

Pyarmor 8.0 Documentation

	Version

	8.0.1

	Homepage

	https://pyarmor.dashingsoft.com/

	Contact

	pyarmor@163.com

	Authors

	Jondy

	Copyright

	This document has been placed in the public domain.

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s
organized will help you know where to look for certain things:

	Part 1: Tutorials takes you by the hand through a series
of steps to obfuscate Python scripts and packages. Start here if you’re
new to Pyarmor. Also look at the Getting Started

	Part 2: How To guides are recipes. They guide you through
the steps involved in addressing key problems and use-cases. They are more
advanced than tutorials and assume some knowledge of how Python works.

	Part 3: References guides contain key concepts, man page,
configurations and other aspects of Pyarmor machinery.

	Part 4: Topics guides insight into key topics and provide
useful background information and explanation. They describe how it works and
how to use it but assume that you have a basic understanding of key concepts.

	Part 5: Licneses describes EULA of Pyarmor, the different
Pyarmor licenses and how to purchase Pyarmor license.

Getting help

Having trouble? We’d like to help!

Try the FAQ – it’s got answers to many common questions.

Looking for specific information? Try the Index, or the
detailed table of contents.

Not found anything? See asking questions in github.

Report bugs with Pyarmor [https://pypi.python.org/pypi/pyarmor/] in issues [https://github.com/dashingsoft/pyarmor/issues/]

Table of Contents

	1. Tutorials
	1.1. Getting Started
	1.1.1. What’s Pyarmor

	1.1.2. Installation from PyPI

	1.1.3. Obfuscating one script

	1.1.4. Obfuscating one package

	1.1.5. Expiring obfuscated scripts

	1.1.6. Binding obfuscated scripts to device

	1.1.7. Packaging obfuscated scripts

	1.1.8. Something need to know

	1.1.9. What to read next

	1.1.10. How the documentation is organized

	1.2. Installation
	1.2.1. Installation from PyPI

	1.2.2. Using virtual environments

	1.2.3. Installation from source

	1.2.4. Run Pyarmor from Python script

	1.2.5. Clean uninstallation

	1.3. Basic Obfuscation
	1.3.1. More options to protect script

	1.3.2. More options to protect package

	1.3.3. Checking runtime key periodically

	1.3.4. Binding to many machines

	1.3.5. Using outer file to store runtime key

	1.3.6. Localization runtime error

	1.3.7. Packing obfuscated scripts

	1.4. Advanced Tutorials
	1.4.1. Using rftmode pro

	1.4.2. Using bccmode pro

	1.4.3. Customization error handler

	1.4.4. Patching source by plugin marker

	1.4.5. Using hooks

	1.4.6. Internationalization runtime error message

	1.4.7. Generating cross platform scripts

	1.4.8. Obfuscating scripts for multiple Pythons

	2. How To
	2.1. Highest security and performace

	2.2. Packaging data files

	2.3. Obfuscating django app

	2.4. Building obfuscated wheel

	2.5. Packing with outer key

	2.6. Protecting system packages

	2.7. Advanced Usage
	2.7.1. Fix encoding error

	2.8. Register Pyarmor
	2.8.1. Initial Registration

	2.8.2. Registeration in other machines

	2.8.3. Upgrade Pyarmor from prior to 8.0

	3. References
	3.1. Concepts

	3.2. Man Page
	3.2.1. pyarmor

	3.2.2. pyarmor gen

	3.2.3. pyarmor gen key

	3.2.4. pyarmor cfg

	3.2.5. pyarmor reg

	3.2.6. Environment Variables

	3.3. Environments
	3.3.1. Building Device

	3.3.2. Target Device

	3.4. Error Messages
	3.4.1. Building Errors

	3.4.2. Runtime Errors

	4. Topics
	4.1. Insight Into Obfuscation

	4.2. Insight Into Obfuscated Script

	4.3. Changed features by obfuscated scripts

	4.4. Localization and Internationalization

	4.5. Insight Into Pack Command
	4.5.1. Packing obfuscated scripts manually

	4.6. Insight Into RFT Mode

	4.7. Insight Into BCC Mode

	4.8. Performance

	5. License Types
	5.1. Introduction

	5.2. License types
	5.2.1. License features

	5.3. Purchasing license
	5.3.1. Refund policy

	5.4. Upgrading old license
	5.4.1. Freely to Pyarmor-Basic

	5.4.2. With extra fee to Pyarmor-Pro

	6. FAQ
	6.1. Asking Questions In Github

	6.2. Purchasing and Registration

Indices and tables

	Index

	Module Index

	Search Page

1. Tutorials

	1.1. Getting Started
	1.1.1. What’s Pyarmor

	1.1.2. Installation from PyPI

	1.1.3. Obfuscating one script
	1.1.3.1. Distributing the obfuscated script

	1.1.4. Obfuscating one package
	1.1.4.1. Distributing the obfuscated package

	1.1.5. Expiring obfuscated scripts

	1.1.6. Binding obfuscated scripts to device

	1.1.7. Packaging obfuscated scripts

	1.1.8. Something need to know

	1.1.9. What to read next

	1.1.10. How the documentation is organized

	1.2. Installation
	1.2.1. Installation from PyPI
	1.2.1.1. Installed command

	1.2.1.2. Start Pyarmor by Python interpreter

	1.2.2. Using virtual environments

	1.2.3. Installation from source

	1.2.4. Run Pyarmor from Python script

	1.2.5. Clean uninstallation

	1.3. Basic Obfuscation
	1.3.1. More options to protect script

	1.3.2. More options to protect package

	1.3.3. Checking runtime key periodically

	1.3.4. Binding to many machines

	1.3.5. Using outer file to store runtime key

	1.3.6. Localization runtime error

	1.3.7. Packing obfuscated scripts
	1.3.7.1. Packing to one file

	1.3.7.2. Packing to one folder

	1.4. Advanced Tutorials
	1.4.1. Using rftmode pro

	1.4.2. Using bccmode pro

	1.4.3. Customization error handler

	1.4.4. Patching source by plugin marker

	1.4.5. Using hooks

	1.4.6. Internationalization runtime error message

	1.4.7. Generating cross platform scripts

	1.4.8. Obfuscating scripts for multiple Pythons

1.1. Getting Started

New to Pyarmor? Well, you came to the right place: read this material to
quickly get up and running.

Content

	What’s Pyarmor

	Installation from PyPI

	Obfuscating one script

	Distributing the obfuscated script

	Obfuscating one package

	Distributing the obfuscated package

	Expiring obfuscated scripts

	Binding obfuscated scripts to device

	Packaging obfuscated scripts

	Something need to know

	What to read next

	How the documentation is organized

1.1.1. What’s Pyarmor

Pyarmor is a command line tool used to obfuscate Python scripts, bind
obfuscated scripts to fixed machine or expire obfuscated scripts.

Key Features:

	The obfuscated scritpt is still a normal .py script, in most of cases the
original python scripts can be replaced with obfuscated scripts seamlessly.

	Provide many options to obfuscate the scripts to balance security and performance

	Rename functions/methods/classes/variables/arguments, irreversible obfuscation

	Convert part of Python functions to C function, irreversible obfuscation

	Bind obfuscated scripts to fixed machine or expire obfuscted scripts

	Protect obfuscated scripts by Themida (Only for Windows)

1.1.2. Installation from PyPI

Pyarmor [https://pypi.python.org/pypi/pyarmor/] packages are published on the PyPI [https://pypi.python.org/pypi/]. The preferred tool for installing
packages from PyPI [https://pypi.python.org/pypi/] is pip. This tool is provided with all modern
versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win-r and type
cmd) and run the same command:

C:\> pip install -U pyarmor

After installation, type pyarmor --version on the command prompt. If
everything worked fine, you will see the version number for the Pyarmor [https://pypi.python.org/pypi/pyarmor/] package
you just installed.

1.1.3. Obfuscating one script

Here it’s the simplest command to obfuscate one script foo.py:

$ pyarmor gen foo.py

The command gen could be replaced with g or generate:

$ pyarmor g foo.py
$ pyarmor generate foo.py

This command generates an obfuscated script dist/foo.py, which is a
valid Python script, run it by Python interpreter:

$ python dist/foo.py

Check all generated files in the default output path:

$ ls dist/
... foo.py
... pyarmor_runtime_000000

There is an extra Python package pyarmor_runtime_000000, which is
required to run the obfuscated script.

1.1.3.1. Distributing the obfuscated script

Only copy dist/foo.py to another machine doesn’t work, instead copy
all the files in the dist/.

Why? It’s clear after checking the content of dist/foo.py:

from pyarmor_runtime_000000 import __pyarmor__
__pyarmor__(__name__, __file__, ...)

Actually the obfuscaetd script can be taken as normal Python script with
dependent package pyarmor_runtime, use it as it’s not obfuscated.

Note

The obfuscated scripts could be run by Python interpreter without
Pyarmor, DO NOT install Pyarmor in the Target Device

1.1.4. Obfuscating one package

Now let’s do a package. -O is used to set output path
dist2 different from the default:

$ pyarmor gen -O dist2 src/mypkg

Check the output:

$ ls dist2/
... mypkg
... pyarmor_runtime_000000

$ ls dist2/mypkg/
... __init__.py

All the obfuscated scripts in the dist2/mypkg, test it:

$ cd dist2/
$ python -C 'import mypkg'

If there are sub-packages, using -r to enable recursive mode:

$ pyarmor gen -O dist2 -r src/mypkg

1.1.4.1. Distributing the obfuscated package

Also it works to copy the whole path dist2 to another machine. But
it’s not convience, the better way is using -i to generate all
the required files inside package path:

$ pyarmor gen -O dist3 -r -i src/mypkg

Check the output:

$ ls dist3/
... mypkg

$ ls dist3/mypkg/
... __init__.py
... pyarmor_runtime_000000

Now everything is in the package path dist3/mypkg, just copy the
whole path to any target machine.

Note

Comparing current dist3/mypkg/__init__.py with above section
dist2/mypkg/__init__.py to understand more about obfuscated
scripts

1.1.5. Expiring obfuscated scripts

It’s easy to set expire date for obfuscated scripts by -e. For
example, generate obfuscated script with the expire date to 30 days:

$ pyarmor gen -O dist4 -e 30 foo.py

Run the obfuscated scripts dist4/foo.py to verify it:

$ python dist4/foo.py

It checks network time, make sure your machine is connected to internet.

Let’s use another form to set past date 2020-12-31:

$ pyarmor gen -O dist4 -e 2020-12-31 foo.py

Now dist4/foo.py should not work:

$ python dist4/foo.py

If expire date has a leading ., it will check local time other than
NTP [http://www.ntp.org] server. For examples:

$ pyarmor gen -O dist4 -e .30 foo.py
$ pyarmor gen -O dist4 -e .2020-12-31 foo.py

For this form internet connection is not required in target machine.

Distributing the expired script is same as above, copy the whole directory
dist4/ to target machine.

1.1.6. Binding obfuscated scripts to device

Suppose got target machine hardware informations:

IPv4: 128.16.4.10
Enternet Addr: 00:16:3e:35:19:3d
Hard Disk Serial Number: HXS2000CN2A

Using -e to bind hardware information to obfuscated scripts. For
example, bind dist5/foo.py to enternet address:

$ pyarmor gen -O dist5 -b 00:16:3e:35:19:3d foo.py

So dist5/foo.py only could run in target machine.

It’s same to bind IPv4 and serial number of hard disk:

$ pyarmor gen -O dist5 -b 128.16.4.10 foo.py
$ pyarmor gen -O dist5 -b HXS2000CN2A foo.py

It’s possible to combine some of them. For example:

$ pyarmor gen -O dist5 -b "00:16:3e:35:19:3d HXS2000CN2A" foo.py

Only both enternet address and hard disk are matched machine could run this
obfuscated script.

Distributing scripts bind to device is same as above, copy the whole
directory dist5/ to target machine.

1.1.7. Packaging obfuscated scripts

Remeber again, the obfuscated script is normal Python script, use it as
it’s not obfuscated.

Suppose package mypkg structure like this:

projects/
└── src/
 └── mypkg/
 ├── __init__.py
 ├── utils.py
 └── config.json

First make output path projects/dist6 for obfuscated package:

$ cd projects
$ mkdir dist6

Then copy package data files to output path:

$ cp -a src/mypkg dist6/

Next obfuscate scripts to overwrite all the .py files in
dist6/mypkg:

$ pyarmor gen -O dist6 -i src/mypkg

The final output:

projects/
├── README.md
└── src/
 └── mypkg/
 ├── __init__.py
 ├── utils.py
 └── config.json
└── dist6/
 └── mypkg/
 ├── __init__.py
 ├── utils.py
 ├── config.json
 └── pyarmor_runtime_000000/__init__.py

Comparing with src/mypkg, the only difference is dist6/mypkg
has an extra sub-package pyarmor_runtime_000000. The last thing is
packaging dist6/mypkg as your prefer way.

New to Python packaging? Refer to Python Packaging User Guide [https://packaging.python.org]

1.1.8. Something need to know

There is binary extension module [https://docs.python.org/3.11/glossary.html#term-extension-module] pyarmor_runtime in extra
sub-package pyarmor_runtime_000000, here it’s package content:

$ ls dist6/mypkg/pyarmor_runtime_000000
... __init__.py
... pyarmor_runtime.so

Generally using binary extensions means the obfuscated scripts require
pyarmor_runtime be created for different platforms, so they

	only works for platforms which provides pre-built binaries

	may not be compatible with different builds of CPython interpreter

	often will not work correctly with alternative interpreters such as PyPy,
IronPython or Jython

For example, when obfuscating scripts by Python 3.8, they can’t be run by
Python 3.7, 3.9 etc.

Another disadvantage of relying on binary extensions is that alternative
import mechanisms (such as the ability to import modules directly from
zipfiles) often won’t work for extension modules (as the dynamic loading
mechanisms on most platforms can only load libraries from disk).

1.1.9. What to read next

There is a complete installation guide that
covers all the possibilities:

	install pyarmor by source

	call pyarmor from Python script

	clean uninstallation

Next is Basic Obfuscation. It covers

	using more option to obfuscate script and package

	using outer file to store runtime key

	localizing runtime error messages

	packing obfuscated scripts and protect system packages

And then Advanced Tutorials, some of them are not available in trial pyarmor

	2 irreversible obfuscation: RFT mode, BCC mode pyarmor-pro

	Customization error handler

	plugin and hooks

	runtime error internationalization

	cross platform, multiple platforms and multiple Python version

Also you may be instersting in this guide Highest security and performace

1.1.10. How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s
organized will help you know where to look for certain things:

	Part 1: Tutorials now you’re reading.

	Part 2: How To guides are recipes. They guide you through
the steps involved in addressing key problems and use-cases. They are more
advanced than tutorials and assume some knowledge of how Python works.

	Part 3: References guides contain key concepts, man page,
configurations and other aspects of Pyarmor machinery.

	Part 4: Topics guides insight into key topics and provide
useful background information and explanation. They describe how it works and
how to use it but assume that you have a basic understanding of key concepts.

	Part 5: Licneses describes EULA of Pyarmor, the different
Pyarmor licenses and how to purchase Pyarmor license.

Looking for specific information? Try the Index, or the
detailed table of contents.

1.2. Installation

Contents

	Installation from PyPI

	Installed command

	Start Pyarmor by Python interpreter

	Using virtual environments

	Installation from source

	Run Pyarmor from Python script

	Clean uninstallation

1.2.1. Installation from PyPI

Pyarmor [https://pypi.python.org/pypi/pyarmor/] packages are published on the PyPI [https://pypi.python.org/pypi/]. The preferred tool for installing
packages from PyPI [https://pypi.python.org/pypi/] is pip. This tool is provided with all modern
versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win-r and type
cmd) and run the same command:

C:\> pip install -U pyarmor

After installation, type pyarmor --version on the command prompt. If
everything worked fine, you will see the version number for the Pyarmor [https://pypi.python.org/pypi/pyarmor/] package
you just installed.

Installation from PyPI [https://pypi.python.org/pypi/] also allows you to install the latest development
release. You will not generally need (or want) to do this, but it can be useful
if you see a possible bug in the latest stable release. To do this, use the
--pre flag:

$ pip install -U --pre pyarmor

If you need generate obfuscated scripts to run in other platforms, install
pyarmor.runtime:

$ pip install pyarmor.runtime

1.2.1.1. Installed command

	pyarmor is the main command to do everything. See Man Page.

1.2.1.2. Start Pyarmor by Python interpreter

pyarmor is same as the following command:

$ python -m pyarmor.cli

1.2.2. Using virtual environments

When installing Pyarmor [https://pypi.python.org/pypi/pyarmor/] using pip, use virtual environments which
could isolate the installed packages from the system packages, thus removing the
need to use administrator privileges. To create a virtual environment in the
.venv directory, use the following command:

$ python -m venv .venv

You can read more about them in the Python Packaging User Guide [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment].

1.2.3. Installation from source

You can install Pyarmor [https://pypi.python.org/pypi/pyarmor/] directly from a clone of the Git repository [https://github.com/dashingsoft/pyarmor]. This
can be done either by cloning the repo and installing from the local clone, on
simply installing directly via git:

$ git clone https://github.com/dashingsoft/pyarmor
$ cd pyarmor
$ pip install .

You can also download a snapshot of the Git repo in either tar.gz [https://github.com/dashingsoft/pyarmor/archive/master.tar.gz] or
zip [https://github.com/dashingsoft/pyarmor/archive/master.zip] format. Once downloaded and extracted, these can be installed with
pip as above.

1.2.4. Run Pyarmor from Python script

Create a script tool.py, pass arguments by yourself

from pyarmor.cli.__main__ import main_entry

args = ['gen', 'foo.py']
main(args)

Run it by Python interpreter:

$ python tool.py

1.2.5. Clean uninstallation

Run the following commands to make a clean uninstallation:

$ pip uninstall pyarmor
$ rm -rf ~/.pyarmor
$ rm -rf ./.pyarmor

Note

The path ~ may be different when logging by different
user. $HOME is home path of current logon user, check the
environment variable HOME to get the real path.

1.3. Basic Obfuscation

Contents

	More options to protect script

	More options to protect package

	Checking runtime key periodically

	Binding to many machines

	Using outer file to store runtime key

	Localization runtime error

	Packing obfuscated scripts

	Packing to one file

	Packing to one folder

We’ll assume you have Pyarmor 8.0+ installed already. You can tell Pyarmor is
installed and which version by running the following command in a shell prompt
(indicated by the $ prefix):

$ pyarmor --version

If Pyarmor is installed, you should see the version of your installation. If it
isn’t, you’ll get an error.

This tutorial is written for Pyarmor 8.0+, which supports Python 3.7 and
later. If the Pyarmor version doesn’t match, you can refer to the tutorial for
your version of Pyarmor by using the version switcher at the bottom right corner
of this page, or update Pyarmor to the newest version.

Throughout this tutorial, assume run pyarmor in project path which
includes:

project/
 ├── foo.py
 ├── queens.py
 └── joker/
 ├── __init__.py
 ├── queens.py
 └── config.json

Pyarmor uses pyarmor gen with rich options to obfuscate scripts to meet
the needs of different applications.

Here only introduces common options in a short, using any combination of them as
needed. About usage of each option in details please refer to pyarmor gen

1.3.1. More options to protect script

For scripts, use these options to get more security:

$ pyarmor gen --enable-jit --mix-str --assert-call foo.py

Using --enable-jit tells Pyarmor processes some sentensive data by
c function generated in runtime.

Using --mix-str 1 could mix the string constant (length > 4) in the scripts.

Using --assert-call makes sure function is obfuscated, to prevent
called function from being replaced by special ways

For example,

data = "abcxyz"

def fib(n):
 a, b = 0, 1
 while a < n:
 print(a, end=' ')
 a, b = b, a+b

if __name__ == '__main__':
 fib(n)

String constant abcxyz and function fib will be protected like this

data = __mix_str__(b"******")

def fib(n):
 a, b = 0, 1
 while a < n:
 print(a, end=' ')
 a, b = b, a+b

if __name__ == '__main__':
 __assert_call__(fib)(n)

If function fib is obfuscated, __assert_call__(fib) returns original
function fib. Otherwise it will raise protection exception.

	1

	--mix-str is not available in trial version

1.3.2. More options to protect package

For package, append 2 extra options:

$ pyarmor gen --enable-jit --mix-str --assert-call --assert-import --restrict joker/

Using --assert-import prevents obfsucated modules from being replaced
with plain script. It checks each import statement to make sure the modules are
obfuscated.

Using --restrict makes sure the obfuscated module is only available
inside package. It couldn’t be imported from any plain script, also not be run
by Python interpreter.

By default __init__.py is not restricted, in order to let others use your
package functions, just import them in the __init__.py, then others could
get exported functions in the public __init__.py.

In this test package, joker/__init__.py is an empty file, so module
joker.queens is not exported. Let’s check this, first create a script
dist/a.py

import joker
print('import joker OK')
from joker import queens
print('import joker.queens OK')

Then run it:

$ cd dist
$ python a.py
... import joker OK
... RuntimeError: unauthorized use of script

In order to export joker.queens, edit joker/__init__.py, add one
line

from joker import queens

Then do above test again, now it should work:

$ cd dist/
$ python a.py
... import joker OK
... import joker.queens OK

1.3.3. Checking runtime key periodically

Checking runtime key every hour:

$ pyarmor gen --period 1 foo.py

1.3.4. Binding to many machines

Using -b many times to bind obfuscated scripts to many machines.

For example, machine A and B, the ethernet addresses are 66:77:88:9a:cc:fa
and f8:ff:c2:27:00:7f respectively. The obfuscated script could run in both
of machine A and B by this command

$ pyarmor gen -b "66:77:88:9a:cc:fa" -b "f8:ff:c2:27:00:7f" foo.py

1.3.5. Using outer file to store runtime key

First obfuscating script with --outer:

$ pyarmor gen --outer foo.py

In this case, it could not be run at this time:

$ python dist/foo.py

Let generate an outer runtime key valid for 3 days by this command:

$ pyarmor gen key -e 3

It generates a file dist/pyarmor.rkey, copy it to runtime package:

$ cp dist/pyarmor.rkey dist/pyarmor_runtime_000000/

Now run dist/foo.py again:

$ python dist/foo.py

Let’s generate another license valid for 10 days:

$ pyarmor gen key -O dist/key2 -e 10

$ ls dist/key2/pyarmor.rkey

Copy it to runtime package to replace the original one:

$ cp dist/key2/pyarmor.rkey dist/pyarmor_runtime_000000/

The outer runtime key file also could be saved to other paths, but the file name
must be pyarmor.rkey, here list the search order:

	First search runtime package

	Next search path PYARMOR_RKEY

	Next search path sys._MEIPASS

	Next search current path

If no found in these paths, raise runtime error and exits.

1.3.6. Localization runtime error

Some of runtime error messages could be customized. When something is wrong with
the obfuscated scripts, it prints your own messages.

First create messages.cfg in the path .pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

Then edit it. It’s a .ini format file, change the error messages as needed

[runtime.message]

 error_1 = this license key is expired
 error_2 = this license key is not for this machine
 error_3 = missing license key to run the script
 error_4 = unauthorized use of script

Now obfuscate the script in the current path to use customized messages:

$ pyarmor gen foo.py

If we want to show same message for all of license errors, edit it like this

[runtime.message]

 error_1 = invalid license key
 error_2 = invalid license key
 error_3 = invalid license key

Here no error_4, it means this error uses the default message.

And then obfuscate the scripts again.

1.3.7. Packing obfuscated scripts

Pyarmor need PyInstaller to pack scripts first, then replace plain scripts with
obfuscated ones in bundle.

1.3.7.1. Packing to one file

First packing script to one file by PyInstaller with option -F:

$ pyinstaller -F foo.py

It generates one bundle file dist/foo, pass this to pyarmor:

$ pyarmor gen -O obfdist --pack dist/foo foo.py

This command will obfuscate foo.py first, then repack dist/foo, replace
the original foo.py with obfdist/foo.py, and append all the runtime
files to bundle.

The final output is still dist/foo:

$ dist/foo

1.3.7.2. Packing to one folder

First packing script to one foler by PyInstaller:

$ pyinstaller foo.py

It generates one bundle folder dist/foo, and an executable file
dist/foo/foo, pass this executable to pyarmor:

$ pyarmor gen -O obfdist --pack dist/foo/foo foo.py

Like above section, dist/foo/foo will be repacked with obfuscated scripts.

Now run it:

$ dist/foo/foo

1.4. Advanced Tutorials

Contents

	Using rftmode pro

	Using bccmode pro

	Customization error handler

	Patching source by plugin marker

	Using hooks

	Internationalization runtime error message

	Generating cross platform scripts

	Obfuscating scripts for multiple Pythons

1.4.1. Using rftmode pro

RFT mode could rename most of builints, functions, classes, local
variables. It equals rewritting scripts in source level.

For example, the following Python script

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import sys

def sum2(a, b):
 return a + b

def main(msg):
 a = 2
 b = 6
 c = sum2(a, b)
 print('%s + %s = %d' % (a, b, c))

if __name__ == '__main__':
 main('pass: %s' % data)

will be reformed to

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	pyarmor__17 = __assert_armored__(b'\x83\xda\x03sys')

def pyarmor__22(a, b):
 return a + b

def pyarmor__16(msg):
 pyarmor__23 = 2
 pyarmor__24 = 6
 pyarmor__25 = pyarmor__22(pyarmor__23, pyarmor__24)
 pyarmor__14('%s + %s = %d' % (pyarmor__23, pyarmor__24, pyarmor__25))

if __name__ == '__main__':
 pyarmor__16('pass: %s' % pyarmor__20)

Using --enable-rft to enable RTF mode:

$ pyarmor gen --enable-rft foo.py

This feature is only available for Pyarmor Pro.

1.4.2. Using bccmode pro

BCC mode could convert most of functions and methods in the scripts to
equivalent C functions, those c functions will be comipled to machine
instructions directly, then called by obfuscated scripts.

Note that the code in model level is not converted to C function.

Using --enable-bcc to enable BCC mode:

$ pyarmor gen --enable-bcc foo.py

This feature is only available for Pyarmor Pro.

1.4.3. Customization error handler

By default when something is wrong with obfuscated scripts, a RuntimeError with
error message is raised.

If prefer to show error message only:

$ pyarmor cfg on_error=1

If prefer to quit directly without any message:

$ pyarmor cfg on_error=2

Restore the default handler:

$ pyarmor cfg on_error=0

Or reset this option:

$ pyarmor cfg --reset on_error

After the option is changed, obfuscating the script again to make it effects.

1.4.4. Patching source by plugin marker

Before obfuscating a script, Pyarmor scans each line, remove plugin marker plus
the following one whitespace, leave the rest as it is.

The default plugin marker is # pyarmor:, any comment line with this prefix
will be as a plugin marker.

For example, these lines

print('start ...')

pyarmor: print('this is plugin code')
pyarmor: check_something()

will be changed to

print('start ...')

print('this is plugin code')
check_something()

One real case: protecting hidden imported modules

By default --assert-import could only protect modules imported by
statement import, it doesn’t handle modules imported by other methods.

For example,

m = __import__('abc')

In obfuscated script, there is a builtin function __assert_armored__ could
be used to check m is obfuscated. In order to make sure m could not be
replaced by others, check it manually:

m = __import__('abc')
__assert_armored__(m)

But this results in a problem, The plain script could not be run because
__assert_armored__ is only available in the obfuscated script.

The plugin marker is right solution for this case. Let’s make a little change

m = __import__('abc')
pyarmor: __assert_armored__(m)

By plugin marker, both the plain script and the obfsucated script work as
expected.

1.4.5. Using hooks

New in version 8.1: This feature is not implemented in 8.0

Hooks is used to do some extra checks when running obfuscated scripts.

A hook is a Python script called in any of

	boot: when importing the runtime package pyarmor_runtime

	period: only called when runtime key is in period mode

	import: when imporing an obfuscated module

An example of hook script hook.py

{
 'boot': '''def boot_hook(*args):
 print('hello, boot hook')''',

 'import': '''def import_hook(*args):
 print('hello, import hook')''',

 'period': '''def period_hook(*args):
 print('hello, period hook')''',
}

Save it to global or local configuration path

1.4.6. Internationalization runtime error message

Create messages.cfg in the path .pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

It’s a .ini format file, add a section runtime.message with option
languages. The language code is same as environment variable LANG,
assume we plan to support 2 languages, and only customize 2 errors:

	error_1: license is expired

	error_2: license is not for this machine

[runtime.message]

languages = zh_CN zh_TW

error_1 = invalid license
error_2 = invalid license

error_1 and error_2 is default message for any non-matched language.

Now add 2 extra sections runtime.message.zh_CN and runtime.message.zh_TW

[runtime.message.zh_CN]

error_1 = 脚本超期
error_2 = 未授权设备

[runtime.message.zh_TW]

error_1 = 腳本許可證已經過期
error_2 = 腳本許可證不可用於當前設備

Then obfuscate script again to make it works.

PYARMOR_LANG could be used to set runtime language. If it’s set, the
obfuscated scripts ignore LANG.

1.4.7. Generating cross platform scripts

New in version 8.1: This feature is not implemented in 8.0

Use --platform

1.4.8. Obfuscating scripts for multiple Pythons

New in version 8.1: This feature is not implemented in 8.0

Use helper script merge.py

2. How To

	2.1. Highest security and performace

	2.2. Packaging data files

	2.3. Obfuscating django app

	2.4. Building obfuscated wheel

	2.5. Packing with outer key

	2.6. Protecting system packages

	2.7. Advanced Usage
	2.7.1. Fix encoding error

	2.8. Register Pyarmor
	2.8.1. Initial Registration
	2.8.1.1. For non-profits usage

	2.8.1.2. For commercial usage

	2.8.1.3. Product name is not decided

	2.8.2. Registeration in other machines

	2.8.3. Upgrade Pyarmor from prior to 8.0

2.1. Highest security and performace

Contents

	Packaging data files

	Obfuscating django app

	Building obfuscated wheel

	Packing with outer key

	Protecting system packages

2.2. Packaging data files

2.3. Obfuscating django app

2.4. Building obfuscated wheel

2.5. Packing with outer key

2.6. Protecting system packages

New in version 8.1: This feature is not implemented in 8.0

When packing the scripts, Pyarmor could also obfuscate system packages in the
bundle.

2.7. Advanced Usage

Contents

	Fix encoding error

2.7.1. Fix encoding error

Set script encoding:

$ pyarmor cfg encoding=utf-8

When customize runtime error message, set encoding of messages.cfg:

$ pyarmor cfg messages=messages.cfg:gbk

2.8. Register Pyarmor

Contents

	Initial Registration

	For non-profits usage

	For commercial usage

	Product name is not decided

	Registeration in other machines

	Upgrade Pyarmor from prior to 8.0

2.8.1. Initial Registration

First read Pyarmor License to purchase one Pyarmor License.

An activation file like pyarmor-regcode-xxxx.txt will be sent
to you by email. This file is used to initial registration.

At the first time to register Pyarmor, -p (product name) should be
set. If not set, this Pyarmor license is bind to TBD, and could not be
used for commercial product.

It need internet connection for intial registration.

2.8.1.1. For non-profits usage

For internal use or any non-profits use, run this command:

$ pyarmor reg pyarmor-regcode-xxxx.txt

2.8.1.2. For commercial usage

Assume this license is used to protect your product Robot Studio, initial
registration by this command:

$ pyarmor reg -p "Robot Studio" pyarmor-regcode-xxxx.txt

Pyarmor will show registration information and ask your confirmation. If
everything is fine, type yes and Enter to continue.

If initial registration is successful, it prints final license information in
the console. And a registration file named pyarmor-regfile-xxxx.zip for
this license is generated in the current path at the sametime. This file is used
for next registration in other machines.

Activation file pyarmor-keycode-xxxx.txt can be uses only 10 times,
after that it doesn’t work. So once initial registration is successful, using
registration file pyarmor-regfile-xxxx.zip for next registration.

Please keep this registration file carefully. If lost, Pyarmor is not
responsible for keeping this license. In this case, if continue to use Pyarmor,
needs purchase new one.

Once register successfully, product name can’t be changed.

2.8.1.3. Product name is not decided

When product is in developing, and product name is not decide. Initial
registration with product TBD. For example:

$ pyarmor reg -p "TBD" pyarmor-regcode-xxxx.txt

It can be changed once later, before product starts selling, the real name must
be set by this command:

$ pyarmor reg -p "Robot Studio" pyarmor-regcode-xxxx.txt

2.8.2. Registeration in other machines

Once initial registeration successfully, it generates registration file named
pyarmor-regfile-xxxx.zip at the same time.

Copy this file to other machines, then run the following command:

$ pyarmor reg pyarmor-regfile-xxxx.zip

It need not internet connection.

Check the registration information:

$ pyarmor -v

2.8.3. Upgrade Pyarmor from prior to 8.0

Refer to upgrade old license

3. References

	3.1. Concepts

	3.2. Man Page
	3.2.1. pyarmor

	3.2.2. pyarmor gen

	3.2.3. pyarmor gen key

	3.2.4. pyarmor cfg

	3.2.5. pyarmor reg

	3.2.6. Environment Variables

	3.3. Environments
	3.3.1. Building Device
	3.3.1.1. Configuration files

	3.3.2. Target Device

	3.4. Error Messages
	3.4.1. Building Errors

	3.4.2. Runtime Errors

3.1. Concepts

	Activation File

	A text file used to initial registration Pyarmor License

When purchasing any Pyarmor License, an activation file is be sent
to registration email after payment is completed.

	BCC Mode

	An obfuscation method of Pyarmor by converting Python functions to C functions

	Registration File

	A zip file generated after initial registration is successful. It’s used to
register Pyarmor License excpet initial registration.

	Pyarmor

	Pyarmor is product domain, the goal is to provide functions
and services to obfuscate Python scripts in high security and
high performance. The mission of Pyarmor is let Python use
easily in commercial product.

Pyarmor is composed of

	Pyarmor Home

	pyarmor package

	Pyarmor Basic

	A Pyarmor License type

	Pyarmor Group

	A Pyarmor License type

	Pyarmor Home

	Host in github: https://github.com/dashingsoft/pyarmor/

It serves open source part of Pyarmor, issues [https://github.com/dashingsoft/pyarmor/issues/] and documentations.

	Pyarmor License

	Issued by Pyarmor Team to unlock some limitations in Pyarmor trial version.

Refer to Pyarmor License Types

	Pyarmor Package

	A Python Package, it includes

	pyarmor

	pyarmor.cli

	pyarmor.cli.core

	pyarmor.cli.runtime

	Pyarmor Pro

	A Pyarmor License type

	Python

	A program language.

	Python Script

	A file that serves as an organizational unit of Python code.

Refer to https://docs.python.org/3.11/glossary.html#term-module

	Python Package

	Refer to https://docs.python.org/3.11/glossary.html#term-package

	RFT Mode

	An obfuscation method of Pyarmor by renaming function/class in the scripts

	Runtime Files

	All the files required to run the obfuscated scripts.

Generally it equals Runtime Package. If outer key is used,
plus this outer key file.

	Runtime Key

	The settings of obfuscated scripts. It may include the expired date, device
information of bind to obfuscated scripts. Also include all the flags to
control the behaviours of obfuscated scripts.

Generally it’s embedded into Runtime Package, but it also could be
stored to a independent file outer key

	Runtime Package

	A Python Package generally named pyarmor_runtime_000000.

When obfuscating the scripts, it’s be generated at the same time.

It’s required to run the obfuscated scripts.

	Outer Key

	A file generally named pyarmor.rkey to store Runtime Key

The outer key file must be located in one of path

	Runtime package

	PYARMOR_RKEY

	sys._MEIPASS

	Current path

	Home Path

	Store Pyarmor registration file, global configuration, other data file
generated by pyarmor, the default path is user home path
~/.pyarmor

	Global Configuration Path

	Store Pyarmor global configuration file, default is config/global in
the Home Path

	Local Configuration Path

	Store Pyarmor local configuration file, default is .pyarmor in the
current path

	Registration File Path

	Store registration information of Pyarmor License, default is same as
Home Path

	Build Machine

	The device in which to install pyarmor, and to run pyarmor to generate
obfuscated scripts.

	Pyarmor Users

	Developers or organizations who use Pyarmor to obfuscate their Python
scripts

	Target Device

	In which run the obfuscated scripts distributed by Pyarmor Users,
generally it’s in customer side

	Platform

	The standard platform name defined by Pyarmor. It’s composed of os.arch.

Supported platforms list:

	
	Windows

	
	windows.x86_64

	windows.x86

	
	Many Linuxs

	
	linux.x86_64

	linux.x86

	linux.aarch64

	linux.armv7

	
	Apple Intel and Silicon

	
	darwin.x86_64

	darwin.aarch64

	JIT

	Abbr. JUST-IN-TIME, just generating machine instructions in run time.

	extension module

	A module written in C or C++, using Python’s C API to interact with the core
and with user code.

3.2. Man Page

Contents

	pyarmor

	pyarmor gen

	pyarmor gen key

	pyarmor cfg

	pyarmor reg

	Environment Variables

Pyarmor is a powerful tool to obfuscate Python scripts with rich option set that
provides both high-level operations and full access to internals.

3.2.1. pyarmor

	
Syntax

	pyarmor [options] <command> …

	
Options

	

	-h, --help

	show available command set then quit

	-v, --version

	show version information then quit

	-q, --silent

	suppress all normal output ...

	-d, --debug

	show more information in the console ...

	--home PATH

	set Pyarmor HOME path ...

These options can be used after pyarmor but before command, here are
available commands:

	gen

	Obfuscate scripts

	gen key

	Generate outer runtime key

	cfg

	Show and configure environments

	reg

	Register Pyarmor

See pyarmor <command> -h for more information on a specific command.

	
Description

	

	
-q, --silent

	Suppress all normal output.

For example:

pyarmor -q gen foo.py

	
-d, --debug

	Show more information in the console

When something is wrong, print more debug informations in the console. For
example:

pyarmor -d gen foo.py

	
--home PATH[,GLOBAL[,LOCAL[,REG]]]

	Set Pyarmor Home Path, Global Configuration Path,
Local Configuration Path and Registration File Path

The default paths

	Home Path is ~/.pyarmor

	Global Configuration Path is ~/.pyarmor/config, it’s always
relative to Home Path

	Local Configuration Path is .pyarmor

	Registration File Path is same as Home Path

All of them could be changed by this option. For example, change home path to
~/.pyarmor2:

$ pyarmor --home ~/.pyarmor2 ...

Then

	Global Configuration Path is ~/.pyarmor2/config

	Registration File Path is ~/.pyarmor2

	Local Configuration Path still is .pyarmor

Another example, keep all others but change global path only:

$ pyarmor --home ,config2 ...

This command sets Global Configuration Path to ~/.pyarmor/config2

Another example, keep all others but change local path only:

$ pyarmor --home ,,/var/myproject/ ...

This command sets Local Configuration Path to /var/myproject

Another example, set Registration File Path to /opt/pyarmor/:

$ pyarmor --home ,,,/opt/pyarmor ...

It’s useful when may use sudo to run pyarmor
occassionally. This makes sure the registration file could be found even switch
to another user.

When there are many Pyarmor Licenses registerred in one machine, set each
license to different Registration File Path

There are 2 solutions

The first solution, one license one home:

$ pyarmor --home ~/.pyarmor1 reg pyarmor-regfile-2051.zip
$ pyarmor --home ~/.pyarmor1 gen project1/foo.py

$ pyarmor --home ~/.pyarmor2 reg pyarmor-regfile-2052.zip
$ pyarmor --home ~/.pyarmor2 gen project2/foo.py

The second solution, same home, one license one path:

$ pyarmor --home ,,,pyarmor1 reg pyarmor-regfile-2051.zip
$ pyarmor --home ,,,pyarmor1 gen project1/foo.py

$ pyarmor --home ,,,pyarmor2 reg pyarmor-regfile-2052.zip
$ pyarmor --home ,,,pyarmor2 gen project2/foo.py

Start pyarmor with clean configuration by setting Global Configuration
Path and Local Configuration Path to any non-exists path x:

$ pyarmor --home ,x,x, gen foo.py

See also

PYARMOR_HOME

3.2.2. pyarmor gen

Generate obfuscated scripts and all the required runtime files.

	
Syntax

	pyarmor gen <options> <SCRIPT or PATH>

	
Options

	

	-h, --help

	show option list and help information then quit

	-O PATH, --output PATH

	output path ...

	-r, --recursive

	search scripts in recursive mode ...

	-e DATE, --expired DATE

	set expired date ...

	-b DEV, --bind-device DEV

	bind obfuscated scripts to device ...

	--period N

	check runtime key periodically ...

	--outer

	enable outer runtime key ...

	--platform NAME

	cross platform obfuscation ...

	-i

	store runtime files inside package ...

	--prefix PREFIX

	import runtime package with PREFIX ...

	--obf-module <0,1>

	obfuscate whole module (default is 1) ...

	--obf-code <0,1>

	obfuscate each function (default is 1) ...

	--no-wrap

	disable wrap mode ...

	--enable <jit,rft,bcc,themida>

	enable different obfuscation features ...

	--mix-str

	protect string constant ...

	--private

	enable private mode for script ...

	--restrict

	enable restrict mode for package ...

	--assert-import

	assert module is obfuscated ...

	--assert-call

	assert function is obfuscated ...

	--pack BUNDLE

	repack bundle with obfuscated scripts ...

	
Description

	

This command is used to obfuscate all the scripts and packages listed in the
command line. For example:

pyarmor gen foo.py
pyarmor gen src/mypkg
pyarmor gen -r src/mypkg
pyarmor gen -r src/pkg1 src/pkg2 libs/dbpkg
pyarmor gen -r main.py src/*.py libs/utils.py libs/dbpkg

	
-O PATH, --output PATH

	

Set the output path for all the generated files, default is dist

	
-r, --recursive

	

When obfuscating package, search all scripts recursively. No this option, only
the scripts in package path are obfuscated.

	
-i

	

When obfuscating package, store the runtime files inside package. For example:

$ pyarmor gen -r -i mypkg

The runtime package will be stored inside package dist/mypkg:

$ ls dist/
... mypkg/

$ ls dist/mypkg/
... pyarmor_runtime_000000/

Without this option, the output path is like this:

$ ls dist/
... mypkg/
... pyarmor_runtime_000000/

This option can’t be used to obfuscate script.

	
--prefix PREFIX

	

Only used when obfuscating many packages at the same time and still store the
runtime package inside package.

In this case, use this option to specify which package is used to store runtime
package. For example:

$ pyarmor gen --prefix mypkg src/mypkg mypkg1 mypkg2

This command tells pyarmor to store runtime package inside dist/mypkg, and
make dist/mypkg1 and dist/mypkg2 to import runtime package from
mypkg.

Checking the content of .py files in output path to make it clear.

As a comparison, obfuscating 3 packages without this option:

$ pyarmor gen -O dist2 src/mypkg mypkg1 mypkg2

And check .py files in the path dist2.

	
-e DATE, --expired DATE

	Expired date of obfuscated scripts.

It supports 4 forms:

	A number stands for valid days

	A date with iso format YYYY-MM-DD

	A leading . with above 2 forms

Without leading dot, the obfuscated scripts checks NTP server time. For example:

$ pyarmor gen -e 30 foo.py
$ pyarmor gen -e 2022-12-31 foo.py

With leading dot, it checks local time. For example:

$ pyarmor gen -e .30 foo.py
$ pyarmor gen -e .2022-12-31 foo.py

	
-b DEV, --bind-device DEV

	Use this option multiple times to bind multiple machines

Bind obfuscated script to specified device. Now only harddisk serial number,
ethernet address and IPv4 address are available.

For example:

$ pyarmor gen -b 128.16.4.10 foo.py
$ pyarmor gen -b 52:38:6a:f2:c2:ff foo.py
$ pyarmor gen -b HXS2000CN2A foo.py

Also set 30 valid days for this device:

$ pyarmor gen -e 30 -b 128.16.4.10 foo.py

Check all of hardware informations in this device:

$ pyarmor gen -b "128.16.4.10 52:38:6a:f2:c2:ff HXS2000CN2A" foo.py

Using this options multiple times means binding many machines. For example, the
following command makes the obfuscated scripts could run 2 machiens:

$ pyarmor gen -b "52:38:6a:f2:c2:ff" -b "f8:ff:c2:27:00:7f" foo.py

In case there are more network cards, binding anyone by this form:

$ pyarmor gen -b "<2a:33:50:46:8f>" foo.py

Bind all network cards by this form:

$ pyarmor gen -b "<2a:33:50:46:8f,f0:28:69:c0:24:3a>" foo.py

In Linux, it’s possible to bind named ethernet card:

$ pyarmor gen -b "eth1/fa:33:50:46:8f:3d" foo.py

If there are many harddisks. In Windows, binding anyone by sequence no:

$ pyarmor gen -b "/0:FV994730S6LLF07AY" foo.py
$ pyarmor gen -b "/1:KDX3298FS6P5AX380" foo.py

In Linux, binding to specify name:

$ pyarmor gen -b "/dev/vda2:KDX3298FS6P5AX380" foo.py

	
--period N

	

Check Runtime Key periodically.

Support units:

	s

	m

	h

The default unit is hour, for example, the following examples are equivalent:

$ pyarmor gen --period 1 foo.py
$ pyarmor gen --period 3600s foo.py
$ pyarmor gen --period 60m foo.py
$ pyarmor gen --period 1h foo.py

Note

If the obfuscated script enters an infinite loop without call any obfuscated
function, it doesn’t trigger periodic check.

	
--outer

	Enable outer key

It tells the obfuscated scripts find runtime key in outer file.

Once this option is specified, pyarmor gen key must be used to generate
an outer key file and copy to the corresponding path in target
device. Otherwise the obfuscated scripts will complain of missing license key
to run the script

The default name of outer key is pyarmor.rkey, it can be changed by this
command:

$ pyarmor cfg outer_keyname=".pyarmor.key"

By this command the name of outer key is set to .pyarmor.key.

	
--platform NAME

	Specify target platform to run obfuscated scripts.

The name must be one of standard platform defined by Pyarmor.

It requires pyarmor.cli.runtime to get prebuilt binary libraries of other
platforms.

	
--private

	Enable private mode for scripts.

When private mode is enabled, the function name is empty in traceback. And the
obfuscated scripts could not be imported by plain script or Python interpreter.

It can’t be used with --restrict, the latter enables private mode
implicitly.

	
--restrict

	Enable restirct mode for package, do not use it to obfuscate scripts.

It enables --private implicitly, and has all the features
of private mode.

When restrict mode is enabled, all the modules excpet __init__.py in the
package could not be imported by plain scripts.

For example, obfuscate a restrict package to dist/joker:

$ pyarmor gen -i --restrict joker
$ ls dist/
... joker/

Then create a plaint script dist/foo.py

import joker
print('import joker should be OK')
from joker import queens
print('import joker.queens should fail')

Run it to verify:

$ cd dist
$ python foo.py
... import joker should be OK
... RuntimeError: unauthorized use of script

If there are extra modules need to be exported, list all the modules in this
command:

$ pyarmor cfg exclude_restrict_modules="__init__ queens"

Then obfuscate the package again.

	
--obf-module <0,1>

	Enable the whole module (default is 1)

	
--obf-code <0,1>

	Enable each function in module (default is 1)

	
--no-wrap

	Disable wrap mode

If wrap mode is enabled, when enter a function, it’s restored. but when exit,
this function will be obfuscated again.

If wrap mode is disabled, once the function is restored, it’s never be
obfuscated again.

If --obf-code is 0, this option is meaningless.

	
--enable <jit,rft,bcc,themida>

	Enable different obfuscation features.

	
--enable-jit

	

Use JIT to process some sentensive data to improve security.

	
--enable-rft

	Enable RFT Mode to obfuscate the script pro

	
--enable-bcc

	Enable BCC Mode to obfuscate the script pro

	
--enable-themida

	Use Themida [https://www.themida.com] to protect extension module in runtime package

Only works for Windows platform.

	
--mix-str

	Mix the string constant in scripts basic

	
--assert-call

	Assert function is obfuscated

If this option is enabled, Pyarmor scans each function call in the scripts. If
the called function is in the obfuscated scripts, protect it as below, and leave
others as it is. For example,

def fib(n):
 a, b = 0, 1
 return a, b

print('hello')
fib(n)

will be changed to

def fib(n):
 a, b = 0, 1

print('hello')
__assert_armored__(fib)(n)

The function __assert_armored__ is a builtin function in obfuscated script.
It checks the argument, if it’s an obfuscated function, then returns this
function, otherwise raises protection exception.

In this example, fib is protected, print is not.

	
--assert-import

	Assert module is obfuscated

If this option is enabled, Pyarmor scans each import statement in the
scripts. If the imported module is obfuscated, protect it as below, and leave
others as it is. For example,

import sys
import foo

will be changed to

import sys
import foo
__assert_armored__(foo)

The function __assert_armored__ is a builtin function in obfuscated script.
It checks the argument, if it’s an obfuscated module, then return this module,
otherwise raises protection exception.

This option neither touchs statement from import, nor the module imported by
function __import__.

	
--pack BUNDLE

	Repack bundle with obfuscated scripts

Here BUNDLE is an executable file generated by PyInstaller [https://www.pyinstaller.org/]

Pyarmor just obfuscates the script first.

Then unpack the bundle.

Next replace all the .pyc in the bundle with obfuscated scripts, and append
all the runtime files to the bundle.

Finally repack the bundle and overwrite the original BUNDLE.

3.2.3. pyarmor gen key

Generate outer key for obfuscated scripts.

	
Syntax

	pyarmor gen key <options>

	
Options

	

	-O PATH, --output PATH

	output path

	-e DATE, --expired DATE

	set expired date

	--period N

	check runtime key periodically

	-b DEV, --bind-device DEV

	bind obfuscated scripts to device

	
Description

	

This command is used to generate outer key, the options in this command
have same meaning as in the pyarmor gen.

There must be at least one of option -e or -b for outer key.

It’s invalid that outer key is neither expired nor binding to a device. For this
case, don’t use outer key.

By default the outer key is saved to dist/pyarmor.rkey. For example:

$ pyarmor gen key -e 30
$ ls dist/pyarmor.rkey

Save outer key to other path by this way:

$ pyarmor gen key -O dist/mykey2 -e 10
$ ls dist/mykey2/pyarmor.rkey

By default the outer key name is pyarmor.rkey, use the following command to
change outer key name to any others. For example, sky.lic:

$ pyarmor cfg outer_keyname=sky.lic
$ pyarmor gen key -e 30
$ ls dist/sky.lic

3.2.4. pyarmor cfg

Configure or show Pyarmor environments

	
Syntax

	pyarmor cfg <options> [OPT[=VALUE]] …

	
Options

	

	-h, --help

	show this help message and exit

	-p NAME

	private settings for special module or package

	-g, --global

	do everything in global settings, otherwise local
settings

	-r, --reset

	reset option to default value

	--encoding ENCODING

	specify encoding to read configuration file

	
Description

	

Run this command without arguments to show all available options:

$ pyarmor cfg

Show one exact option obf_module:

$ pyarmor cfg obf_module

Show all options which start with obf:

$ pyarmor cfg obf*

Set option to new value:

$ pyarmor cfg obf_module=0

Reset option to default:

$ pyarmor cfg -r obf_module

Change option excludes in the section finder by this form:

$ pyarmor cfg finder:excludes=ast

If no prefix finder, for example:

$ pyarmor cfg excludes=ast

Not only option excludes in section finder, but also in other sections
assert.call, mix.str etc. are changed.

	
-p NAME

	Private settings for special module or package

All the settings is only used for specified module NAME.

	
-g, --global

	Do everything in global settings

Without this option, all the changed settings are soted in Local
Configuration Path, generally it’s .pyarmor in the current path. By this
option, everything is stored in Global Configuration Path, generally
it’s ~/.pyarmor/config/global

	
-r, --reset

	Reset option to default value

3.2.5. pyarmor reg

Register Pyarmor or upgrade Pyarmor license

	
Syntax

	pyarmor reg [OPTIONS] [FILENAME]

	
Options

	

	-h, --help

	show this help message and exit

	-p NAME, --product NAME

	license to this product

	-u, --upgrade

	upgrade Pyarmor license

	-y, --confirm

	register Pyarmor without asking for confirmation

	
Arguments

	

The FILENAME must be one of these forms:

	pyarmor-regcode-xxxx.txt got by purchasing Pyarmor license

	pyarmor-regfile-xxxx.zip got by initial registration with above file

	
Description

	

Check the registration information:

$ pyarmor -v

Show verbose information:

$ pyarmor reg

	
-p NAME, --product NAME

	Set product name bind to license

When initial registration, use this option to set proudct name bind to license.

If no this option, the product name is set to non-profits.

It’s meanless to use this option after initial registration.

TBD is a special product name. If product name is TBD at initial
registration, the product name can be changed later.

For any other product name, it can’t be changed any more.

	
-y, --confirm

	In initial registration, without asking for confirmation

	
-u, --upgrade

	Upgrade old license to Pyarmor 8.0 Licese

Important

Once initial registration successfully, pyarmor-regcode-xxxx.txt may
not work again. Using registration file pyarmor-regfile-xxxx.zip for
next registration instead.

PLEASE BACKUP registration file pyarmor-regfile-xxxx.zip carefully,
Pyarmor doesn’t provide lost-found service

Using registration file pyarmor-regfile-xxxx.zip to register Pyarmor in
other machine.

Copy it to target device, then run this command:

$ pyarmor reg pyarmor-regfile-xxxx.zip

3.2.6. Environment Variables

The following environment variables only used in Build Machine when
generating the obfuscated scripts, not in Target Device.

	
PYARMOR_HOME

	Same as pyarmor --home

It mainly used in the shell scrits to change Pyarmor settings. If
pyarmor --home is set, this environment var is ignored.

	
PYARMOR_PLATFORM

	Set the right Platform to run pyarmor

It’s mainly used in some platforms Pyarmor could not tell right but still works.

	
PYARMOR_CC

	Specify C compiler for bccmode

	
PYARMOR_CLI

	Only for compatible with old Pyarmor, ignore this if you don’t use
old command prior to 8.0

If you do not use new commands in Pyarmor 8.0, and prefer to only use old
commands, set it to 7, for example:

In Linux
export PYARMOR_CLI=7
pyarmor -h

Or
PYARMOR_CLI=7 pyarmor -h

In Windows
set PYARMOR_CLI=7
pyarmor -h

It forces command pyarmor to use old cli directly.

Without it, pyarmor first try new cli, if the command line couldn’t
be parsed by new cli, fallback to old cli.

This only works for command pyarmor.

3.3. Environments

3.3.1. Building Device

Building device is to run pyarmor to geneate obfuscated
scripts and all the other required files.

Supported Platforms:

	Windows

	Linux

	Darwin

Support Arches:

	x86_64

	aarch64

	i386

	aarch32

	armv7

Supported Pyton versions:

	Python 3.7 ~ Python 3.11

Command line options and environment variables are described in Man Page

3.3.1.1. Configuration files

There are 3 kinds of configuration files

	global: an ini file ~/.pyarmor/config/global

	local: an ini file .pyarmor/config

	private: each module foo may has one ini file either
~/.pyarmor/foo.rules or .pyarmor/foo.rules

3.3.2. Target Device

Target device is to run the obfuscated scripts.

Support platforms, arches and Python versions are same as Building device

sys._MEIPASS

Borrowed from PyInstaller [https://www.pyinstaller.org/], set search path for outer key.

sys._PARLANG

It’s used to set language for runtime error message.

If it’s set, LANG is ignored.

	
LANG

	OS environment variable, used to select language for runtime error
message.

	
PYARMOR_LANG

	It’s used to set language for runtime error message.

If it’s set, both LANG and sys._PARLANG are ignored.

	
PYARMOR_RKEY

	Set search path for outer key

3.4. Error Messages

Here list all the errors when running pyarmor or obfuscated scripts.

If something is wrong, search error message here to find the reason.

If no exact error message found, most likely it’s not caused by Pyarmor, search
it in google or any other search engine to find the solution.

For example, someone reports error Operation did not complete successfully
because the file contains a virus or is potentially unwanted software question

It’s caused by Windows Defender, not Pyarmor. I’m sure Pyarmor is safe, but it
uses some technics which let anti-virtus tools makes wrong decision.

In most of case, the outer error is out of my control, for this example, the
solutions what I thought of

	Check documentation of Windows Defender

	Ask question in MSDN

	Google this error message

3.4.1. Building Errors

Here list all the errors when run pyarmor in building machine

	out of license

Using any feature is not avaiable in trial version or current Pyarmor License.

Refer to License Types

	not machine id

This machine is not registered, or the hardware information is changed.

Try to register Pyarmor again to fix it.

	query machine id failed

Pyarmor need query harddisk serial number or mac address, if it could not get
hardware information, it complains of this.

	unknown license type OLD

You purchase old license for Pyarmor 7.x, here are the latest licenses

If you prefer to use Pyarmor 7.x, please use pyarmor-7 or downgrade
pyarmor to 7.7.4

If you prefer to use Pyarmor 8.0+, please refund this order if it’s still not
activated:

	Email to Ordersupport@mycommerce.com with order information and ask for
refund.

	Or click FindMyOrder page to submit refund request

3.4.2. Runtime Errors

Here list all the errors when run the obfuscated scripts

	error code out of range

	this license key is expired

	this license key is not for this machine

	missing license key to run the script

	unauthorized use of script

	this Python version is not supported

	the script doesn’t work in this system

	the format of obfuscated script is incorrect

may caused by

	the obfuscated script is made by other Pyarmor version

	can not get the path of runtime package

	the format of obfuscated function is incorrect

4. Topics

	4.1. Insight Into Obfuscation

	4.2. Insight Into Obfuscated Script

	4.3. Changed features by obfuscated scripts

	4.4. Localization and Internationalization

	4.5. Insight Into Pack Command
	4.5.1. Packing obfuscated scripts manually

	4.6. Insight Into RFT Mode

	4.7. Insight Into BCC Mode

	4.8. Performance

4.1. Insight Into Obfuscation

4.2. Insight Into Obfuscated Script

4.3. Changed features by obfuscated scripts

4.4. Localization and Internationalization

4.5. Insight Into Pack Command

Pyarmor 8.0 has no command pack, but --pack. It could specify an
executable file generated by PyInstaller [https://www.pyinstaller.org/]:

pyinstaller foo.py
pyarmor gen --pack dist/foo/foo foo.py

If no this option, pyarmor only obfuscates the scripts.

If this option is set, pyarmor first obfuscates the scripts, then does
extra work:

	Unpacking this executable to a temporary folder

	Replacing the scripts in bundle with obfuscated ones

	Appedning runtime files to the bundle in this temporary folder

	Repacking this temporary folder to an executable file and overwite the old

4.5.1. Packing obfuscated scripts manually

If something is wrong with --pack, or the final bundle doesn’t work,
try to pack the obfuscated scripts manually.

You need know how to using PyInstaller [https://pyinstaller.org/en/stable/usage.html] and using spec file [https://pyinstaller.org/en/stable/spec-files.html], if not,
learn it by yourself.

Here is an example to pack script foo.py in the path /path/to/src

	First obfuscating the script by Pyarmor 1:

cd /path/to/src
pyarmor gen -O obfdist -a foo.py

	Moving runtime package to current path 2:

mv obfdist/pyarmor_runtime_000000 ./

	Already have foo.spec, appending runtime package to hiddenimports

a = Analysis(
 ...
 hiddenimports=['pyarmor_runtime_000000'],
 ...
)

	Otherwise generating foo.spec by PyInstaller 3:

pyi-makespec --hidden-import pyarmor_runtime_000000 foo.py

	Patching foo.spec by inserting extra code after a = Analysis

a = Analysis(
 ...
)

Patched by PyArmor
_src = r'/path/to/src'
_obf = r'/path/to/src/obfdist'

_count = 0
for i in range(len(a.scripts)):
 if a.scripts[i][1].startswith(_src):
 x = a.scripts[i][1].replace(_src, _obf)
 if os.path.exists(x):
 a.scripts[i] = a.scripts[i][0], x, a.scripts[i][2]
 _count += 1
if _count == 0:
 raise RuntimeError('No obfuscated script found')

for i in range(len(a.pure)):
 if a.pure[i][1].startswith(_src):
 x = a.pure[i][1].replace(_src, _obf)
 if os.path.exists(x):
 if hasattr(a.pure, '_code_cache'):
 with open(x) as f:
 a.pure._code_cache[a.pure[i][0]] = compile(f.read(), a.pure[i][1], 'exec')
 a.pure[i] = a.pure[i][0], x, a.pure[i][2]
Patch end.

pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

	Generating final bundle by this patched foo.spec:

pyinstaller foo.spec

If following this example, please

	Replacing all the /path/to/src with actual path

	Replacing all the pyarmor_runtime_000000 with actual name

notes

	1

	Do not use -i and --prefix to obfuscate the scripts

	2

	Just let PyInstaller could find runtime package without extra pypath

	3

	Most of other PyInstaller options could be used here

4.6. Insight Into RFT Mode

4.7. Insight Into BCC Mode

4.8. Performance

5. License Types

Contents

	Introduction

	License types

	License features

	Purchasing license

	Refund policy

	Upgrading old license

	Freely to Pyarmor-Basic

	With extra fee to Pyarmor-Pro

5.1. Introduction

This documentation is only apply to Pyarmor [https://pypi.python.org/pypi/pyarmor/] 8.0 plus.

Pyarmor is published as shareware, free trial version never expires, but there
are some limitations:

	Can not obfuscate big scritps 1

	Can not use feature mix-str 2 to obfuscate string constant in scripts

	Can not use RFT Mode 3, BCC Mode 4

	Can not be used for any commercial product without permission

	Can not be used to provide obfuscation service in any form

These limitations can be unlocked by different `License Types`_ except last one.

5.2. License types

Pyarmor has 3 kind of licenses:

	Pyarmor Basic

	Basic license could unlock big script 1 and mix-str 2 feature.

It requires internet connection to verify license

	Pyarmor Pro

	Pro license could unlock big script 1 and mix-str 2 feature.

Pro license also unlocks BCC Mode 4 and RFT Mode 3

It requires internet connection to verify license

	Pyarmor Group

	Group license unlocks all limitions and doesn’t require internet.

Internet connection is only used to verify Pyarmor License in the build machine
to generate the obfuscated scripts.

For the obfuscated scripts run in the customer’s device, Pyarmor has no any
limitions, it’s totally controlled by users. Pyarmor only cares about build
machine.

Each license has an unique number, the format is pyarmor-vax-xxxxxx, which x
stands for a digital.

Each product requires one License No. So any product in global also has an
unique number in Pyarmor world.

If user has many products, many license are required.

One product in Pyarmor world means a product name and everything that makes up
this name.

It includes all the devices to develop, build, debug, test product.

It also includes product current version, history versions and all the future
versions.

One product may has several variants, each variant name is composed of product
name plus feature name. As long as the proportion of the variable part is far
less than that of the common part, they’re considered as “one product”.

Pyarmor License could be installed in many machines and devices which belong to
licensed product. But there is limitation to be used at the same time.

In 24 hours only less than 100 devices can use one same Pyarmor License. Pyarmor
License be used means use any feature of Pyarmor in one machine. Running
obfuscated scripts generated by Pyarmor is not considered as Pyarmor License be
used.

In details read EULA of Pyarmor [https://github.com/dashingsoft/pyarmor/blob/master/LICENSE]

5.2.1. License features

Table-1. License Features

	Features

	Trial

	Basic

	Pro

	Group

	Remark

	Basic Obfuscation

	Y

	Y

	Y

	Y

	5

	Expired Script

	Y

	Y

	Y

	Y

	6

	Bind Device

	Y

	Y

	Y

	Y

	7

	JIT Protection

	Y

	Y

	Y

	Y

	8

	Assert Protection

	Y

	Y

	Y

	Y

	9

	Themedia Protection

	Y

	Y

	Y

	Y

	10

	Big Script

	No

	Y

	Y

	Y

	

	Mix Str

	No

	Y

	Y

	Y

	

	RFT MODE

	No

	No

	Y

	Y

	

	BCC MODE

	No

	No

	Y

	Y

	

notes

	1(1,2,3)

	Big Script means file size exceeds a cerntain value.

	2(1,2,3)

	Mix Str: obfscating string constant in script

	3(1,2)

	RFT Mode: renaming function/class/method/variable in Python scripts

	4(1,2)

	BCC Mode: Transforming some Python functions in scripts to c functions,
compile them to machine instructions directly

	5

	Basic Obfuscation: obfuscating the scripts by default options

	6

	Expired Script: obfuscated scripts has expired date

	7

	Bind Device: obfuscated scripts only run in specified devices

	8

	JIT Protection: processing some sentensive data by runtime generated
binary code

	9

	Assert Protection: preventing others from hacking obfuscated scripts

	10

	Themedia Protection: using Themedia to protect Widnows dlls

5.3. Purchasing license

Open shopping cart in any web browser:

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg --buy

In the shopping cart, select License Type and complete the payment online.

Please fill regname with personal or company name when placing order.

Table-2. License Prices

	License Type

	Net Price($)

	Remark

	Basic

	52

	

	Pro

	89

	

	Group

	158

	

An activation file named pyarmor-regcode-xxxx.txt will be sent by email
immediately after payment is completed successfully.

Following the guide in activation file to take the purchased license effects.

There are no additional license fees, apart from the cost of the license. And it
only needs to be paid once, not periodically

5.3.1. Refund policy

If activation file isn’t used, and purchasing date is in six months, refund is
accepted. Please send request to pyarmor@163.com, Pyarmor will refund the order in a
week. Out of six monthes, or activation file has been used to activate the
license, refund request is not accepted.

Why no refund even if my PayPal account is hacked and someone else bought
Pyarmor by this PayPal account?

Imaging you lost cash €100, someone else got it and buys a cloth, I don’t think
the shopper should refund money to you. It’s same for money in PayPal, you lost
money by yourself, the shopper should not bear loss because of your fault.

5.4. Upgrading old license

Not all the old license could be upgraded to latest version.

The old license could be upgraded to Pyarmor Basic freely only if it matchs
these conditions:

	Following new EULA of Pyarmor [https://github.com/dashingsoft/pyarmor/blob/master/LICENSE]

	The license no. starts with pyarmor-vax-

	The original activation file pyarmor-regcode-xxxx.txt is used not more
than 100 times.

If it’s not matched, please purchase new license to use Pyarmor latest version.

Upgrading to Pyarmor Pro needs extra fees.

Table-3. Upgrade fee from old license

	License Type

	Upgrading fee($)

	Remark

	Basic

	0

	following new EULA and match some conditions

	Pro

	50

	

	Group

	N/A

	

5.4.1. Freely to Pyarmor-Basic

First find the activation file pyarmor-regcode-xxxx.txt, which is sent
to registration email when purchasing the license.

In any build machine which has old license, first install Pyarmor 8.0+.

If no product name is set when purchasing old license, please decide which
product will use this upgraded license. According to new EULA of Pyarmor [https://github.com/dashingsoft/pyarmor/blob/master/LICENSE],
each license is only for one product.

Assume this license will be used to obfuscate product Robot Studio, run this
command:

$ pyarmor reg -u -p "Robot Studio" pyarmor-regcode-xxxx.txt

If product name has been set when purchasing old license, run this command:

$ pyarmor reg -u pyarmor-regcode-xxxx.txt

If this license is only for non-profits use, run this command as above, in this
case product name will be set to TBD:

$ pyarmor reg -u pyarmor-regcode-xxxx.txt

Check the upgraded license information:

$ pyarmor -v

If old license is used by many products (mainly old personal license), only one
product could be used after upgrading. For the others, it need purchase new
license.

5.4.2. With extra fee to Pyarmor-Pro

Open shopping cart in any web browser:

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg --buy

In the shopping cart, select Pyarmor-upgrade and complete the payment online.

An activation file named pyarmor-regcode-to-pro.txt will be sent by email
immediately after payment is completed successfully.

Following the guide in activation file to take the purchased license effects.

6. FAQ

6.1. Asking Questions In Github

TBD

6.2. Purchasing and Registration

	Our company has a suite of products that we offer together or separately to
our clients. Do we need a different license for each of them?

Answer:

For a suite of products, if each product is different totally, for example,
a suite "Microsoft Office” includes “Microsoft Excel”, “Microsoft Word”,
each product need one license.

If a suite of products share most of Python scripts, as long as the
proportion of the variable part of each product is far less than that of the
common part, they’re considered as "one product".

If each product in a suite of products is functionally complementary, for
example, product “Editor” for editing the file, product “Viewer” for
view the file, they’re considered as “one product"

	How to refund my order?

Answer:

If this key of this order isn't activated, you can refund the order
by one of ways

	Email to Ordersupport@mycommerce.com with order information and ask for
refund.

	Or click FindMyOrder page [https://www.findmyorder.com/store?Action=DisplayEmailCustomerServicePage&Env=BASE&Locale=en_US&SiteID=findmyor] to submit refund request

	I want to test obfs with version 8. Of course i want to buy your great product
but i want to test if it is applicable with my current project. Is it possible
to have 7 days demo?

Answer:

Sorry, Pyarmor is a small tool and only cost small money, there is no demo
license plan.

Most of features could be verified in trial version, other advanced
features, for example, mix-str, bcc mode and rft mode, could be configured
to ignore one function or one script so that all the others could work with
these advanced features.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyarmor	
 A command line tool used to obfuscate Python scripts

 	
 	
 pyarmor.cli	

 	
 	
 pyarmor.cli.core	
 A binary wheel to provide extension modules to pyarmor

 	
 	
 pyarmor.cli.runtime	
 A binary wheel for pyarmor to obfuscate scripts to run
in multiple arches.

Index

 Symbols
 | A
 | B
 | E
 | G
 | H
 | J
 | L
 | O
 | P
 | R
 | T

Symbols

 	
 	
 --assert-call

 	pyarmor-gen command line option

 	
 --assert-import

 	pyarmor-gen command line option

 	
 --enable <jit,rft,bcc,themida>

 	pyarmor-gen command line option

 	
 --enable-bcc

 	pyarmor-gen command line option

 	
 --enable-jit

 	pyarmor-gen command line option

 	
 --enable-rft

 	pyarmor-gen command line option

 	
 --enable-themida

 	pyarmor-gen command line option

 	
 --home PATH[,GLOBAL[,LOCAL[,REG]]]

 	pyarmor command line option

 	
 --mix-str

 	pyarmor-gen command line option

 	
 --no-wrap

 	pyarmor-gen command line option

 	
 --obf-code <0,1>

 	pyarmor-gen command line option

 	
 --obf-module <0,1>

 	pyarmor-gen command line option

 	
 --outer

 	pyarmor-gen command line option

 	
 --pack BUNDLE

 	pyarmor-gen command line option

 	
 --period N

 	pyarmor-gen command line option

 	
 --platform NAME

 	pyarmor-gen command line option

 	
 	
 --prefix PREFIX

 	pyarmor-gen command line option

 	
 --private

 	pyarmor-gen command line option

 	
 --restrict

 	pyarmor-gen command line option

 	
 -b DEV, --bind-device DEV

 	pyarmor-gen command line option

 	
 -d, --debug

 	pyarmor command line option

 	
 -e DATE, --expired DATE

 	pyarmor-gen command line option

 	
 -g, --global

 	pyarmor-cfg command line option

 	
 -i

 	pyarmor-gen command line option

 	
 -O PATH, --output PATH

 	pyarmor-gen command line option

 	
 -p NAME

 	pyarmor-cfg command line option

 	
 -p NAME, --product NAME

 	pyarmor-reg command line option

 	
 -q, --silent

 	pyarmor command line option

 	
 -r, --recursive

 	pyarmor-gen command line option

 	
 -r, --reset

 	pyarmor-cfg command line option

 	
 -u, --upgrade

 	pyarmor-reg command line option

 	
 -y, --confirm

 	pyarmor-reg command line option

A

 	
 	Activation File

B

 	
 	BCC Mode

 	
 	Build Machine

E

 	
 	
 environment variable

 	LANG, [1], [2], [3]

 	PYARMOR_CC

 	PYARMOR_CLI

 	PYARMOR_HOME, [1]

 	PYARMOR_LANG, [1]

 	PYARMOR_PLATFORM

 	PYARMOR_RKEY, [1], [2]

 	
 	extension module

G

 	
 	Global Configuration Path

H

 	
 	Home Path

J

 	
 	JIT

L

 	
 	LANG, [1], [2]

 	
 	Local Configuration Path

O

 	
 	Outer Key

P

 	
 	Platform

 	Pyarmor

 	pyarmor (module)

 	Pyarmor Basic, [1]

 	
 pyarmor command line option

 	--home PATH[,GLOBAL[,LOCAL[,REG]]]

 	-d, --debug

 	-q, --silent

 	Pyarmor Group, [1]

 	Pyarmor Home

 	Pyarmor License

 	Pyarmor Package

 	Pyarmor Pro, [1]

 	Pyarmor Users

 	
 pyarmor-cfg command line option

 	-g, --global

 	-p NAME

 	-r, --reset

 	
 pyarmor-gen command line option

 	--assert-call

 	--assert-import

 	--enable <jit,rft,bcc,themida>

 	--enable-bcc

 	--enable-jit

 	--enable-rft

 	--enable-themida

 	--mix-str

 	--no-wrap

 	--obf-code <0,1>

 	--obf-module <0,1>

 	--outer

 	--pack BUNDLE

 	--period N

 	--platform NAME

 	--prefix PREFIX

 	--private

 	--restrict

 	-O PATH, --output PATH

 	-b DEV, --bind-device DEV

 	-e DATE, --expired DATE

 	-i

 	-r, --recursive

 	
 	
 pyarmor-reg command line option

 	-p NAME, --product NAME

 	-u, --upgrade

 	-y, --confirm

 	pyarmor.cli (module)

 	pyarmor.cli.core (module)

 	pyarmor.cli.runtime (module)

 	PYARMOR_HOME

 	PYARMOR_LANG

 	PYARMOR_RKEY, [1]

 	Python

 	Python Package

 	Python Script

R

 	
 	Registration File

 	Registration File Path

 	RFT Mode

 	
 	Runtime Files

 	Runtime Key

 	Runtime Package

T

 	
 	Target Device

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Pyarmor 8.0 Documentation

 		
 Tutorials

 		
 Getting Started

 		
 What’s Pyarmor

 		
 Installation from PyPI

 		
 Obfuscating one script

 		
 Obfuscating one package

 		
 Expiring obfuscated scripts

 		
 Binding obfuscated scripts to device

 		
 Packaging obfuscated scripts

 		
 Something need to know

 		
 What to read next

 		
 How the documentation is organized

 		
 Installation

 		
 Installation from PyPI

 		
 Using virtual environments

 		
 Installation from source

 		
 Run Pyarmor from Python script

 		
 Clean uninstallation

 		
 Basic Obfuscation

 		
 More options to protect script

 		
 More options to protect package

 		
 Checking runtime key periodically

 		
 Binding to many machines

 		
 Using outer file to store runtime key

 		
 Localization runtime error

 		
 Packing obfuscated scripts

 		
 Advanced Tutorials

 		
 Using rftmode pro

 		
 Using bccmode pro

 		
 Customization error handler

 		
 Patching source by plugin marker

 		
 Using hooks

 		
 Internationalization runtime error message

 		
 Generating cross platform scripts

 		
 Obfuscating scripts for multiple Pythons

 		
 How To

 		
 Highest security and performace

 		
 Packaging data files

 		
 Obfuscating django app

 		
 Building obfuscated wheel

 		
 Packing with outer key

 		
 Protecting system packages

 		
 Advanced Usage

 		
 Fix encoding error

 		
 Register Pyarmor

 		
 Initial Registration

 		
 Registeration in other machines

 		
 Upgrade Pyarmor from prior to 8.0

 		
 References

 		
 Concepts

 		
 Man Page

 		
 pyarmor

 		
 pyarmor gen

 		
 pyarmor gen key

 		
 pyarmor cfg

 		
 pyarmor reg

 		
 Environment Variables

 		
 Environments

 		
 Building Device

 		
 Target Device

 		
 Error Messages

 		
 Building Errors

 		
 Runtime Errors

 		
 Topics

 		
 Insight Into Obfuscation

 		
 Insight Into Obfuscated Script

 		
 Changed features by obfuscated scripts

 		
 Localization and Internationalization

 		
 Insight Into Pack Command

 		
 Packing obfuscated scripts manually

 		
 Insight Into RFT Mode

 		
 Insight Into BCC Mode

 		
 Performance

 		
 License Types

 		
 Introduction

 		
 License types

 		
 License features

 		
 Purchasing license

 		
 Refund policy

 		
 Upgrading old license

 		
 Freely to Pyarmor-Basic

 		
 With extra fee to Pyarmor-Pro

 		
 FAQ

 		
 Asking Questions In Github

 		
 Purchasing and Registration

_static/up-pressed.png

_static/up.png

