
can be installed with pip as above.

Run Pyarmor from Python script

Create a script tool.py, pass arguments by yourself

from pyarmor.cli.__main__ import main_entry

args = ['gen', 'foo.py']
main(args)

Run it by Python interpreter:

$ python tool.py

14 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://pypi.python.org/pypi/pyarmor/
https://github.com/dashingsoft/pyarmor
https://github.com/dashingsoft/pyarmor/archive/master.tar.gz
https://github.com/dashingsoft/pyarmor/archive/master.zip

Pyarmor Documentation, Release 8.0.1

Clean uninstallation

Run the following commands to make a clean uninstallation:

$ pip uninstall pyarmor
$ rm -rf ~/.pyarmor
$ rm -rf ./.pyarmor

Note: The path ~ may be different when logging by different user. $HOME is home path of current logon user, check
the environment variable HOME to get the real path.

3.1.3 Basic Obfuscation

Contents

• More options to protect script

• More options to protect package

• Checking runtime key periodically

• Binding to many machines

• Using outer file to store runtime key

• Localization runtime error

• Packing obfuscated scripts

– Packing to one file

– Packing to one folder

We’ll assume you have Pyarmor 8.0+ installed already. You can tell Pyarmor is installed and which version by running
the following command in a shell prompt (indicated by the $ prefix):

$ pyarmor --version

If Pyarmor is installed, you should see the version of your installation. If it isn’t, you’ll get an error.

This tutorial is written for Pyarmor 8.0+, which supports Python 3.7 and later. If the Pyarmor version doesn’t match,
you can refer to the tutorial for your version of Pyarmor by using the version switcher at the bottom right corner of
this page, or update Pyarmor to the newest version.

Throughout this tutorial, assume run pyarmor in project path which includes:

project/
foo.py
queens.py
joker/

__init__.py
queens.py
config.json

Pyarmor uses pyarmor gen with rich options to obfuscate scripts to meet the needs of different applications.

3.1. Tutorials 15

Pyarmor Documentation, Release 8.0.1

Here only introduces common options in a short, using any combination of them as needed. About usage of each
option in details please refer to pyarmor gen

More options to protect script

For scripts, use these options to get more security:

$ pyarmor gen --enable-jit --mix-str --assert-call foo.py

Using --enable-jit tells Pyarmor processes some sentensive data by c function generated in runtime.

Using --mix-str1 could mix the string constant (length > 4) in the scripts.

Using --assert-call makes sure function is obfuscated, to prevent called function from being replaced by special
ways

For example,

data = "abcxyz"

def fib(n):
a, b = 0, 1
while a < n:

print(a, end=' ')
a, b = b, a+b

if __name__ == '__main__':
fib(n)

String constant abcxyz and function fib will be protected like this

data = __mix_str__(b"******")

def fib(n):
a, b = 0, 1
while a < n:

print(a, end=' ')
a, b = b, a+b

if __name__ == '__main__':
__assert_call__(fib)(n)

If function fib is obfuscated, __assert_call__(fib) returns original function fib. Otherwise it will raise
protection exception.

More options to protect package

For package, append 2 extra options:

$ pyarmor gen --enable-jit --mix-str --assert-call --assert-import --restrict joker/

Using --assert-import prevents obfsucated modules from being replaced with plain script. It checks each import
statement to make sure the modules are obfuscated.

Using --restrict makes sure the obfuscated module is only available inside package. It couldn’t be imported
from any plain script, also not be run by Python interpreter.

1 --mix-str is not available in trial version

16 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

By default __init__.py is not restricted, in order to let others use your package functions, just import them in the
__init__.py, then others could get exported functions in the public __init__.py.

In this test package, joker/__init__.py is an empty file, so module joker.queens is not exported. Let’s
check this, first create a script dist/a.py

import joker
print('import joker OK')
from joker import queens
print('import joker.queens OK')

Then run it:

$ cd dist
$ python a.py
... import joker OK
... RuntimeError: unauthorized use of script

In order to export joker.queens, edit joker/__init__.py, add one line

from joker import queens

Then do above test again, now it should work:

$ cd dist/
$ python a.py
... import joker OK
... import joker.queens OK

Checking runtime key periodically

Checking runtime key every hour:

$ pyarmor gen --period 1 foo.py

Binding to many machines

Using -b many times to bind obfuscated scripts to many machines.

For example, machine A and B, the ethernet addresses are 66:77:88:9a:cc:fa and f8:ff:c2:27:00:7f
respectively. The obfuscated script could run in both of machine A and B by this command

$ pyarmor gen -b "66:77:88:9a:cc:fa" -b "f8:ff:c2:27:00:7f" foo.py

Using outer file to store runtime key

First obfuscating script with --outer:

$ pyarmor gen --outer foo.py

In this case, it could not be run at this time:

$ python dist/foo.py

3.1. Tutorials 17

Pyarmor Documentation, Release 8.0.1

Let generate an outer runtime key valid for 3 days by this command:

$ pyarmor gen key -e 3

It generates a file dist/pyarmor.rkey, copy it to runtime package:

$ cp dist/pyarmor.rkey dist/pyarmor_runtime_000000/

Now run dist/foo.py again:

$ python dist/foo.py

Let’s generate another license valid for 10 days:

$ pyarmor gen key -O dist/key2 -e 10

$ ls dist/key2/pyarmor.rkey

Copy it to runtime package to replace the original one:

$ cp dist/key2/pyarmor.rkey dist/pyarmor_runtime_000000/

The outer runtime key file also could be saved to other paths, but the file name must be pyarmor.rkey, here list the
search order:

1. First search runtime package

2. Next search path PYARMOR_RKEY

3. Next search path sys._MEIPASS

4. Next search current path

If no found in these paths, raise runtime error and exits.

Localization runtime error

Some of runtime error messages could be customized. When something is wrong with the obfuscated scripts, it prints
your own messages.

First create messages.cfg in the path .pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

Then edit it. It’s a .ini format file, change the error messages as needed

[runtime.message]

error_1 = this license key is expired
error_2 = this license key is not for this machine
error_3 = missing license key to run the script
error_4 = unauthorized use of script

Now obfuscate the script in the current path to use customized messages:

$ pyarmor gen foo.py

If we want to show same message for all of license errors, edit it like this

18 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

[runtime.message]

error_1 = invalid license key
error_2 = invalid license key
error_3 = invalid license key

Here no error_4, it means this error uses the default message.

And then obfuscate the scripts again.

Packing obfuscated scripts

Pyarmor need PyInstaller to pack scripts first, then replace plain scripts with obfuscated ones in bundle.

Packing to one file

First packing script to one file by PyInstaller with option -F:

$ pyinstaller -F foo.py

It generates one bundle file dist/foo, pass this to pyarmor:

$ pyarmor gen -O obfdist --pack dist/foo foo.py

This command will obfuscate foo.py first, then repack dist/foo, replace the original foo.py with obfdist/
foo.py, and append all the runtime files to bundle.

The final output is still dist/foo:

$ dist/foo

Packing to one folder

First packing script to one foler by PyInstaller:

$ pyinstaller foo.py

It generates one bundle folder dist/foo, and an executable file dist/foo/foo, pass this executable to pyarmor:

$ pyarmor gen -O obfdist --pack dist/foo/foo foo.py

Like above section, dist/foo/foo will be repacked with obfuscated scripts.

Now run it:

$ dist/foo/foo

3.1.4 Advanced Tutorials

Contents

3.1. Tutorials 19

Pyarmor Documentation, Release 8.0.1

• Using rftmode pro

• Using bccmode pro

• Customization error handler

• Patching source by plugin marker

• Using hooks

• Internationalization runtime error message

• Generating cross platform scripts

• Obfuscating scripts for multiple Pythons

Using rftmode pro

RFT mode could rename most of builints, functions, classes, local variables. It equals rewritting scripts in source level.

For example, the following Python script

1 import sys
2

3 def sum2(a, b):
4 return a + b
5

6 def main(msg):
7 a = 2
8 b = 6
9 c = sum2(a, b)

10 print('%s + %s = %d' % (a, b, c))
11

12 if __name__ == '__main__':
13 main('pass: %s' % data)

will be reformed to

1 pyarmor__17 = __assert_armored__(b'\x83\xda\x03sys')
2

3 def pyarmor__22(a, b):
4 return a + b
5

6 def pyarmor__16(msg):
7 pyarmor__23 = 2
8 pyarmor__24 = 6
9 pyarmor__25 = pyarmor__22(pyarmor__23, pyarmor__24)

10 pyarmor__14('%s + %s = %d' % (pyarmor__23, pyarmor__24, pyarmor__25))
11

12 if __name__ == '__main__':
13 pyarmor__16('pass: %s' % pyarmor__20)

Using --enable-rft to enable RTF mode:

$ pyarmor gen --enable-rft foo.py

This feature is only available for Pyarmor Pro.

20 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

Using bccmode pro

BCC mode could convert most of functions and methods in the scripts to equivalent C functions, those c functions will
be comipled to machine instructions directly, then called by obfuscated scripts.

Note that the code in model level is not converted to C function.

Using --enable-bcc to enable BCC mode:

$ pyarmor gen --enable-bcc foo.py

This feature is only available for Pyarmor Pro.

Customization error handler

By default when something is wrong with obfuscated scripts, a RuntimeError with error message is raised.

If prefer to show error message only:

$ pyarmor cfg on_error=1

If prefer to quit directly without any message:

$ pyarmor cfg on_error=2

Restore the default handler:

$ pyarmor cfg on_error=0

Or reset this option:

$ pyarmor cfg --reset on_error

After the option is changed, obfuscating the script again to make it effects.

Patching source by plugin marker

Before obfuscating a script, Pyarmor scans each line, remove plugin marker plus the following one whitespace, leave
the rest as it is.

The default plugin marker is # pyarmor:, any comment line with this prefix will be as a plugin marker.

For example, these lines

print('start ...')

pyarmor: print('this is plugin code')
pyarmor: check_something()

will be changed to

print('start ...')

print('this is plugin code')
check_something()

3.1. Tutorials 21

Pyarmor Documentation, Release 8.0.1

One real case: protecting hidden imported modules

By default --assert-import could only protect modules imported by statement import, it doesn’t handle mod-
ules imported by other methods.

For example,

m = __import__('abc')

In obfuscated script, there is a builtin function __assert_armored__ could be used to check m is obfuscated. In
order to make sure m could not be replaced by others, check it manually:

m = __import__('abc')
__assert_armored__(m)

But this results in a problem, The plain script could not be run because __assert_armored__ is only available in
the obfuscated script.

The plugin marker is right solution for this case. Let’s make a little change

m = __import__('abc')
pyarmor: __assert_armored__(m)

By plugin marker, both the plain script and the obfsucated script work as expected.

Using hooks

New in version 8.1: This feature is not implemented in 8.0

Hooks is used to do some extra checks when running obfuscated scripts.

A hook is a Python script called in any of

• boot: when importing the runtime package pyarmor_runtime

• period: only called when runtime key is in period mode

• import: when imporing an obfuscated module

An example of hook script hook.py

{
'boot': '''def boot_hook(*args):
print('hello, boot hook')''',

'import': '''def import_hook(*args):
print('hello, import hook')''',

'period': '''def period_hook(*args):
print('hello, period hook')''',

}

Save it to global or local configuration path

Internationalization runtime error message

Create messages.cfg in the path .pyarmor:

22 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

It’s a .ini format file, add a section runtime.message with option languages. The language code is same as
environment variable LANG, assume we plan to support 2 languages, and only customize 2 errors:

• error_1: license is expired

• error_2: license is not for this machine

[runtime.message]

languages = zh_CN zh_TW

error_1 = invalid license
error_2 = invalid license

error_1 and error_2 is default message for any non-matched language.

Now add 2 extra sections runtime.message.zh_CN and runtime.message.zh_TW

[runtime.message.zh_CN]

error_1 =
error_2 =

[runtime.message.zh_TW]

error_1 =
error_2 =

Then obfuscate script again to make it works.

PYARMOR_LANG could be used to set runtime language. If it’s set, the obfuscated scripts ignore LANG.

Generating cross platform scripts

New in version 8.1: This feature is not implemented in 8.0

Use --platform

Obfuscating scripts for multiple Pythons

New in version 8.1: This feature is not implemented in 8.0

Use helper script merge.py

3.2 How To

3.2.1 Highest security and performace

Contents

3.2. How To 23

Pyarmor Documentation, Release 8.0.1

• Packaging data files

• Obfuscating django app

• Building obfuscated wheel

• Packing with outer key

• Protecting system packages

3.2.2 Packaging data files

3.2.3 Obfuscating django app

3.2.4 Building obfuscated wheel

3.2.5 Packing with outer key

3.2.6 Protecting system packages

New in version 8.1: This feature is not implemented in 8.0

When packing the scripts, Pyarmor could also obfuscate system packages in the bundle.

3.2.7 Advanced Usage

Contents

• Fix encoding error

Fix encoding error

Set script encoding:

$ pyarmor cfg encoding=utf-8

When customize runtime error message, set encoding of messages.cfg:

$ pyarmor cfg messages=messages.cfg:gbk

3.2.8 Register Pyarmor

Contents

• Initial Registration

– For non-profits usage

– For commercial usage

24 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

– Product name is not decided

• Registeration in other machines

• Upgrade Pyarmor from prior to 8.0

Initial Registration

First read Pyarmor License to purchase one Pyarmor License.

An activation file like pyarmor-regcode-xxxx.txt will be sent to you by email. This file is used to initial
registration.

At the first time to register Pyarmor, -p (product name) should be set. If not set, this Pyarmor license is bind to TBD,
and could not be used for commercial product.

It need internet connection for intial registration.

For non-profits usage

For internal use or any non-profits use, run this command:

$ pyarmor reg pyarmor-regcode-xxxx.txt

For commercial usage

Assume this license is used to protect your product Robot Studio, initial registration by this command:

$ pyarmor reg -p "Robot Studio" pyarmor-regcode-xxxx.txt

Pyarmor will show registration information and ask your confirmation. If everything is fine, type yes and Enter to
continue.

If initial registration is successful, it prints final license information in the console. And a registration file named
pyarmor-regfile-xxxx.zip for this license is generated in the current path at the sametime. This file is used
for next registration in other machines.

Activation file pyarmor-keycode-xxxx.txt can be uses only 10 times, after that it doesn’t work. So once initial
registration is successful, using registration file pyarmor-regfile-xxxx.zip for next registration.

Please keep this registration file carefully. If lost, Pyarmor is not responsible for keeping this license. In this case, if
continue to use Pyarmor, needs purchase new one.

Once register successfully, product name can’t be changed.

Product name is not decided

When product is in developing, and product name is not decide. Initial registration with product TBD. For example:

$ pyarmor reg -p "TBD" pyarmor-regcode-xxxx.txt

It can be changed once later, before product starts selling, the real name must be set by this command:

3.2. How To 25

Pyarmor Documentation, Release 8.0.1

$ pyarmor reg -p "Robot Studio" pyarmor-regcode-xxxx.txt

Registeration in other machines

Once initial registeration successfully, it generates registration file named pyarmor-regfile-xxxx.zip at the
same time.

Copy this file to other machines, then run the following command:

$ pyarmor reg pyarmor-regfile-xxxx.zip

It need not internet connection.

Check the registration information:

$ pyarmor -v

Upgrade Pyarmor from prior to 8.0

Refer to upgrade old license

3.3 References

3.3.1 Concepts

Activation File A text file used to initial registration Pyarmor License

When purchasing any Pyarmor License, an activation file is be sent to registration email after payment is com-
pleted.

BCC Mode An obfuscation method of Pyarmor by converting Python functions to C functions

Registration File A zip file generated after initial registration is successful. It’s used to register Pyarmor License
excpet initial registration.

Pyarmor Pyarmor is product domain, the goal is to provide functions and services to obfuscate Python scripts in high
security and high performance. The mission of Pyarmor is let Python use easily in commercial product.

Pyarmor is composed of

• Pyarmor Home

• pyarmor package

Pyarmor Basic A Pyarmor License type

Pyarmor Group A Pyarmor License type

Pyarmor Home Host in github: https://github.com/dashingsoft/pyarmor/

It serves open source part of Pyarmor, issues and documentations.

Pyarmor License Issued by Pyarmor Team to unlock some limitations in Pyarmor trial version.

Refer to Pyarmor License Types

Pyarmor Package A Python Package, it includes

26 Chapter 3. Table of Contents

https://github.com/dashingsoft/pyarmor/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.0.1

• pyarmor

• pyarmor.cli

• pyarmor.cli.core

• pyarmor.cli.runtime

Pyarmor Pro A Pyarmor License type

Python A program language.

Python Script A file that serves as an organizational unit of Python code.

Refer to https://docs.python.org/3.11/glossary.html#term-module

Python Package Refer to https://docs.python.org/3.11/glossary.html#term-package

RFT Mode An obfuscation method of Pyarmor by renaming function/class in the scripts

Runtime Files All the files required to run the obfuscated scripts.

Generally it equals Runtime Package. If outer key is used, plus this outer key file.

Runtime Key The settings of obfuscated scripts. It may include the expired date, device information of bind to
obfuscated scripts. Also include all the flags to control the behaviours of obfuscated scripts.

Generally it’s embedded into Runtime Package, but it also could be stored to a independent file outer key

Runtime Package A Python Package generally named pyarmor_runtime_000000.

When obfuscating the scripts, it’s be generated at the same time.

It’s required to run the obfuscated scripts.

Outer Key A file generally named pyarmor.rkey to store Runtime Key

The outer key file must be located in one of path

• Runtime package

• PYARMOR_RKEY

• sys._MEIPASS

• Current path

Home Path Store Pyarmor registration file, global configuration, other data file generated by pyarmor, the default
path is user home path ~/.pyarmor

Global Configuration Path Store Pyarmor global configuration file, default is config/global in the Home Path

Local Configuration Path Store Pyarmor local configuration file, default is .pyarmor in the current path

Registration File Path Store registration information of Pyarmor License, default is same as Home Path

Build Machine The device in which to install pyarmor, and to run pyarmor to generate obfuscated scripts.

Pyarmor Users Developers or organizations who use Pyarmor to obfuscate their Python scripts

Target Device In which run the obfuscated scripts distributed by Pyarmor Users, generally it’s in customer side

Platform The standard platform name defined by Pyarmor. It’s composed of os.arch.

Supported platforms list:

• Windows

– windows.x86_64

– windows.x86

3.3. References 27

https://docs.python.org/3.11/glossary.html#term-module
https://docs.python.org/3.11/glossary.html#term-package

Pyarmor Documentation, Release 8.0.1

• Many Linuxs

– linux.x86_64

– linux.x86

– linux.aarch64

– linux.armv7

• Apple Intel and Silicon

– darwin.x86_64

– darwin.aarch64

JIT Abbr. JUST-IN-TIME, just generating machine instructions in run time.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

3.3.2 Man Page

Contents

• pyarmor

• pyarmor gen

• pyarmor gen key

• pyarmor cfg

• pyarmor reg

• Environment Variables

Pyarmor is a powerful tool to obfuscate Python scripts with rich option set that provides both high-level operations
and full access to internals.

pyarmor

Syntax
pyarmor [options] <command> . . .

Options

-h, --help show available command set then quit

-v, --version show version information then quit

-q, --silent suppress all normal output ...

-d, --debug show more information in the console ...

--home PATH set Pyarmor HOME path ...

These options can be used after pyarmor but before command, here are available commands:

28 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

gen Obfuscate scripts
gen key Generate outer runtime key
cfg Show and configure environments
reg Register Pyarmor

See pyarmor <command> -h for more information on a specific command.

Description

-q, --silent
Suppress all normal output.

For example:

pyarmor -q gen foo.py

-d, --debug
Show more information in the console

When something is wrong, print more debug informations in the console. For example:

pyarmor -d gen foo.py

--home PATH[,GLOBAL[,LOCAL[,REG]]]
Set Pyarmor Home Path, Global Configuration Path, Local Configuration Path and Registration File Path

The default paths

• Home Path is ~/.pyarmor

• Global Configuration Path is ~/.pyarmor/config, it’s always relative to Home Path

• Local Configuration Path is .pyarmor

• Registration File Path is same as Home Path

All of them could be changed by this option. For example, change home path to ~/.pyarmor2:

$ pyarmor --home ~/.pyarmor2 ...

Then

• Global Configuration Path is ~/.pyarmor2/config

• Registration File Path is ~/.pyarmor2

• Local Configuration Path still is .pyarmor

Another example, keep all others but change global path only:

$ pyarmor --home ,config2 ...

This command sets Global Configuration Path to ~/.pyarmor/config2

Another example, keep all others but change local path only:

$ pyarmor --home ,,/var/myproject/ ...

This command sets Local Configuration Path to /var/myproject

Another example, set Registration File Path to /opt/pyarmor/:

3.3. References 29

Pyarmor Documentation, Release 8.0.1

$ pyarmor --home ,,,/opt/pyarmor ...

It’s useful when may use sudo to run pyarmor occassionally. This makes sure the registration file could be found
even switch to another user.

When there are many Pyarmor Licenses registerred in one machine, set each license to different Registration File Path

There are 2 solutions

The first solution, one license one home:

$ pyarmor --home ~/.pyarmor1 reg pyarmor-regfile-2051.zip
$ pyarmor --home ~/.pyarmor1 gen project1/foo.py

$ pyarmor --home ~/.pyarmor2 reg pyarmor-regfile-2052.zip
$ pyarmor --home ~/.pyarmor2 gen project2/foo.py

The second solution, same home, one license one path:

$ pyarmor --home ,,,pyarmor1 reg pyarmor-regfile-2051.zip
$ pyarmor --home ,,,pyarmor1 gen project1/foo.py

$ pyarmor --home ,,,pyarmor2 reg pyarmor-regfile-2052.zip
$ pyarmor --home ,,,pyarmor2 gen project2/foo.py

Start pyarmor with clean configuration by setting Global Configuration Path and Local Configuration Path to any
non-exists path x:

$ pyarmor --home ,x,x, gen foo.py

See also:

PYARMOR_HOME

pyarmor gen

Generate obfuscated scripts and all the required runtime files.

Syntax
pyarmor gen <options> <SCRIPT or PATH>

Options

-h, --help show option list and help information then quit

-O PATH, --output PATH output path ...

-r, --recursive search scripts in recursive mode ...

-e DATE, --expired DATE set expired date ...

-b DEV, --bind-device DEV bind obfuscated scripts to device ...

--period N check runtime key periodically ...

--outer enable outer runtime key ...

--platform NAME cross platform obfuscation ...

-i store runtime files inside package ...

--prefix PREFIX import runtime package with PREFIX ...

30 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

--obf-module <0,1> obfuscate whole module (default is 1) ...

--obf-code <0,1> obfuscate each function (default is 1) ...

--no-wrap disable wrap mode ...

--enable <jit,rft,bcc,themida> enable different obfuscation features ...

--mix-str protect string constant ...

--private enable private mode for script ...

--restrict enable restrict mode for package ...

--assert-import assert module is obfuscated ...

--assert-call assert function is obfuscated ...

--pack BUNDLE repack bundle with obfuscated scripts ...

Description

This command is used to obfuscate all the scripts and packages listed in the command line. For example:

pyarmor gen foo.py
pyarmor gen src/mypkg
pyarmor gen -r src/mypkg
pyarmor gen -r src/pkg1 src/pkg2 libs/dbpkg
pyarmor gen -r main.py src/*.py libs/utils.py libs/dbpkg

-O PATH, --output PATH

Set the output path for all the generated files, default is dist

-r, --recursive

When obfuscating package, search all scripts recursively. No this option, only the scripts in package path are obfus-
cated.

-i

When obfuscating package, store the runtime files inside package. For example:

$ pyarmor gen -r -i mypkg

The runtime package will be stored inside package dist/mypkg:

$ ls dist/
... mypkg/

$ ls dist/mypkg/
... pyarmor_runtime_000000/

Without this option, the output path is like this:

$ ls dist/
... mypkg/
... pyarmor_runtime_000000/

This option can’t be used to obfuscate script.

--prefix PREFIX

Only used when obfuscating many packages at the same time and still store the runtime package inside package.

In this case, use this option to specify which package is used to store runtime package. For example:

3.3. References 31

Pyarmor Documentation, Release 8.0.1

$ pyarmor gen --prefix mypkg src/mypkg mypkg1 mypkg2

This command tells pyarmor to store runtime package inside dist/mypkg, and make dist/mypkg1 and dist/
mypkg2 to import runtime package from mypkg.

Checking the content of .py files in output path to make it clear.

As a comparison, obfuscating 3 packages without this option:

$ pyarmor gen -O dist2 src/mypkg mypkg1 mypkg2

And check .py files in the path dist2.

-e DATE, --expired DATE
Expired date of obfuscated scripts.

It supports 4 forms:

• A number stands for valid days

• A date with iso format YYYY-MM-DD

• A leading . with above 2 forms

Without leading dot, the obfuscated scripts checks NTP server time. For example:

$ pyarmor gen -e 30 foo.py
$ pyarmor gen -e 2022-12-31 foo.py

With leading dot, it checks local time. For example:

$ pyarmor gen -e .30 foo.py
$ pyarmor gen -e .2022-12-31 foo.py

-b DEV, --bind-device DEV
Use this option multiple times to bind multiple machines

Bind obfuscated script to specified device. Now only harddisk serial number, ethernet address and IPv4 address are
available.

For example:

$ pyarmor gen -b 128.16.4.10 foo.py
$ pyarmor gen -b 52:38:6a:f2:c2:ff foo.py
$ pyarmor gen -b HXS2000CN2A foo.py

Also set 30 valid days for this device:

$ pyarmor gen -e 30 -b 128.16.4.10 foo.py

Check all of hardware informations in this device:

$ pyarmor gen -b "128.16.4.10 52:38:6a:f2:c2:ff HXS2000CN2A" foo.py

Using this options multiple times means binding many machines. For example, the following command makes the
obfuscated scripts could run 2 machiens:

$ pyarmor gen -b "52:38:6a:f2:c2:ff" -b "f8:ff:c2:27:00:7f" foo.py

In case there are more network cards, binding anyone by this form:

32 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

$ pyarmor gen -b "<2a:33:50:46:8f>" foo.py

Bind all network cards by this form:

$ pyarmor gen -b "<2a:33:50:46:8f,f0:28:69:c0:24:3a>" foo.py

In Linux, it’s possible to bind named ethernet card:

$ pyarmor gen -b "eth1/fa:33:50:46:8f:3d" foo.py

If there are many harddisks. In Windows, binding anyone by sequence no:

$ pyarmor gen -b "/0:FV994730S6LLF07AY" foo.py
$ pyarmor gen -b "/1:KDX3298FS6P5AX380" foo.py

In Linux, binding to specify name:

$ pyarmor gen -b "/dev/vda2:KDX3298FS6P5AX380" foo.py

--period N

Check Runtime Key periodically.

Support units:

• s

• m

• h

The default unit is hour, for example, the following examples are equivalent:

$ pyarmor gen --period 1 foo.py
$ pyarmor gen --period 3600s foo.py
$ pyarmor gen --period 60m foo.py
$ pyarmor gen --period 1h foo.py

Note: If the obfuscated script enters an infinite loop without call any obfuscated function, it doesn’t trigger periodic
check.

--outer
Enable outer key

It tells the obfuscated scripts find runtime key in outer file.

Once this option is specified, pyarmor gen key must be used to generate an outer key file and copy to the corresponding
path in target device. Otherwise the obfuscated scripts will complain of missing license key to run the
script

The default name of outer key is pyarmor.rkey, it can be changed by this command:

$ pyarmor cfg outer_keyname=".pyarmor.key"

By this command the name of outer key is set to .pyarmor.key.

--platform NAME
Specify target platform to run obfuscated scripts.

3.3. References 33

Pyarmor Documentation, Release 8.0.1

The name must be one of standard platform defined by Pyarmor.

It requires pyarmor.cli.runtime to get prebuilt binary libraries of other platforms.

--private
Enable private mode for scripts.

When private mode is enabled, the function name is empty in traceback. And the obfuscated scripts could not be
imported by plain script or Python interpreter.

It can’t be used with --restrict, the latter enables private mode implicitly.

--restrict
Enable restirct mode for package, do not use it to obfuscate scripts.

It enables --private implicitly, and has all the features of private mode.

When restrict mode is enabled, all the modules excpet __init__.py in the package could not be imported by plain
scripts.

For example, obfuscate a restrict package to dist/joker:

$ pyarmor gen -i --restrict joker
$ ls dist/
... joker/

Then create a plaint script dist/foo.py

import joker
print('import joker should be OK')
from joker import queens
print('import joker.queens should fail')

Run it to verify:

$ cd dist
$ python foo.py
... import joker should be OK
... RuntimeError: unauthorized use of script

If there are extra modules need to be exported, list all the modules in this command:

$ pyarmor cfg exclude_restrict_modules="__init__ queens"

Then obfuscate the package again.

--obf-module <0,1>
Enable the whole module (default is 1)

--obf-code <0,1>
Enable each function in module (default is 1)

--no-wrap
Disable wrap mode

If wrap mode is enabled, when enter a function, it’s restored. but when exit, this function will be obfuscated again.

If wrap mode is disabled, once the function is restored, it’s never be obfuscated again.

If --obf-code is 0, this option is meaningless.

--enable <jit,rft,bcc,themida>
Enable different obfuscation features.

34 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

--enable-jit

Use JIT to process some sentensive data to improve security.

--enable-rft
Enable RFT Mode to obfuscate the script pro

--enable-bcc
Enable BCC Mode to obfuscate the script pro

--enable-themida
Use Themida to protect extension module in runtime package

Only works for Windows platform.

--mix-str
Mix the string constant in scripts basic

--assert-call
Assert function is obfuscated

If this option is enabled, Pyarmor scans each function call in the scripts. If the called function is in the obfuscated
scripts, protect it as below, and leave others as it is. For example,

def fib(n):
a, b = 0, 1
return a, b

print('hello')
fib(n)

will be changed to

def fib(n):
a, b = 0, 1

print('hello')
__assert_armored__(fib)(n)

The function __assert_armored__ is a builtin function in obfuscated script. It checks the argument, if it’s an
obfuscated function, then returns this function, otherwise raises protection exception.

In this example, fib is protected, print is not.

--assert-import
Assert module is obfuscated

If this option is enabled, Pyarmor scans each import statement in the scripts. If the imported module is obfuscated,
protect it as below, and leave others as it is. For example,

import sys
import foo

will be changed to

import sys
import foo
__assert_armored__(foo)

The function __assert_armored__ is a builtin function in obfuscated script. It checks the argument, if it’s an
obfuscated module, then return this module, otherwise raises protection exception.

3.3. References 35

https://www.themida.com

Pyarmor Documentation, Release 8.0.1

This option neither touchs statement from import, nor the module imported by function __import__.

--pack BUNDLE
Repack bundle with obfuscated scripts

Here BUNDLE is an executable file generated by PyInstaller

Pyarmor just obfuscates the script first.

Then unpack the bundle.

Next replace all the .pyc in the bundle with obfuscated scripts, and append all the runtime files to the bundle.

Finally repack the bundle and overwrite the original BUNDLE.

pyarmor gen key

Generate outer key for obfuscated scripts.

Syntax
pyarmor gen key <options>

Options

-O PATH, --output PATH output path

-e DATE, --expired DATE set expired date

--period N check runtime key periodically

-b DEV, --bind-device DEV bind obfuscated scripts to device

Description

This command is used to generate outer key, the options in this command have same meaning as in the pyarmor gen.

There must be at least one of option -e or -b for outer key.

It’s invalid that outer key is neither expired nor binding to a device. For this case, don’t use outer key.

By default the outer key is saved to dist/pyarmor.rkey. For example:

$ pyarmor gen key -e 30
$ ls dist/pyarmor.rkey

Save outer key to other path by this way:

$ pyarmor gen key -O dist/mykey2 -e 10
$ ls dist/mykey2/pyarmor.rkey

By default the outer key name is pyarmor.rkey, use the following command to change outer key name to any
others. For example, sky.lic:

$ pyarmor cfg outer_keyname=sky.lic
$ pyarmor gen key -e 30
$ ls dist/sky.lic

pyarmor cfg

Configure or show Pyarmor environments

36 Chapter 3. Table of Contents

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.0.1

Syntax
pyarmor cfg <options> [OPT[=VALUE]] . . .

Options

-h, --help show this help message and exit

-p NAME private settings for special module or package

-g, --global do everything in global settings, otherwise local settings

-r, --reset reset option to default value

--encoding ENCODING specify encoding to read configuration file

Description

Run this command without arguments to show all available options:

$ pyarmor cfg

Show one exact option obf_module:

$ pyarmor cfg obf_module

Show all options which start with obf:

$ pyarmor cfg obf*

Set option to new value:

$ pyarmor cfg obf_module=0

Reset option to default:

$ pyarmor cfg -r obf_module

Change option excludes in the section finder by this form:

$ pyarmor cfg finder:excludes=ast

If no prefix finder, for example:

$ pyarmor cfg excludes=ast

Not only option excludes in section finder, but also in other sections assert.call, mix.str etc. are
changed.

-p NAME
Private settings for special module or package

All the settings is only used for specified module NAME.

-g, --global
Do everything in global settings

Without this option, all the changed settings are soted in Local Configuration Path, generally it’s .pyarmor in
the current path. By this option, everything is stored in Global Configuration Path, generally it’s ~/.pyarmor/
config/global

-r, --reset
Reset option to default value

3.3. References 37

Pyarmor Documentation, Release 8.0.1

pyarmor reg

Register Pyarmor or upgrade Pyarmor license

Syntax
pyarmor reg [OPTIONS] [FILENAME]

Options

-h, --help show this help message and exit

-p NAME, --product NAME license to this product

-u, --upgrade upgrade Pyarmor license

-y, --confirm register Pyarmor without asking for confirmation

Arguments

The FILENAME must be one of these forms:

• pyarmor-regcode-xxxx.txt got by purchasing Pyarmor license

• pyarmor-regfile-xxxx.zip got by initial registration with above file

Description

Check the registration information:

$ pyarmor -v

Show verbose information:

$ pyarmor reg

-p NAME, --product NAME
Set product name bind to license

When initial registration, use this option to set proudct name bind to license.

If no this option, the product name is set to non-profits.

It’s meanless to use this option after initial registration.

TBD is a special product name. If product name is TBD at initial registration, the product name can be changed later.

For any other product name, it can’t be changed any more.

-y, --confirm
In initial registration, without asking for confirmation

-u, --upgrade
Upgrade old license to Pyarmor 8.0 Licese

Important: Once initial registration successfully, pyarmor-regcode-xxxx.txt may not work again. Using
registration file pyarmor-regfile-xxxx.zip for next registration instead.

PLEASE BACKUP registration file pyarmor-regfile-xxxx.zip carefully, Pyarmor doesn’t provide lost-found
service

Using registration file pyarmor-regfile-xxxx.zip to register Pyarmor in other machine.

Copy it to target device, then run this command:

38 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.0.1

$ pyarmor reg pyarmor-regfile-xxxx.zip

Environment Variables

The following environment variables only used in Build Machine when generating the obfuscated scripts, not in Target
Device.

PYARMOR_HOME
Same as pyarmor --home

It mainly used in the shell scrits to change Pyarmor settings. If pyarmor --home is set, this environment var is
ignored.

PYARMOR_PLATFORM
Set the right Platform to run pyarmor

It’s mainly used in some platforms Pyarmor could not tell right but still works.

PYARMOR_CC
Specify C compiler for bccmode

PYARMOR_CLI
Only for compatible with old Pyarmor, ignore this if you don’t use old command prior to 8.0

If you do not use new commands in Pyarmor 8.0, and prefer to only use old commands, set it to 7, for example:

In Linux
export PYARMOR_CLI=7
pyarmor -h

Or
PYARMOR_CLI=7 pyarmor -h

In Windows
set PYARMOR_CLI=7
pyarmor -h

It forces command pyarmor to use old cli directly.

Without it, pyarmor first try new cli, if the command line couldn’t be parsed by new cli, fallback to old cli.

This only works for command pyarmor.

3.3.3 Environments

Building Device

Building device is to run pyarmor to geneate obfuscated scripts and all the other required files.

Supported Platforms:

• Windows

• Linux

• Darwin

Support Arches:

• x86_64

3.3. References 39

Pyarmor Documentation, Release 8.0.1

• aarch64

• i386

• aarch32

• armv7

Supported Pyton versions:

• Python 3.7 ~ Python 3.11

Command line options and environment variables are described in Man Page

Configuration files

There are 3 kinds of configuration files

• global: an ini file ~/.pyarmor/config/global

• local: an ini file .pyarmor/config

• private: each module foo may has one ini file either ~/.pyarmor/foo.rules or .pyarmor/foo.
rules

Target Device

Target device is to run the obfuscated scripts.

Support platforms, arches and Python versions are same as Building device

sys._MEIPASS

Borrowed from PyInstaller, set search path for outer key.

sys._PARLANG

It’s used to set language for runtime error message.

If it’s set, LANG is ignored.

LANG
OS environment variable, used to select language for runtime error message.

PYARMOR_LANG
It’s used to set language for runtime error message.

If it’s set, both LANG and sys._PARLANG are ignored.

PYARMOR_RKEY
Set search path for outer key

3.3.4 Error Messages

Here list all the errors when running pyarmor or obfuscated scripts.

If something is wrong, search error message here to find the reason.

If no exact error message found, most likely it’s not caused by Pyarmor, search it in google or any other search engine
to find the solution.

40 Chapter 3. Table of Contents

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.0.1

For example, someone reports error Operation did not complete successfully because the
file contains a virus or is potentially unwanted software question

It’s caused by Windows Defender, not Pyarmor. I’m sure Pyarmor is safe, but it uses some technics which let anti-
virtus tools makes wrong decision.

In most of case, the outer error is out of my control, for this example, the solutions what I thought of

1. Check documentation of Windows Defender

2. Ask question in MSDN

3. Google this error message

Building Errors

Here list all the errors when run pyarmor in building machine

• out of license

Using any feature is not avaiable in trial version or current Pyarmor License.

Refer to License Types

• not machine id

This machine is not registered, or the hardware information is changed.

Try to register Pyarmor again to fix it.

• query machine id failed

Pyarmor need query harddisk serial number or mac address, if it could not get hardware information, it com-
plains of this.

• unknown license type OLD

You purchase old license for Pyarmor 7.x, here are the latest licenses

If you prefer to use Pyarmor 7.x, please use pyarmor-7 or downgrade pyarmor to 7.7.4

If you prefer to use Pyarmor 8.0+, please refund this order if it’s still not activated:

– Email to Ordersupport@mycommerce.com with order information and ask for refund.

– Or click FindMyOrder page to submit refund request

Runtime Errors

Here list all the errors when run the obfuscated scripts

• error code out of range

• this license key is expired

• this license key is not for this machine

• missing license key to run the script

• unauthorized use of script

• this Python version is not supported

• the script doesn’t work in this system

3.3. References 41

mailto:Ordersupport@mycommerce.com

Pyarmor Documentation, Release 8.0.1

• the format of obfuscated script is incorrect

may caused by

– the obfuscated script is made by other Pyarmor version

– can not get the path of runtime package

• the format of obfuscated function is incorrect

3.4 Topics

3.4.1 Insight Into Obfuscation

3.4.2 Insight Into Obfuscated Script

3.4.3 Changed features by obfuscated scripts

3.4.4 Localization and Internationalization

3.4.5 Insight Into Pack Command

Pyarmor 8.0 has no command pack, but --pack. It could specify an executable file generated by PyInstaller:

pyinstaller foo.py
pyarmor gen --pack dist/foo/foo foo.py

If no this option, pyarmor only obfuscates the scripts.

If this option is set, pyarmor first obfuscates the scripts, then does extra work:

• Unpacking this executable to a temporary folder

• Replacing the scripts in bundle with obfuscated ones

• Appedning runtime files to the bundle in this temporary folder

• Repacking this temporary folder to an executable file and overwite the old

Packing obfuscated scripts manually

If something is wrong with --pack, or the final bundle doesn’t work, try to pack the obfuscated scripts manually.

You need know how to using PyInstaller and using spec file, if not, learn it by yourself.

Here is an example to pack script foo.py in the path /path/to/src

• First obfuscating the script by Pyarmor1:

cd /path/to/src
pyarmor gen -O obfdist -a foo.py

• Moving runtime package to current path2:
1 Do not use -i and --prefix to obfuscate the scripts
2 Just let PyInstaller could find runtime package without extra pypath

42 Chapter 3. Table of Contents

https://www.pyinstaller.org/
https://pyinstaller.org/en/stable/usage.html
https://pyinstaller.org/en/stable/spec-files.html

Pyarmor Documentation, Release 8.0.1

mv obfdist/pyarmor_runtime_000000 ./

• Already have foo.spec, appending runtime package to hiddenimports

a = Analysis(
...
hiddenimports=['pyarmor_runtime_000000'],
...

)

• Otherwise generating foo.spec by PyInstaller3:

pyi-makespec --hidden-import pyarmor_runtime_000000 foo.py

• Patching foo.spec by inserting extra code after a = Analysis

a = Analysis(
...

)

Patched by PyArmor
_src = r'/path/to/src'
_obf = r'/path/to/src/obfdist'

_count = 0
for i in range(len(a.scripts)):

if a.scripts[i][1].startswith(_src):
x = a.scripts[i][1].replace(_src, _obf)
if os.path.exists(x):

a.scripts[i] = a.scripts[i][0], x, a.scripts[i][2]
_count += 1

if _count == 0:
raise RuntimeError('No obfuscated script found')

for i in range(len(a.pure)):
if a.pure[i][1].startswith(_src):

x = a.pure[i][1].replace(_src, _obf)
if os.path.exists(x):

if hasattr(a.pure, '_code_cache'):
with open(x) as f:

a.pure._code_cache[a.pure[i][0]] = compile(f.read(), a.pure[i][1],
→˓ 'exec')

a.pure[i] = a.pure[i][0], x, a.pure[i][2]
Patch end.

pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

• Generating final bundle by this patched foo.spec:

pyinstaller foo.spec

If following this example, please

• Replacing all the /path/to/src with actual path

• Replacing all the pyarmor_runtime_000000 with actual name

3 Most of other PyInstaller options could be used here

3.4. Topics 43

Pyarmor Documentation, Release 8.0.1

notes

3.4.6 Insight Into RFT Mode

3.4.7 Insight Into BCC Mode

3.4.8 Performance

3.5 License Types

Contents

• Introduction

• License types

– License features

• Purchasing license

– Refund policy

• Upgrading old license

– Freely to Pyarmor-Basic

– With extra fee to Pyarmor-Pro

3.5.1 Introduction

This documentation is only apply to Pyarmor 8.0 plus.

Pyarmor is published as shareware, free trial version never expires, but there are some limitations:

a. Can not obfuscate big scritps1

b. Can not use feature mix-str2 to obfuscate string constant in scripts

c. Can not use RFT Mode3, BCC Mode4

d. Can not be used for any commercial product without permission

e. Can not be used to provide obfuscation service in any form

These limitations can be unlocked by different ‘License Types‘_ except last one.

3.5.2 License types

Pyarmor has 3 kind of licenses:

Pyarmor Basic Basic license could unlock big script1 and mix-str2 feature.

It requires internet connection to verify license

1 Big Script means file size exceeds a cerntain value.
2 Mix Str: obfscating string constant in script
3 RFT Mode: renaming function/class/method/variable in Python scripts
4 BCC Mode: Transforming some Python functions in scripts to c functions, compile them to machine instructions directly

44 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.0.1

Pyarmor Pro Pro license could unlock big script1 and mix-str2 feature.

Pro license also unlocks BCC Mode4 and RFT Mode3

It requires internet connection to verify license

Pyarmor Group Group license unlocks all limitions and doesn’t require internet.

Internet connection is only used to verify Pyarmor License in the build machine to generate the obfuscated scripts.

For the obfuscated scripts run in the customer’s device, Pyarmor has no any limitions, it’s totally controlled by users.
Pyarmor only cares about build machine.

Each license has an unique number, the format is pyarmor-vax-xxxxxx, which x stands for a digital.

Each product requires one License No. So any product in global also has an unique number in Pyarmor world.

If user has many products, many license are required.

One product in Pyarmor world means a product name and everything that makes up this name.

It includes all the devices to develop, build, debug, test product.

It also includes product current version, history versions and all the future versions.

One product may has several variants, each variant name is composed of product name plus feature name. As long as
the proportion of the variable part is far less than that of the common part, they’re considered as “one product”.

Pyarmor License could be installed in many machines and devices which belong to licensed product. But there is
limitation to be used at the same time.

In 24 hours only less than 100 devices can use one same Pyarmor License. Pyarmor License be used means use any
feature of Pyarmor in one machine. Running obfuscated scripts generated by Pyarmor is not considered as Pyarmor
License be used.

In details read EULA of Pyarmor

License features

Table 1: Table-1. License Features
Features Trial Basic Pro Group Remark
Basic Obfuscation Y Y Y Y 5

Expired Script Y Y Y Y 6

Bind Device Y Y Y Y 7

JIT Protection Y Y Y Y 8

Assert Protection Y Y Y Y 9

Themedia Protection Y Y Y Y 10

Big Script No Y Y Y
Mix Str No Y Y Y
RFT MODE No No Y Y
BCC MODE No No Y Y

5 Basic Obfuscation: obfuscating the scripts by default options
6 Expired Script: obfuscated scripts has expired date
7 Bind Device: obfuscated scripts only run in specified devices
8 JIT Protection: processing some sentensive data by runtime generated binary code
9 Assert Protection: preventing others from hacking obfuscated scripts

10 Themedia Protection: using Themedia to protect Widnows dlls

3.5. License Types 45

https://github.com/dashingsoft/pyarmor/blob/master/LICENSE

Pyarmor Documentation, Release 8.0.1

notes

3.5.3 Purchasing license

Open shopping cart in any web browser:

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg --buy

In the shopping cart, select License Type and complete the payment online.

Please fill regname with personal or company name when placing order.

Table 2: Table-2. License Prices
License Type Net Price($) Remark
Basic 52
Pro 89
Group 158

An activation file named pyarmor-regcode-xxxx.txt will be sent by email immediately after payment is com-
pleted successfully.

Following the guide in activation file to take the purchased license effects.

There are no additional license fees, apart from the cost of the license. And it only needs to be paid once, not
periodically

Refund policy

If activation file isn’t used, and purchasing date is in six months, refund is accepted. Please send request to
pyarmor@163.com, Pyarmor will refund the order in a week. Out of six monthes, or activation file has been used
to activate the license, refund request is not accepted.

Why no refund even if my PayPal account is hacked and someone else bought Pyarmor by this PayPal account?

Imaging you lost cash C100, someone else got it and buys a cloth, I don’t think the shopper should refund money to
you. It’s same for money in PayPal, you lost money by yourself, the shopper should not bear loss because of your
fault.

3.5.4 Upgrading old license

Not all the old license could be upgraded to latest version.

The old license could be upgraded to Pyarmor Basic freely only if it matchs these conditions:

• Following new EULA of Pyarmor

• The license no. starts with pyarmor-vax-

• The original activation file pyarmor-regcode-xxxx.txt is used not more than 100 times.

If it’s not matched, please purchase new license to use Pyarmor latest version.

Upgrading to Pyarmor Pro needs extra fees.

46 Chapter 3. Table of Contents

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051
mailto:pyarmor@163.com
https://github.com/dashingsoft/pyarmor/blob/master/LICENSE

Pyarmor Documentation, Release 8.0.1

Table 3: Table-3. Upgrade fee from old license
License Type Upgrading fee($) Remark
Basic 0 following new EULA and match some conditions
Pro 50
Group N/A

Freely to Pyarmor-Basic

First find the activation file pyarmor-regcode-xxxx.txt, which is sent to registration email when purchasing
the license.

In any build machine which has old license, first install Pyarmor 8.0+.

If no product name is set when purchasing old license, please decide which product will use this upgraded license.
According to new EULA of Pyarmor, each license is only for one product.

Assume this license will be used to obfuscate product Robot Studio, run this command:

$ pyarmor reg -u -p "Robot Studio" pyarmor-regcode-xxxx.txt

If product name has been set when purchasing old license, run this command:

$ pyarmor reg -u pyarmor-regcode-xxxx.txt

If this license is only for non-profits use, run this command as above, in this case product name will be set to TBD:

$ pyarmor reg -u pyarmor-regcode-xxxx.txt

Check the upgraded license information:

$ pyarmor -v

If old license is used by many products (mainly old personal license), only one product could be used after upgrading.
For the others, it need purchase new license.

With extra fee to Pyarmor-Pro

Open shopping cart in any web browser:

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg --buy

In the shopping cart, select Pyarmor-upgrade and complete the payment online.

An activation file named pyarmor-regcode-to-pro.txt will be sent by email immediately after payment is
completed successfully.

Following the guide in activation file to take the purchased license effects.

3.5. License Types 47

https://github.com/dashingsoft/pyarmor/blob/master/LICENSE
https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

Pyarmor Documentation, Release 8.0.1

3.6 FAQ

3.6.1 Asking Questions In Github

TBD

3.6.2 Purchasing and Registration

• Our company has a suite of products that we offer together or separately to our clients. Do we need a different
license for each of them?

Answer:

For a suite of products, if each product is different totally, for example,
a suite "Microsoft Office” includes “Microsoft Excel”, “Microsoft Word”,
each product need one license.

If a suite of products share most of Python scripts, as long as the
proportion of the variable part of each product is far less than that of the
common part, they’re considered as "one product".

If each product in a suite of products is functionally complementary, for
example, product “Editor” for editing the file, product “Viewer” for
view the file, they’re considered as “one product"

• How to refund my order?

Answer:

If this key of this order isn't activated, you can refund the order
by one of ways

1. Email to Ordersupport@mycommerce.com with order information and ask for refund.

2. Or click FindMyOrder page to submit refund request

• I want to test obfs with version 8. Of course i want to buy your great product but i want to test if it is applicable
with my current project. Is it possible to have 7 days demo?

Answer:

Sorry, Pyarmor is a small tool and only cost small money, there is no demo
license plan.

Most of features could be verified in trial version, other advanced
features, for example, mix-str, bcc mode and rft mode, could be configured
to ignore one function or one script so that all the others could work with
these advanced features.

48 Chapter 3. Table of Contents

mailto:Ordersupport@mycommerce.com
https://www.findmyorder.com/store?Action=DisplayEmailCustomerServicePage&Env=BASE&Locale=en_US&SiteID=findmyor

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

49

Pyarmor Documentation, Release 8.0.1

50 Chapter 4. Indices and tables

Python Module Index

p
pyarmor, 28
pyarmor.cli, 28
pyarmor.cli.core, 28
pyarmor.cli.runtime, 28

51

Pyarmor Documentation, Release 8.0.1

52 Python Module Index

Index

Symbols
-assert-call

pyarmor-gen command line option, 35
-assert-import

pyarmor-gen command line option, 35
-enable <jit,rft,bcc,themida>

pyarmor-gen command line option, 34
-enable-bcc

pyarmor-gen command line option, 35
-enable-jit

pyarmor-gen command line option, 34
-enable-rft

pyarmor-gen command line option, 35
-enable-themida

pyarmor-gen command line option, 35
-home PATH[,GLOBAL[,LOCAL[,REG]]]

pyarmor command line option, 29
-mix-str

pyarmor-gen command line option, 35
-no-wrap

pyarmor-gen command line option, 34
-obf-code <0,1>

pyarmor-gen command line option, 34
-obf-module <0,1>

pyarmor-gen command line option, 34
-outer

pyarmor-gen command line option, 33
-pack BUNDLE

pyarmor-gen command line option, 36
-period N

pyarmor-gen command line option, 33
-platform NAME

pyarmor-gen command line option, 33
-prefix PREFIX

pyarmor-gen command line option, 31
-private

pyarmor-gen command line option, 34
-restrict

pyarmor-gen command line option, 34

-O PATH, -output PATH
pyarmor-gen command line option, 31

-b DEV, -bind-device DEV
pyarmor-gen command line option, 32

-d, -debug
pyarmor command line option, 29

-e DATE, -expired DATE
pyarmor-gen command line option, 32

-g, -global
pyarmor-cfg command line option, 37

-i
pyarmor-gen command line option, 31

-p NAME
pyarmor-cfg command line option, 37

-p NAME, -product NAME
pyarmor-reg command line option, 38

-q, -silent
pyarmor command line option, 29

-r, -recursive
pyarmor-gen command line option, 31

-r, -reset
pyarmor-cfg command line option, 37

-u, -upgrade
pyarmor-reg command line option, 38

-y, -confirm
pyarmor-reg command line option, 38

A
Activation File, 26

B
BCC Mode, 26
Build Machine, 27

E
environment variable

LANG, 23, 40
PYARMOR_CC, 39
PYARMOR_CLI, 39
PYARMOR_HOME, 30, 39

53

Pyarmor Documentation, Release 8.0.1

PYARMOR_LANG, 23, 40
PYARMOR_PLATFORM, 39
PYARMOR_RKEY, 18, 27, 40

extension module, 28

G
Global Configuration Path, 27

H
Home Path, 27

J
JIT, 28

L
LANG, 23, 40
Local Configuration Path, 27

O
Outer Key, 27

P
Platform, 27
Pyarmor, 26
pyarmor (module), 28
Pyarmor Basic, 26, 44
pyarmor command line option

-home PATH[,GLOBAL[,LOCAL[,REG]]],
29

-d, -debug, 29
-q, -silent, 29

Pyarmor Group, 26, 45
Pyarmor Home, 26
Pyarmor License, 26
Pyarmor Package, 26
Pyarmor Pro, 27, 45
Pyarmor Users, 27
pyarmor-cfg command line option

-g, -global, 37
-p NAME, 37
-r, -reset, 37

pyarmor-gen command line option
-assert-call, 35
-assert-import, 35
-enable <jit,rft,bcc,themida>, 34
-enable-bcc, 35
-enable-jit, 34
-enable-rft, 35
-enable-themida, 35
-mix-str, 35
-no-wrap, 34
-obf-code <0,1>, 34
-obf-module <0,1>, 34
-outer, 33

-pack BUNDLE, 36
-period N, 33
-platform NAME, 33
-prefix PREFIX, 31
-private, 34
-restrict, 34
-O PATH, -output PATH, 31
-b DEV, -bind-device DEV, 32
-e DATE, -expired DATE, 32
-i, 31
-r, -recursive, 31

pyarmor-reg command line option
-p NAME, -product NAME, 38
-u, -upgrade, 38
-y, -confirm, 38

pyarmor.cli (module), 28
pyarmor.cli.core (module), 28
pyarmor.cli.runtime (module), 28
PYARMOR_HOME, 30
PYARMOR_LANG, 23
PYARMOR_RKEY, 18, 27
Python, 27
Python Package, 27
Python Script, 27

R
Registration File, 26
Registration File Path, 27
RFT Mode, 27
Runtime Files, 27
Runtime Key, 27
Runtime Package, 27

T
Target Device, 27

54 Index

	How the documentation is organized
	Getting help
	Table of Contents
	Tutorials
	Getting Started
	Installation
	Basic Obfuscation
	Advanced Tutorials

	How To
	Highest security and performace
	Packaging data files
	Obfuscating django app
	Building obfuscated wheel
	Packing with outer key
	Protecting system packages
	Advanced Usage
	Register Pyarmor

	References
	Concepts
	Man Page
	Environments
	Error Messages

	Topics
	Insight Into Obfuscation
	Insight Into Obfuscated Script
	Changed features by obfuscated scripts
	Localization and Internationalization
	Insight Into Pack Command
	Insight Into RFT Mode
	Insight Into BCC Mode
	Performance

	License Types
	Introduction
	License types
	Purchasing license
	Upgrading old license

	FAQ
	Asking Questions In Github
	Purchasing and Registration

	Indices and tables
	Python Module Index
	Index

