
Pyarmor Documentation
Release 8.1.8

Jondy Zhao

Apr 27, 2023

Contents

1 How the documentation is organized 3

2 Getting help 5

3 Table of Contents 7
3.1 Tutorials . 7

3.1.1 Getting Started . 7
3.1.2 Installation . 13
3.1.3 Basic Tutorial . 15
3.1.4 Advanced Tutorial . 21
3.1.5 Customization and Extension . 28

3.2 How To . 31
3.2.1 Highest security and performace . 31
3.2.2 Obfuscating django app . 32
3.2.3 Building obfuscated wheel . 32
3.2.4 Packing with outer key . 33
3.2.5 Protecting system packages . 33
3.2.6 Fix encoding error . 33
3.2.7 Removing docstring . 33
3.2.8 Work with Third-Party Libraries . 33
3.2.9 Register Pyarmor . 36

3.3 References . 39
3.3.1 Concepts . 39
3.3.2 Man Page . 41
3.3.3 Building Environments . 53
3.3.4 Target Environments . 57
3.3.5 Error Messages . 59

3.4 Topics . 62
3.4.1 Insight Into Obfuscation . 62
3.4.2 Understanding Obfuscated Script . 62
3.4.3 Insight Into Pack Command . 64
3.4.4 Insight Into RFT Mode . 65
3.4.5 Insight Into BCC Mode . 69
3.4.6 Performance and Security . 71
3.4.7 Localization and Internationalization . 76

3.5 License Types . 76
3.5.1 Introduction . 76

i

3.5.2 License types . 77
3.5.3 Purchasing license . 78
3.5.4 Upgrading old license . 79

3.6 FAQ . 80
3.6.1 Asking questions in Github . 80
3.6.2 License . 81
3.6.3 Purchasing . 82

4 Indices and tables 83

Python Module Index 85

Index 87

ii

Pyarmor Documentation, Release 8.1.8

Version 8.1.8

Homepage https://pyarmor.dashingsoft.com/

Contact pyarmor@163.com

Authors Jondy

Copyright This document has been placed in the public domain.

Contents 1

https://pyarmor.dashingsoft.com/
mailto:pyarmor@163.com

Pyarmor Documentation, Release 8.1.8

2 Contents

CHAPTER 1

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s organized will help you know where to look
for certain things:

• Part 1: Tutorials takes you by the hand through a series of steps to obfuscate Python scripts and packages. Start
here if you’re new to Pyarmor. Also look at the Getting Started

• Part 2: How To guides are recipes. They guide you through the steps involved in addressing key problems and
use-cases. They are more advanced than tutorials and assume some knowledge of how Python works.

• Part 3: References guides contain key concepts, man page, configurations and other aspects of Pyarmor ma-
chinery.

• Part 4: Topics guides insight into key topics and provide useful background information and explanation. They
describe how it works and how to use it but assume that you have a basic understanding of key concepts.

• Part 5: Licneses describes EULA of Pyarmor, the different Pyarmor licenses and how to purchase Pyarmor
license.

3

Pyarmor Documentation, Release 8.1.8

4 Chapter 1. How the documentation is organized

CHAPTER 2

Getting help

Having trouble?

Try the FAQ – it’s got answers to many common questions.

Looking for specific information? Try the genindex, or the detailed table of contents.

Not found anything? See asking questions in github.

Report bugs with Pyarmor in issues

5

https://pypi.python.org/pypi/pyarmor/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.1.8

6 Chapter 2. Getting help

CHAPTER 3

Table of Contents

3.1 Tutorials

3.1.1 Getting Started

Content

• What’s Pyarmor

• Installation from PyPI

• Obfuscating one script

– Distributing the obfuscated script

• Obfuscating one package

– Distributing the obfuscated package

• Expiring obfuscated scripts

• Binding obfuscated scripts to device

• Packaging obfuscated scripts

• Something need to know

• What to read next

• How the documentation is organized

New to Pyarmor? Well, you came to the right place: read this material to quickly get up and running.

7

Pyarmor Documentation, Release 8.1.8

What’s Pyarmor

Pyarmor is a command-line tool designed for obfuscating Python scripts, binding obfuscated scripts to specific ma-
chines, and setting expiration dates for obfuscated scripts.

Key Features:

• Seamless Replacement: Obfuscated scripts remain as standard .py files, allowing them to seamlessly replace
the original Python scripts in most cases.

• Balanced Obfuscation: Offers multiple ways to obfuscate scripts to balance security and performance.

• Irreversible Obfuscation: Renames functions, methods, classes, variables, and arguments.

• C Function Conversion: Converts some Python functions to C functions and compiles them into machine
instructions using high optimization options for irreversible obfuscation.

• Script Binding: Binds obfuscated scripts to specific machines or sets expiration dates for obfuscated scripts.

• Themida Protection: Protects obfuscated scripts using Themida (Windows only).

Installation from PyPI

Pyarmor packages are published on the PyPI. The preferred tool for installing packages from PyPI is pip. This tool
is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win-r and type cmd) and run the same command:

C:\> pip install -U pyarmor

After installation, type pyarmor --version on the command prompt. If everything worked fine, you will see the
version number for the Pyarmor package you just installed.

Not all the platforms are supported, more information check Building Environments

Obfuscating one script

Here it’s the simplest command to obfuscate one script foo.py:

$ pyarmor gen foo.py

The command gen could be replaced with g or generate:

$ pyarmor g foo.py
$ pyarmor generate foo.py

This command generates an obfuscated script dist/foo.py, which is a valid Python script, run it by Python inter-
preter:

$ python dist/foo.py

Check all generated files in the default output path:

8 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.1.8

$ ls dist/
... foo.py
... pyarmor_runtime_000000

There is an extra Python package pyarmor_runtime_000000, which is required to run the obfuscated script.

Distributing the obfuscated script

Only copy dist/foo.py to another machine doesn’t work, instead copy all the files in the dist/.

Why? It’s clear after checking the content of dist/foo.py:

from pyarmor_runtime_000000 import __pyarmor__
__pyarmor__(__name__, __file__, ...)

Actually the obfuscaetd script can be taken as normal Python script with dependent package
pyarmor_runtime_000000, use it as it’s not obfuscated.

Important: Please run this obfuscated in the machine with same Python version and same platform, otherwise it
doesn’t work. Because pyarmor_runtime_000000 has an extension module, it’s platform-dependent and bind to
Python version.

Note: DO NOT install Pyarmor in the Target Device, Python interpreter could run the obfuscated scripts without
Pyarmor.

Obfuscating one package

Now let’s do a package. -O is used to set output path dist2 different from the default:

$ pyarmor gen -O dist2 src/mypkg

Check the output:

$ ls dist2/
... mypkg
... pyarmor_runtime_000000

$ ls dist2/mypkg/
... __init__.py

All the obfuscated scripts in the dist2/mypkg, test it:

$ cd dist2/
$ python -C 'import mypkg'

If there are sub-packages, using -r to enable recursive mode:

$ pyarmor gen -O dist2 -r src/mypkg

3.1. Tutorials 9

Pyarmor Documentation, Release 8.1.8

Distributing the obfuscated package

Also it works to copy the whole path dist2 to another machine. But it’s not convience, the better way is using -i to
generate all the required files inside package path:

$ pyarmor gen -O dist3 -r -i src/mypkg

Check the output:

$ ls dist3/
... mypkg

$ ls dist3/mypkg/
... __init__.py
... pyarmor_runtime_000000

Now everything is in the package path dist3/mypkg, just copy the whole path to any target machine.

Note: Comparing current dist3/mypkg/__init__.py with above section dist2/mypkg/__init__.py
to understand more about obfuscated scripts

Expiring obfuscated scripts

It’s easy to set expire date for obfuscated scripts by -e. For example, generate obfuscated script with the expire date
to 30 days:

$ pyarmor gen -O dist4 -e 30 foo.py

Run the obfuscated scripts dist4/foo.py to verify it:

$ python dist4/foo.py

It checks network time, make sure your machine is connected to internet.

Let’s use another form to set past date 2020-12-31:

$ pyarmor gen -O dist4 -e 2020-12-31 foo.py

Now dist4/foo.py should not work:

$ python dist4/foo.py

If expire date has a leading ., it will check local time other than NTP server. For examples:

$ pyarmor gen -O dist4 -e .30 foo.py
$ pyarmor gen -O dist4 -e .2020-12-31 foo.py

For this form internet connection is not required in target machine.

Distributing the expired script is same as above, copy the whole directory dist4/ to target machine.

Binding obfuscated scripts to device

Suppose got target machine hardware informations:

10 Chapter 3. Table of Contents

http://www.ntp.org

Pyarmor Documentation, Release 8.1.8

IPv4: 128.16.4.10
Enternet Addr: 00:16:3e:35:19:3d
Hard Disk Serial Number: HXS2000CN2A

Using -b to bind hardware information to obfuscated scripts. For example, bind dist5/foo.py to enternet address:

$ pyarmor gen -O dist5 -b 00:16:3e:35:19:3d foo.py

So dist5/foo.py only could run in target machine.

It’s same to bind IPv4 and serial number of hard disk:

$ pyarmor gen -O dist5 -b 128.16.4.10 foo.py
$ pyarmor gen -O dist5 -b HXS2000CN2A foo.py

It’s possible to combine some of them. For example:

$ pyarmor gen -O dist5 -b "00:16:3e:35:19:3d HXS2000CN2A" foo.py

Only both enternet address and hard disk are matched machine could run this obfuscated script.

Distributing scripts bind to device is same as above, copy the whole directory dist5/ to target machine.

Packaging obfuscated scripts

Remeber again, the obfuscated script is normal Python script, use it as it’s not obfuscated.

Suppose package mypkg structure like this:

projects/
src/

mypkg/
__init__.py
utils.py
config.json

First make output path projects/dist6 for obfuscated package:

$ cd projects
$ mkdir dist6

Then copy package data files to output path:

$ cp -a src/mypkg dist6/

Next obfuscate scripts to overwrite all the .py files in dist6/mypkg:

$ pyarmor gen -O dist6 -i src/mypkg

The final output:

projects/
README.md
src/

mypkg/
__init__.py
utils.py

(continues on next page)

3.1. Tutorials 11

Pyarmor Documentation, Release 8.1.8

(continued from previous page)

config.json
dist6/

mypkg/
__init__.py
utils.py
config.json
pyarmor_runtime_000000/__init__.py

Comparing with src/mypkg, the only difference is dist6/mypkg has an extra sub-package
pyarmor_runtime_000000. The last thing is packaging dist6/mypkg as your prefer way.

New to Python packaging? Refer to Python Packaging User Guide

Something need to know

There is binary extension module pyarmor_runtime in extra sub-package pyarmor_runtime_000000, here
it’s package content:

$ ls dist6/mypkg/pyarmor_runtime_000000
... __init__.py
... pyarmor_runtime.so

Generally using binary extensions means the obfuscated scripts require pyarmor_runtime be created for different
platforms, so they

• only works for platforms which provides pre-built binaries, refer to Building Environments

• may not be compatible with different builds of CPython interpreter. For example, when obfuscating scripts by
Python 3.8, they can’t be run by Python 3.7, 3.9 etc.

• often will not work correctly with alternative interpreters such as PyPy, IronPython or Jython

Another disadvantage of relying on binary extensions is that alternative import mechanisms (such as the ability to
import modules directly from zipfiles) often won’t work for extension modules (as the dynamic loading mechanisms
on most platforms can only load libraries from disk).

What to read next

There is a complete installation guide that covers all the possibilities:

• install pyarmor by source

• call pyarmor from Python script

• clean uninstallation

Next is Basic Tutorial. It covers

• using more option to obfuscate script and package

• using outer file to store runtime key

• localizing runtime error messages

• packing obfuscated scripts and protect system packages

And then Advanced Tutorial, some of them are not available in trial pyarmor

• 2 irreversible obfuscation: RFT mode, BCC mode pro

12 Chapter 3. Table of Contents

https://packaging.python.org
https://docs.python.org/3.11/glossary.html#term-extension-module

Pyarmor Documentation, Release 8.1.8

• Customization error handler

• runtime error internationalization

• cross platform, multiple platforms and multiple Python version

Also you may be instersting in this guide Highest security and performace

How the documentation is organized

Pyarmor has a lot of documentation. A high-level overview of how it’s organized will help you know where to look
for certain things:

• Part 1: Tutorials now you’re reading.

• Part 2: How To guides are recipes. They guide you through the steps involved in addressing key problems and
use-cases. They are more advanced than tutorials and assume some knowledge of how Python works.

• Part 3: References guides contain key concepts, man page, configurations and other aspects of Pyarmor ma-
chinery.

• Part 4: Topics guides insight into key topics and provide useful background information and explanation. They
describe how it works and how to use it but assume that you have a basic understanding of key concepts.

• Part 5: Licneses describes EULA of Pyarmor, the different Pyarmor licenses and how to purchase Pyarmor
license.

Looking for specific information? Try the genindex, or the detailed table of contents.

3.1.2 Installation

Contents

• Installation from PyPI

– Installed command

– Start Pyarmor by Python interpreter

• Using virtual environments

• Installation from source

• Run Pyarmor from Python script

• Clean uninstallation

Installation from PyPI

Pyarmor packages are published on the PyPI. The preferred tool for installing packages from PyPI is pip. This tool
is provided with all modern versions of Python.

On Linux or MacOS, you should open your terminal and run the following command:

$ pip install -U pyarmor

On Windows, you should open Command Prompt (Win-r and type cmd) and run the same command:

3.1. Tutorials 13

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/

Pyarmor Documentation, Release 8.1.8

C:\> pip install -U pyarmor

After installation, type pyarmor --version on the command prompt. If everything worked fine, you will see the
version number for the Pyarmor package you just installed.

Installation from PyPI also allows you to install the latest development release. You will not generally need (or want)
to do this, but it can be useful if you see a possible bug in the latest stable release. To do this, use the --pre flag:

$ pip install -U --pre pyarmor

If you need generate obfuscated scripts to run in other platforms, install pyarmor.cli.runtime:

$ pip install pyarmor.cli.runtime

Not all the platforms are supported, more information check Building Environments

Installed command

• pyarmor is the main command to do everything. See Man Page.

• pyarmor-7 is used to call old commands, it equals bug fixed Pyarmor 7.x

Start Pyarmor by Python interpreter

pyarmor is same as the following command:

$ python -m pyarmor.cli

Using virtual environments

When installing Pyarmor using pip, use virtual environments which could isolate the installed packages from the
system packages, thus removing the need to use administrator privileges. To create a virtual environment in the
.venv directory, use the following command:

$ python -m venv .venv

You can read more about them in the Python Packaging User Guide.

Installation from source

You can install Pyarmor directly from a clone of the Git repository. This can be done either by cloning the repo and
installing from the local clone, on simply installing directly via git:

$ git clone https://github.com/dashingsoft/pyarmor
$ cd pyarmor
$ pip install .

You can also download a snapshot of the Git repo in either tar.gz or zip format. Once downloaded and extracted, these
can be installed with pip as above.

14 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/
https://pypi.python.org/pypi/
https://pypi.python.org/pypi/pyarmor/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://pypi.python.org/pypi/pyarmor/
https://github.com/dashingsoft/pyarmor
https://github.com/dashingsoft/pyarmor/archive/master.tar.gz
https://github.com/dashingsoft/pyarmor/archive/master.zip

Pyarmor Documentation, Release 8.1.8

Run Pyarmor from Python script

Create a script tool.py, pass arguments by yourself

from pyarmor.cli.__main__ import main_entry

args = ['gen', 'foo.py']
main(args)

Run it by Python interpreter:

$ python tool.py

Clean uninstallation

Run the following commands to make a clean uninstallation:

$ pip uninstall pyarmor
$ pip uninstall pyarmor.cli.core
$ pip uninstall pyarmor.cli.runtime
$ rm -rf ~/.pyarmor
$ rm -rf ./.pyarmor

Note: The path ~ may be different when logging by different user. $HOME is home path of current logon user, check
the environment variable HOME to get the real path.

3.1.3 Basic Tutorial

Contents

• Debug mode and trace log

• More options to protect script

• More options to protect package

• Copying package data files

• Checking runtime key periodically

• Binding to many machines

• Using outer file to store runtime key

• Localization runtime error

• Packing obfuscated scripts

– Packing to one file

– Packing to one folder

We’ll assume you have Pyarmor 8.0+ installed already. You can tell Pyarmor is installed and which version by running
the following command in a shell prompt (indicated by the $ prefix):

3.1. Tutorials 15

Pyarmor Documentation, Release 8.1.8

$ pyarmor --version

If Pyarmor is installed, you should see the version of your installation. If it isn’t, you’ll get an error.

This tutorial is written for Pyarmor 8.0+, which supports Python 3.7 and later. If the Pyarmor version doesn’t match,
you can refer to the tutorial for your version of Pyarmor by using the version switcher at the bottom right corner of
this page, or update Pyarmor to the newest version.

Throughout this tutorial, assume run pyarmor in project path which includes:

project/
foo.py
queens.py
joker/

__init__.py
queens.py
config.json

Pyarmor uses pyarmor gen with rich options to obfuscate scripts to meet the needs of different applications.

Here only introduces common options in a short, using any combination of them as needed. About usage of each
option in details please refer to pyarmor gen

Debug mode and trace log

When someting is wrong, check console log to find what Pyarmor does, and use -d to enable debug mode to print
more information:

$ pyarmor -d gen foo.py

Trace log is useful to check what’re protected by Pyarmor, enable it by this command:

$ pyarmor cfg enable_trace=1

After that, pyarmor gen will generate a logfile .pyarmor/pyarmor.trace.log. For example:

$ pyarmor gen foo.py
$ cat .pyarmor/pyarmor.trace.log

trace.co foo:1:<module>
trace.co foo:5:hello
trace.co foo:9:sum2
trace.co foo:12:main

Each line starts with trace.co is reported by code object protector. The first log says foo.py module level code
is obfuscated, second says function hello at line 5 is obfuscated, and so on.

Enable both debug and trace mode could show much more information:

$ pyarmor -d gen foo.py

Disable trace log by this command:

$ pyarmor cfg enable_trace=0

16 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

More options to protect script

For scripts, use these options to get more security:

$ pyarmor gen --enable-jit --mix-str --assert-call --private foo.py

Using --enable-jit tells Pyarmor processes some sentensive data by c function generated in runtime.

Using --mix-str1 could mix the string constant (length > 8) in the scripts.

Using --assert-call makes sure function is obfuscated, to prevent called function from being replaced by special
ways

Using --private makes the script could not be imported by plain scripts

For example,

data = "abcefgxyz"

def fib(n):
a, b = 0, 1
while a < n:

print(a, end=' ')
a, b = b, a+b

if __name__ == '__main__':
fib(n)

String constant abcefgxyz and function fib will be protected like this

data = __mix_str__(b"******")

def fib(n):
a, b = 0, 1
while a < n:

print(a, end=' ')
a, b = b, a+b

if __name__ == '__main__':
__assert_call__(fib)(n)

If function fib is obfuscated, __assert_call__(fib) returns original function fib. Otherwise it will raise
protection exception.

To check which function or which string are protected, enable trace log and check trace logfile:

$ pyarmor cfg enable_trace=1
$ pyarmor gen --mix-str --assert-call fib.py
$ cat .pyarmor/pyarmor.trace.log

trace.assert.call fib:10:'fib'
trace.mix.str fib:1:'abcxyz'
trace.mix.str fib:9:'__main__'
trace.co fib:1:<module>
trace.co fib:3:fib

1 --mix-str is not available in trial version

3.1. Tutorials 17

Pyarmor Documentation, Release 8.1.8

More options to protect package

For package, remove --private and append 2 extra options:

$ pyarmor gen --enable-jit --mix-str --assert-call --assert-import --restrict joker/

Using --assert-import prevents obfsucated modules from being replaced with plain script. It checks each import
statement to make sure the modules are obfuscated.

Using --restrict makes sure the obfuscated module is only available inside package. It couldn’t be imported
from any plain script, also not be run by Python interpreter.

By default __init__.py is not restricted, all the other modules are invisible from outside. Let’s check this, first
create a script dist/a.py

import joker
print('import joker OK')
from joker import queens
print('import joker.queens OK')

Then run it:

$ cd dist
$ python a.py
... import joker OK
... RuntimeError: unauthorized use of script

In order to export joker.queens, either removing option --restrict`, or config only this module is not restrict
like this:

$ pyarmor cfg -p joker.queens restrict_module=0

Then obfuscate this package with restrict mode:

$ pyarmor gen --restrict joker/

Now do above test again, it should work:

$ cd dist/
$ python a.py
... import joker OK
... import joker.queens

Copying package data files

Many packages have data files, but they’re not copied to output path.

There are 2 ways to solve this problem:

1. Before generating the obfuscated scripts, copy the whole package to output path, then run pyarmor gen to
overwite all the .py files:

$ mkdir dist/joker
$ cp -a joker/* dist/joker
$ pyarmor gen -O dist -r joker/

2. Changing default configuration let Pyarmor copy data files:

18 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

$ pyarmor cfg data_files=*
$ pyarmor gen -O dist -r joker/

Checking runtime key periodically

Checking runtime key every hour:

$ pyarmor gen --period 1 foo.py

Binding to many machines

Using -b many times to bind obfuscated scripts to many machines.

For example, machine A and B, the ethernet addresses are 66:77:88:9a:cc:fa and f8:ff:c2:27:00:7f
respectively. The obfuscated script could run in both of machine A and B by this command

$ pyarmor gen -b "66:77:88:9a:cc:fa" -b "f8:ff:c2:27:00:7f" foo.py

Using outer file to store runtime key

First obfuscating script with --outer:

$ pyarmor gen --outer foo.py

In this case, it could not be run at this time:

$ python dist/foo.py

Let generate an outer runtime key valid for 3 days by this command:

$ pyarmor gen key -e 3

It generates a file dist/pyarmor.rkey, copy it to runtime package:

$ cp dist/pyarmor.rkey dist/pyarmor_runtime_000000/

Now run dist/foo.py again:

$ python dist/foo.py

Let’s generate another license valid for 10 days:

$ pyarmor gen key -O dist/key2 -e 10

$ ls dist/key2/pyarmor.rkey

Copy it to runtime package to replace the original one:

$ cp dist/key2/pyarmor.rkey dist/pyarmor_runtime_000000/

The outer runtime key file also could be saved to other paths, but the file name must be pyarmor.rkey, here list the
search order:

1. First search runtime package

3.1. Tutorials 19

Pyarmor Documentation, Release 8.1.8

2. Next search path PYARMOR_RKEY

3. Next search path sys._MEIPASS

4. Next search current path

If no found in these paths, raise runtime error and exits.

Localization runtime error

Some of runtime error messages could be customized. When something is wrong with the obfuscated scripts, it prints
your own messages.

First create messages.cfg in the path .pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

Then edit it. It’s a .ini format file, change the error messages as needed

[runtime.message]

error_1 = this license key is expired
error_2 = this license key is not for this machine
error_3 = missing license key to run the script
error_4 = unauthorized use of script

Now obfuscate the script in the current path to use customized messages:

$ pyarmor gen foo.py

If we want to show same message for all of license errors, edit it like this

[runtime.message]

error_1 = invalid license key
error_2 = invalid license key
error_3 = invalid license key

Here no error_4, it means this error uses the default message.

And then obfuscate the scripts again.

Packing obfuscated scripts

Pyarmor need PyInstaller to pack scripts first, then replace plain scripts with obfuscated ones in bundle.

Packing to one file

First packing script to one file by PyInstaller with option -F:

$ pyinstaller -F foo.py

It generates one bundle file dist/foo, pass this to pyarmor:

20 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

$ pyarmor gen -O obfdist --pack dist/foo foo.py

This command will obfuscate foo.py first, then repack dist/foo, replace the original foo.py with obfdist/
foo.py, and append all the runtime files to bundle.

The final output is still dist/foo:

$ dist/foo

Packing to one folder

First packing script to one foler by PyInstaller:

$ pyinstaller foo.py

It generates one bundle folder dist/foo, and an executable file dist/foo/foo, pass this executable to pyarmor:

$ pyarmor gen -O obfdist --pack dist/foo/foo foo.py

Like above section, dist/foo/foo will be repacked with obfuscated scripts.

Now run it:

$ dist/foo/foo

More information about pack feature, refer to Insight Into Pack Command

3.1.4 Advanced Tutorial

Contents

• Using rftmode pro

• Using bccmode pro

• Customization error handler

• Filter mix string

• Filter assert function and import

• Patching source by inline marker

• Internationalization runtime error message

• Generating cross platform scripts

• Obfuscating scripts for multiple Pythons

Using rftmode pro

RFT mode could rename most of builints, functions, classes, local variables. It equals rewritting scripts in source level.

Using --enable-rft to enable RTF mode1:
1 This feature is only available for Pyarmor Pro.

3.1. Tutorials 21

Pyarmor Documentation, Release 8.1.8

$ pyarmor gen --enable-rft foo.py

For example, this script

1 import sys
2

3 def sum2(a, b):
4 return a + b
5

6 def main(msg):
7 a = 2
8 b = 6
9 c = sum2(a, b)

10 print('%s + %s = %d' % (a, b, c))
11

12 if __name__ == '__main__':
13 main('pass: %s' % data)

transform to

1 pyarmor__17 = __assert_armored__(b'\x83\xda\x03sys')
2

3 def pyarmor__22(a, b):
4 return a + b
5

6 def pyarmor__16(msg):
7 pyarmor__23 = 2
8 pyarmor__24 = 6
9 pyarmor__25 = pyarmor__22(pyarmor__23, pyarmor__24)

10 pyarmor__14('%s + %s = %d' % (pyarmor__23, pyarmor__24, pyarmor__25))
11

12 if __name__ == '__main__':
13 pyarmor__16('pass: %s' % pyarmor__20)

By default if RFT mode doesn’t make sure this name could be changed, it will leave this name as it is.

RFT mode doesn’t change names in the module attribute __all__, it also doesn’t change function arguments.

For example, this script

import re

__all__ = ['make_scanner']

def py_make_scanner(context):
parse_obj = context.parse_object
parse_arr = context.parse_array

make_scanner = py_make_scanner

transform to

pyarmor__3 = __assert_armored__(b'\x83e\x9d')

__all__ = ['make_scanner']

def pyarmor__1(context):
pyarmor__4 = context.parse_object

(continues on next page)

22 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

(continued from previous page)

pyarmor__5 = context.parse_array

make_scanner = pyarmor__1

If want to know what’re refacted exactly, enable trace rft to generate transformed script2:

$ pyarmor cfg trace_rft=1
$ pyarmor gen --enable-rft foo.py

The transformed script will be stored in the path .pyarmor/rft:

$ cat .pyarmor/rft/foo.py

Now run the obfuscated script:

$ python dist/foo.py

If something is wrong, try to obfuscate it again, it may make senses:

$ pyarmor gen --enable-rft foo.py
$ python dist/foo.py

If it still doesn’t work, or you need transform more names, refer to Insight Into RFT Mode to learn more usage.

Using bccmode pro

BCC mode could convert most of functions and methods in the scripts to equivalent C functions, those c functions will
be comipled to machine instructions directly, then called by obfuscated scripts.

It requires c compiler. In Linux and Darwin, gcc and clang is OK. In Windows, only clang.exe works. It could
be configured by one of these ways:

• If there is any clang.exe, it’s OK if it could be run in other path.

• Download and install Windows version of LLVM

• Download https://pyarmor.dashingsoft.com/downloads/tools/clang-9.0.zip, it’s about 26M bytes, there is only
one file in it. Unzip it and save clang.exe to $HOME/.pyarmor/. $HOME is home path of current logon
user, check the environment variable HOME to get the real path.

After compiler works, using --enable-bcc to enable BCC mode3:

$ pyarmor gen --enable-bcc foo.py

All the source in module level is not converted to C function.

To check which functions are converted to C function, enable trace mode before obfuscate the script:

$ pyarmor cfg enable_trace=1
$ pyarmor gen --enable-bcc foo.py

Then check the trace log:

2 This feature only works for Python 3.9+
3 This feature is only available for Pyarmor Pro.

3.1. Tutorials 23

https://releases.llvm.org

Pyarmor Documentation, Release 8.1.8

$ ls .pyarmor/pyarmor.trace.log
$ grep trace.bcc .pyarmor/pyarmor.trace.log

trace.bcc foo:5:hello
trace.bcc foo:9:sum2
trace.bcc foo:12:main

The first log means foo.py line 5 function hello is protected by bcc. The second log means foo.py line 9
function sum2 is protected by bcc.

When something is wrong, enable debug mode by common option -d:

$ pyarmor -d gen --enable-bcc foo.py

Check console log and trace log, most of cases there is modname and lineno in console or trace log. Assume the
problem funtion is sum2, then tell BCC mode does not deal with it by this way:

$ pyarmor cfg -p foo bcc:excludes "sum2"

Use -p to specify modname, and option bcc:excludes for function name.

Append more functions to exclude by this way:

$ pyarmor cfg -p foo bcc:excludes + "hello"

When obfuscating package, it also could exclude one script seperataly. For example, the following commands tell
BCC mode doesn’t handle joker/card.py, but all the other scripts in package joker are still handled by BCC
mode:

$ pyarmor cfg -p joker.card bcc:disabled=1
$ pyarmor gen --enable-bcc /path/to/pkg/joker

It’s possible that BCC mode could not support some Python features, in this case, use bcc:excludes and
bcc:disabled to ignore them, and make all the others work.

If it still doesn’t work, or you want to know more about BCC mode, goto Insight Into BCC Mode.

Customization error handler

By default when something is wrong with obfuscated scripts, RuntimeError with traceback is printed:

$ pyarmor gen -e 2020-05-05 foo.py
$ python dist/foo.py

Traceback (most recent call last):
File "dist/foo.py", line 2, in <module>
from pyarmor_runtime_000000 import __pyarmor__

File "dist/pyarmor_runtime_000000/__init__.py", line 2, in <module>
from .pyarmor_runtime import __pyarmor__

RuntimeError: this license key is expired (1:10937)

If prefer to show error message only:

$ pyarmor cfg on_error=1

$ pyarmor gen -e 2020-05-05 foo.py
$ python dist/foo.py

(continues on next page)

24 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

(continued from previous page)

this license key is expired (1:10937)

If prefer to quit directly without any message:

$ pyarmor cfg on_error=2

$ pyarmor gen -e 2020-05-05 foo.py
$ python dist/foo.py

$

Restore the default handler:

$ pyarmor cfg on_error=0

Or reset this option:

$ pyarmor cfg --reset on_error

Note: This only works for execute the obfuscated scripts by Python interpreter directly. If --pack is used, the script
is loaded by PyInstaller loader, it may not work as expected.

Filter mix string

By default --mix-str encrypts all the string length > 8.

But it can be configured to filter any string to meet various needs.

Exclude short strings by length < 10:

$ pyarmor cfg mix.str:threshold 10

Exclude any string by regular expression with format /pattern/, the pattern syntax is same as module re. For
example, exclude all strings length > 1000:

$ pyarmor cfg mix.str:excludes "/.{1000,}/"

Append new ruler to exclude 2 words __main__ and xyz:

$ pyarmor cfg mix.str:excludes ^ "__main__ xyz"

Reset exclude ruler:

$ pyarmor cfg mix.str:excludes = ""

Encrypt only string length between 8 and 32 by regular expression:

$ pyarmor cfg mix.str:includes = "/.{8,32}/"

Check trace log to find which strings are protected.

3.1. Tutorials 25

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.1.8

Filter assert function and import

--assert-call and --assert-import could protect function and module, but sometimes it may make mis-
takes.

One case is that pyarmor asserts a third-party function is obfuscated, thus the obfuscated scripts always raise protection
error.

Adding an assert rule to fix this problem. For example, tell --assert-import ignore module json and inspect
by word list:

$ pyarmor cfg assert.import:excludes = "json inspect"

Tell --assert-call ignore all the function startswith wintype_ by regular expression:

$ pyarmor cfg assert.call:excludes "/wintype_.*/"

The other case is that some functions or modules are obfuscated, but pyarmor doesn’t protect them. refer to next
section Patching source by inline marker to fix this issue.

Patching source by inline marker

Before obfuscating a script, Pyarmor scans each line, remove inline marker plus the following one whitespace, leave
the rest as it is.

The default inline marker is # pyarmor:, any comment line with this prefix will be as a inline marker.

For example, these lines

print('start ...')

pyarmor: print('this script is obfuscated')
pyarmor: check_something()

will be changed to

print('start ...')

print('this script is obfuscated')
check_something()

One real case: protecting hidden imported modules

By default --assert-import could only protect modules imported by statement import, it doesn’t handle mod-
ules imported by other methods.

For example,

m = __import__('abc')

In obfuscated script, there is a builtin function __assert_armored__() could be used to check m is obfuscated.
In order to make sure m could not be replaced by others, check it manually:

m = __import__('abc')
__assert_armored__(m)

But this results in a problem, The plain script could not be run because __assert_armored__ is only available in
the obfuscated script.

26 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

The inline marker is right solution for this case. Let’s make a little change

m = __import__('abc')
pyarmor: __assert_armored__(m)

By inline marker, both the plain script and the obfsucated script work as expected.

Sometimes --assert-call may miss some functions, in this case, using inline marker to protect them. Here is an
example to protect extra function self.foo.meth:

pyarmor: __assert_armored__(self.foo.meth)
self.foo.meth(x, y, z)

Internationalization runtime error message

Create messages.cfg in the path .pyarmor:

$ mkdir .pyarmor
$ vi .pyarmor/message.cfg

It’s a .ini format file, add a section runtime.message with option languages. The language code is same as
environment variable LANG, assume we plan to support 2 languages, and only customize 2 errors:

• error_1: license is expired

• error_2: license is not for this machine

[runtime.message]

languages = zh_CN zh_TW

error_1 = invalid license
error_2 = invalid license

invalid license is default message for any non-matched language.

Now add 2 extra sections runtime.message.zh_CN and runtime.message.zh_TW

[runtime.message]

languages = zh_CN zh_TW

error_1 = invalid license
error_2 = invalid license

[runtime.message.zh_CN]

error_1 =
error_2 =

[runtime.message.zh_TW]

error_1 =
error_2 =

Then obfuscate script again to make it works.

When obfuscated scripts start, it checks LANG to get current language code. If this language code is not zh_CN or
zh_TW, default message is used.

3.1. Tutorials 27

Pyarmor Documentation, Release 8.1.8

PYARMOR_LANG could force the obfuscated scripts to use specified language. If it’s set, the obfuscated scripts ignore
LANG. For example, force the obfuscated script dist/foo.py to use lang zh_TW by this way:

export PYARMOR_LANG=zh_TW
python dist/foo.py

Generating cross platform scripts

New in version 8.1.

Here list all the standard platform names.

In order to generate scripts for other platform, use --platform specify target platform. For example, building
scripts for windows.x86_64 in Darwin:

$ pyarmor gen --platform windows.x86_64 foo.py

pyarmor.cli.runtime provides prebuilt binaries for these platforms. If it’s not installed, pyarmor
may complain of cross platform need pyarmor.cli.runtime, please run "pip install
pyarmor.cli.runtime~=2.1.0" first. Following the hint to install pyarmor.cli.runtime with the right ver-
sion.

Using --platform multiple times to support multiple platforms. For example, generate the scripts to run in most
of x86_64 platforms:

$ pyarmor gen --platform windows.x86_64
--platform linux.x86_64 \
--platform darwin.x86_64 \
foo.py

Obfuscating scripts for multiple Pythons

New in version 8.x: This feature is still not implemented

3.1.5 Customization and Extension

Contents

• Using plugin to fix loading issue in darwin

• Using hook to bind script to docker id

• Using hook to check network time by other service

Users could write any plugin script or hook script to extend Pyarmor features.

Using plugin to fix loading issue in darwin

New in version 8.2.

In darwin, if Python is not installed in the standard path, the obfuscated scripts may not work because extension module
pyarmor_runtime in the runtime package could not be loaded.

28 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

Let’s check the dependencies of pyarmor_runtime.so:

$ otool -L dist/pyarmor_runtime_000000/pyarmor_runtime.so

dist/pyarmor_runtime_000000/pyarmor_runtime.so:

pyarmor_runtime.so (compatibility version 0.0.0, current version 1.0.0)
...
@rpath/lib/libpython3.9.dylib (compatibility version 3.9.0, current version 3.9.0)
...

Suppose target device has no @rpath/lib/libpython3.9.dylib, but @rpath/lib/libpython3.9.so,
in this case pyarmor_runtime.so could not be loaded.

We can create a plugin script .pyarmor/conda.py to fix this problem

__all__ = ['CondaPlugin']

class CondaPlugin:

def _fixup(self, target):
from subprocess import check_call
check_call('install_name_tool -change @rpath/lib/libpython3.9.dylib @rpath/

→˓lib/libpython3.9.so %s' % target)
check_call('codesign -f -s - %s' % target)

@staticmethod
def post_runtime(ctx, source, target, platform):

if platform.startswith('darwin.'):
print('using install_name_tool to fix %s' % target)
self._fixup(target)

Enable this plugin and generate the obfusated script again:

$ pyarmor cfg plugins + "conda"
$ pyarmor gen foo.py

See also:

Plugins

Using hook to bind script to docker id

New in version 8.2.

Suppose we need bind script app.py to 2 dockers which id are docker-a1 and docker-b2

First create hook script .pyarmor/hooks/app.py

def _pyarmor_check_docker():
cid = None
with open("/proc/self/cgroup") as f:

for line in f:
if line.split(':', 2)[1] == 'name=systemd':

cid = line.strip().split('/')[-1]
break

docker_ids = __pyarmor__(0, None, b'keyinfo', 1).decode('utf-8')

(continues on next page)

3.1. Tutorials 29

Pyarmor Documentation, Release 8.1.8

(continued from previous page)

if cid is None or cid not in docker_ids.split(','):
raise RuntimeError('license is not for this machine')

_pyarmor_check_docker()

Then generate the obfuscated script, store docker ids to runtime key as private data at the same time:

$ pyarmor gen --bind-data "docker-a1,docker-b2" app.py

Run the obfuscated script to check it, please add print statements in the hook script to debug it.

See also:

Hooks __pyarmor__()

Using hook to check network time by other service

New in version 8.2.

If NTP is not available in the target device and the obfuscated scripts has expired date, it may raise RuntimeError:
Resource temporarily unavailable.

In this case, using hook script to verify expired data by other time service.

First create hook script in the .pyarmor/hooks/foo.py:

def _pyarmor_check_worldtime(host, path):
from http.client import HTTPSConnection
expired = __pyarmor__(1, None, b'keyinfo', 1)
conn = HTTPSConnection(host)
conn.request("GET", path)
res = conn.getresponse()
if res.code == 200:

data = res.read()
s = data.find(b'"unixtime":')
n = data.find(b',', s)
current = int(data[s+11:n])
if current > expire:

raise RuntimeError('license is expired')
else:

raise RuntimeError('got network time failed')
_pyarmor_check_worldtime('worldtimeapi.org', '/api/timezone/Europe/Paris')

Then generate script with local expired date:

$ pyarmor gen -e .30 foo.py

Thus the obfuscated script could verify network time by itself.

See also:

Hooks __pyarmor__()

30 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

3.2 How To

3.2.1 Highest security and performace

Contents

• What’s the most security pyarmor could do?

• What’re the best performace pyarmor could do?

• Recommened options for different applications

What’s the most security pyarmor could do?

The following options could improve security

• --enable-rft almost doesn’t impact performace

• --enable-bcc imports module need more times, for example, importing a plain script about 1 ms, but bcc
module about 200 ms

• --enable-jit prevents from static decompilation

• --enable-themida prevents from most of debuggers, only available in Windows, and reduce permormance
remarkable

• --mix-str protects string constant in the script

• pyarmor cfg mix_argnames=1 may broken annotations

The following options hide module attributes

• --private for script or --restrict for package

The following options prevent from injecting functions into obfusated modules

• --assert-call

• --assert-import

What’re the best performace pyarmor could do?

Using default options and the following settings

• --obf-code 0

• --obf-module 0

• pyarmor cfg restrict_module=0

By these options, the security is almost same as .pyc

In order to improve security, and doesn’t reduce performace, also enable RFT mode

• --enable-rft

If there are sensitive string, enable mix-str with filter

• pyarmor cfg mix.str:includes “/regular expression/”

• --mix-str

3.2. How To 31

Pyarmor Documentation, Release 8.1.8

Without filter, all of string constants in the scripts are encrypte, it may reduce performance. Using filter only encrypt
the sensitive string may balace security and performance.

Recommened options for different applications

1. For django application or serving web request

If RFT mode is safe enough, you can check the transformed scripts to make decision, using these options

• --enable-rft

• --obf-code 0

• --obf-module 0

• --mix-str with filter

If RFT mode is not safe enought, using these options

• --enable-rft

• --no-wrap

• --mix-str with filter

2. For most of applications and packages

If RFT mode and BCC mode are available

• --enable-rft

• --enable-bcc

• --mix-str with filter

• assert-import

If not

• --enable-jit

• --private for scripts, or --restrict for packages

• --mix-str with filter

• --assert-import

If care about injecting track, also

• --assert-call with inline marker to make sure all the key functions are protected

If it’s not perfomace sensitive, using --enable-themida prevent from debuggers

3.2.2 Obfuscating django app

TODO:

3.2.3 Building obfuscated wheel

TODO:

32 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

3.2.4 Packing with outer key

TODO:

3.2.5 Protecting system packages

New in version 8.x: This feature is still not implemented

When packing the scripts, Pyarmor could also obfuscate system packages in the bundle.

TODO:

3.2.6 Fix encoding error

Set script encoding to utf-8:

$ pyarmor cfg encoding=utf-8

When customize runtime error message, set encoding of messages.cfg to gbk:

$ pyarmor cfg messages=messages.cfg:gbk

3.2.7 Removing docstring

It’s easy to remove docstring from obfuscated scripts:

$ pyarmor cfg optimize 2

3.2.8 Work with Third-Party Libraries

Contents

• Third party libraries

– pandas

– nuitka

There are countless big packages in Python world, many packages I never use and even don’t know at all. It’s also not
easy for me to research a complex package to find which line conflicts with pyarmor, and it’s difficult for me to run all
of these complex packages in my local machine.

Pyarmor provides rich options to meet various needs, for complex application, please spend some time to check Man
Page to understand all of these options, one of them may be just for your problem. I won’t learn your application
and tell you should use which options

I’ll improve pyamor make it works with other libraries as far as possible, but some issues can’t be fixed from Pyarmor
side.

Generally most of problems for these third party libraries are

• they try to use low level object frame to get local variable or other runtime information of obfuscated scripts

3.2. How To 33

Pyarmor Documentation, Release 8.1.8

• they try to visit code object directly to get something which is just pyarmor protected. The common case is
using inspect to get source code.

• they pickle the obfuscated code object and pass it to other processes or threads.

Also check The differences of obfuscated scripts, if third party library use any feature changed by obfuscated scripts,
it will not work with pyarmor. Especially for BCC mode, it changes more.

The common solutions to fix third-party libraries issue

• Use RFT mode with --obf-code=0

RFT mode almost doesn’t change internal structure of code object, it transforms the script in source level.
--obf-code is also required to disable code object obfuscation. The recommened options are like this:

$ pyarmor gen --enable-rft --obf-code 0 /path/to/myapp

First make sure it works, then try other options. For example:

$ pyarmor gen --enable-rft --obf-code 0 --mix-str /path/to/myapp
$ pyarmor gen --enable-rft --obf-code 0 --mix-str --assert-call /path/to/myapp

• Ignore problem scripts

If only a few scripts are in trouble, try to obfuscate them with --obf-code 0. For example, only module
config.py has problem, all the other are fine, then:

$ pyarmor cfg -p myapp.config obf_code=0
$ pyarmor gen [other options] /path/to/myapp

Another way is to copy plain script to overwrite the obfsucated one roughly:

$ pyarmor gen [other options] /path/to/myapp
$ cp /path/to/myapp/config.py dist/myapp/config.py

• Patch third-party library

Here is an example

@cherrypy.expose(alias='myapi')
@cherrypy.tools.json_out()
pylint: disable=no-member
@cherrypy.tools.authenticate()
@cherrypy.tools.validateOptOut()
@cherrypy.tools.validateHttpVerbs(allowedVerbs=['POST'])
pylint: enable=no-member
def abc_xyz(self, arg1, arg2):

"""
This is the doc string
"""

If call this API with alias name “myapi” it throws me 404 Error and the API’s which do not have any alias name
works perfectly. Because cherrypy.expose decorator uses

parents = sys._getframe(1).f_locals

And sys._getframe(1) return unexpected frame in obfuscated scripts. But it could be fixed by patching
this decorator to

34 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

parents = sys._getframe(2).f_locals

Note: If cheerypy is also used by others, clone private one.

Third party libraries

Here are list problem libraries and possible solutions. Welcome create pull request to append new libraries sort
alphabetically case insentensive.

Table 1: Table-1. Third party libraries
Package Status Remark
cherrypy patch work1 use sys._getframe
pandas patch work1 use sys._getframe
playwright patch should work2 Not verify yet
nuitka Should work with restrict_module = 0 Not verify yet

pandas

Another similar example is pandas

import pandas as pd

class Sample:
def __init__(self):

self.df = pd.DataFrame(
data={'name': ['Alice', 'Bob', 'Dave'],
'age': [11, 15, 8],
'point': [0.9, 0.1, 0.4]}

)

def func(self, val: float = 0.5) -> None:
print(self.df.query('point > @val'))

sampler = Sample()
sampler.func(0.3)

After obfuscated, it raises:

pandas.core.computation.ops.UndefinedVariableError: local variable 'val' is not
→˓defined

It could be fixed by changing sys._getframe(self.level) to sys._getframe(self.level+1), sys.
_getframe(self.level+2) or sys._getframe(self.level+3) in scope.py of pandas.

1 the patched packge could work with Pyarmor
2 this package work with Pyarmor RFT mode

3.2. How To 35

Pyarmor Documentation, Release 8.1.8

nuitka

Because the obfuscated scripts could be taken as normal scripts with an extra runtime package, they also could be
translated to C program by Nuitka.

I haven’t tested it, but it’s easy to verify it.

First disable restrict mode:

$ pyarmor cfg restrict_module=0

No disable restrict_module, run the nuitka script may raise RuntimeError: unauthorized use of
script

Next use default options to obfuscate the scripts:

$ pyarmor gen foo.py

Finally nuitka the obfuscated script dist/foo.py, check it works or not.

Try more options, but I think restrict options such as --private, --restrict, --assert-call,
--assert-import may not work.

3.2.9 Register Pyarmor

Contents

• Initial Registration

– For non-profits usage

– For commercial usage

– Product name is not decided

• Registering in other machines

– Registering in Docker or CI pipeline

• Using group license

• Upgrading old Pyarmor license

Initial Registration

First read Pyarmor License to purchase one Pyarmor License.

An activation file like pyarmor-regcode-xxxx.txt will be sent to you by email. This file is used to initial
registration.

It need internet connection for intial registration.

For non-profits usage

For any non-profits use, run this command:

36 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

$ pyarmor reg -p non-profits pyarmor-regcode-xxxx.txt

For commercial usage

Assume this license is used to protect your product Robot Studio, initial registration by this command:

$ pyarmor reg -p "Robot Studio" pyarmor-regcode-xxxx.txt

Pyarmor will show registration information and ask your confirmation. If everything is fine, type yes and Enter to
continue.

If initial registration is successful, it prints final license information in the console. And a registration file named
pyarmor-regfile-xxxx.zip for this license is generated in the current path at the same time. This file is used
for subsequent registration in other machines.

Once initial registration completed, activation file pyarmor-keycode-xxxx.txt is invalid and can’t be used.

Once initial registration completed, product name can’t be changed.

Please keep registration file pyarmor-regfile-xxxx.zip carefully. If lost, Pyarmor is not responsible for
keeping this license. In this case, if continue to use Pyarmor, needs purchase new one.

Product name is not decided

When product is in developing, and product name is not decide. Initial registration with product TBD. For example:

$ pyarmor reg -p "TBD" pyarmor-regcode-xxxx.txt

It can be changed once later, before product starts selling, the real name must be set by this command:

$ pyarmor reg -p "Robot Studio" pyarmor-regcode-xxxx.txt

Registering in other machines

Once initial registeration successfully, it generates registration file named pyarmor-regfile-xxxx.zip at the
same time.

Copy this file to other machines, then run the following command:

$ pyarmor reg pyarmor-regfile-xxxx.zip

Check the registration information:

$ pyarmor -v

Registering in Docker or CI pipeline

It’s no problem to run Pyarmor in Docker or CI pipeline to obfuscate user’s application. Register pyarmor with
pyarmor-regfile-xxxx.zip same as above. But It’s not allowed to distribute pakcage pyarmor and any
Pyarmor License to customer.

And don’t run too many build dockers.

3.2. How To 37

Pyarmor Documentation, Release 8.1.8

Using group license

New in version 8.2.

Initial Registration

After purchasing Pyarmor Group, an activate file pyarmor-regcode-xxxx.txt is sent to registration email.

Initial registration need internet and Pyarmor 8.2+. Product name is required for Pyarmor Group, and TBD is not valid.
Suppose product name is Robot, then run this command:

$ pyarmor reg -p Robot pyarmor-regcode-xxxx.txt

If initial registration is successful, a regfile pyarmor-regfile-xxxx.zip will be generated.

Group device file

Each Pyarmor Group could have 100 offline devices, each device has its own number, from 1 to 100.

In each offline device, install Pyarmor 8.2+, and generate group device file. For example, for device no. 1, run this
command:

$ pyarmor reg -g 1

It will generate group info file pyarmor-group-device.1.

Offline device regfile

Generating offline device regfile need internet connection, Pyarmor 8.2+, group device file
pyarmor-group-device.1 and group license registration file pyarmor-regfile-xxxx.zip.

Copying group device file pyarmor-group-device.1 to initial registration device which has internet connec-
tion, this file must be saved in the path .pyarmor/group/, then run this command to generate device regfile
pyarmor-device-regfile-xxxx.1.zip:

$ mkdir -p .pyarmor/group
$ cp pyarmor-group-device.1 .pyarmor/group/

$ pyarmor reg -g 1 /path/to/pyarmor-regfile-xxxx.zip

Register Pyarmor in offline device

Once device regfile is generated, copy it to corresponding device, then run this command to register Pyarmor:

$ pyarmor reg pyarmor-device-regfile-xxxx.1.zip

Check registration information:

$ pyarmor -v

For offline device no. 2, no. 3, . . . repeat above steps.

Upgrading old Pyarmor license

Refer to upgrade old license

38 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

3.3 References

3.3.1 Concepts

Activation File A text file used to initial registration Pyarmor License

When purchasing any Pyarmor License, an activation file is be sent to registration email after payment is com-
pleted.

BCC Mode An obfuscation method of Pyarmor by converting Python functions to C functions

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

Build Machine The device in which to install pyarmor, and to run pyarmor to generate obfuscated scripts.

Global Path Store Pyarmor global configuration file, default is ~/.pyarmor/config/

It’s always relative to Home Path

Home Path Store Pyarmor registration file, global configuration, other data file generated by pyarmor, the default
path is user home path ~/.pyarmor/

Local Path Store Pyarmor local configuration file, default is ./.pyarmor/

Hook script Hook script is a python script which locates in sub-path hooks of local path or global path.

When obfuscating the scripts, if there is any same name script exists, it’s called module hook script.

JIT Abbr. JUST-IN-TIME, just generating machine instructions in run time.

Outer Key A file generally named pyarmor.rkey to store Runtime Key

The outer key file must be located in one of path

• Runtime package

• PYARMOR_RKEY

• sys._MEIPASS

• Current path

Platform The standard platform name defined by Pyarmor. It’s composed of os.arch.

Supported platforms list:

• Windows

– windows.x86_64

– windows.x86

• Many Linuxs

– linux.x86_64

– linux.x86

– linux.aarch64

– linux.armv7

• Apple Intel and Silicon

– darwin.x86_64

– darwin.aarch64 or darwin.arm64

3.3. References 39

Pyarmor Documentation, Release 8.1.8

Plugin script A python script or function will be called in building stage to do some customization work.

Pyarmor Pyarmor is product domain, the goal is to provide functions and services to obfuscate Python scripts in high
security and high performance. The mission of Pyarmor is let Python use easily in commercial product.

Pyarmor is composed of

• Pyarmor Home

• pyarmor package

Pyarmor Basic A Pyarmor License type

Pyarmor Group A Pyarmor License type

Pyarmor Home Host in github: https://github.com/dashingsoft/pyarmor/

It serves open source part of Pyarmor, issues and documentations.

Pyarmor License Issued by Pyarmor Team to unlock some limitations in Pyarmor trial version.

Refer to Pyarmor License Types

Pyarmor Package A Python Package, it includes

• pyarmor

• pyarmor.cli

• pyarmor.cli.core

• pyarmor.cli.runtime

Pyarmor Pro A Pyarmor License type

Pyarmor Users Developers or organizations who use Pyarmor to obfuscate their Python scripts

Python A program language.

Python Script A file that serves as an organizational unit of Python code.

Refer to https://docs.python.org/3.11/glossary.html#term-module

Python Package Refer to https://docs.python.org/3.11/glossary.html#term-package

Registration File A zip file generated after initial registration is successful. It’s used to register Pyarmor License
excpet initial registration.

RFT Mode An obfuscation method of Pyarmor by renaming function/class in the scripts

Runtime Files All the files required to run the obfuscated scripts.

Generally it equals Runtime Package. If outer key is used, plus this outer key file.

Runtime Key The settings of obfuscated scripts. It may include the expired date, device information of bind to
obfuscated scripts. Also include all the flags to control the behaviours of obfuscated scripts.

Generally it’s embedded into Runtime Package, but it also could be stored to a independent file outer key

Runtime Package A Python Package generally named pyarmor_runtime_000000.

When obfuscating the scripts, it’s be generated at the same time.

It’s required to run the obfuscated scripts.

Target Device In which run the obfuscated scripts distributed by Pyarmor Users, generally it’s in customer side

40 Chapter 3. Table of Contents

https://github.com/dashingsoft/pyarmor/
https://github.com/dashingsoft/pyarmor/issues/
https://docs.python.org/3.11/glossary.html#term-module
https://docs.python.org/3.11/glossary.html#term-package

Pyarmor Documentation, Release 8.1.8

3.3.2 Man Page

Contents

• pyarmor

• pyarmor gen

• pyarmor gen key

• pyarmor cfg

• pyarmor reg

• Environment Variables

Pyarmor is a powerful tool to obfuscate Python scripts with rich option set that provides both high-level operations
and full access to internals.

pyarmor

Syntax
pyarmor [options] <command> . . .

Options

-h, --help show available command set then quit

-v, --version show version information then quit

-q, --silent suppress all normal output ...

-d, --debug show more information in the console ...

--home PATH set Pyarmor HOME path ...

These options can be used after pyarmor but before command, here are available commands:

gen Obfuscate scripts
gen key Generate outer runtime key
cfg Show and configure environments
reg Register Pyarmor

See pyarmor <command> -h for more information on a specific command.

Description

-q, --silent
Suppress all normal output.

For example:

pyarmor -q gen foo.py

-d, --debug
Show more information in the console

When something is wrong, print more debug informations in the console. For example:

3.3. References 41

Pyarmor Documentation, Release 8.1.8

pyarmor -d gen foo.py

--home PATH[,GLOBAL[,LOCAL[,REG]]]
Set Pyarmor Home Path, Global Path, Local Path and registration file path

The default paths

• Home Path is ~/.pyarmor/

• Global Path is ~/.pyarmor/config/

• Local Path is ./.pyarmor/

• registration file path is same as Home Path

All of them could be changed by this option. For example, change home path to ~/.pyarmor2/:

$ pyarmor --home ~/.pyarmor2 ...

Then

• Global Path is ~/.pyarmor2/config/

• Registration files are stored in the ~/.pyarmor2/

• Local Path still is ./.pyarmor/

Another example, keep all others but only change global path to ~/.pyarmor/config2/:

$ pyarmor --home ,config2 ...

Another, keep all others but only change local path to /var/myproject:

$ pyarmor --home ,,/var/myproject/ ...

Another, set registration file path to /opt/pyarmor/:

$ pyarmor --home ,,,/opt/pyarmor ...

It’s useful when may use sudo to run pyarmor occassionally. This makes sure the registration file could be found
even switch to another user.

When there are many Pyarmor Licenses registerred in one machine, set each license to different registration file path.
For example:

$ pyarmor --home ~/.pyarmor1 reg pyarmor-regfile-2051.zip
$ pyarmor --home ~/.pyarmor1 gen project1/foo.py

$ pyarmor --home ~/.pyarmor2 reg pyarmor-regfile-2052.zip
$ pyarmor --home ~/.pyarmor2 gen project2/foo.py

Start pyarmor with clean configuration by setting Global Path and Local Path to any non-exists path x:

$ pyarmor --home ,x,x, gen foo.py

See also:

PYARMOR_HOME

42 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

pyarmor gen

Generate obfuscated scripts and all the required runtime files.

Syntax
pyarmor gen <options> <SCRIPT or PATH>

Options

-h, --help show option list and help information then quit

-O PATH, --output PATH output path ...

-r, --recursive search scripts in recursive mode ...

-e DATE, --expired DATE set expired date ...

-b DEV, --bind-device DEV bind obfuscated scripts to device ...

--bind-data DATA store private data to runtime key ...

--period N check runtime key periodically ...

--outer enable outer runtime key ...

--platform NAME cross platform obfuscation ...

-i store runtime files inside package ...

--prefix PREFIX import runtime package with PREFIX ...

--obf-module <0,1> obfuscate whole module (default is 1) ...

--obf-code <0,1> obfuscate each function (default is 1) ...

--no-wrap disable wrap mode ...

--enable <jit,rft,bcc,themida> enable different obfuscation features ...

--mix-str protect string constant ...

--private enable private mode for script ...

--restrict enable restrict mode for package ...

--assert-import assert module is obfuscated ...

--assert-call assert function is obfuscated ...

--pack BUNDLE repack bundle with obfuscated scripts ...

Description

This command is designed to obfuscate all the scripts and packages in the command line. For example:

pyarmor gen foo.py
pyarmor gen foo.py goo.py koo.py
pyarmor gen src/mypkg
pyarmor gen src/pkg1 src/pkg2 libs/dbpkg
pyarmor gen -r src/mypkg
pyarmor gen -r main.py src/*.py libs/utils.py libs/dbpkg

All the files in the command line will be taken as Python script, because a few scripts has unknown extension but it’s
still Python script.

All the paths in the command line will be taken as Python Package, package name is set to path’s basename, all the
.py files in this path are package modules. If this package has any sub-pacakge, use -r to search recursively.

3.3. References 43

Pyarmor Documentation, Release 8.1.8

Do not use pyarmor gen src/* to obfuscate a package, it will obfuscate any file in the src, even they’re not
python scripts.

-O PATH, --output PATH

Set the output path for all the generated files, default is dist

-r, --recursive

When obfuscating package, search all scripts recursively. No this option, only the scripts in package path are obfus-
cated.

-i

When obfuscating package, store the runtime files inside package. For example:

$ pyarmor gen -r -i mypkg

The runtime package will be stored inside package dist/mypkg:

$ ls dist/
... mypkg/

$ ls dist/mypkg/
... pyarmor_runtime_000000/

Without this option, the output path is like this:

$ ls dist/
... mypkg/
... pyarmor_runtime_000000/

This option can’t be used to obfuscate script.

--prefix PREFIX

Only used when obfuscating many packages at the same time and still store the runtime package inside package.

In this case, use this option to specify which package is used to store runtime package. For example:

$ pyarmor gen --prefix mypkg src/mypkg mypkg1 mypkg2

This command tells pyarmor to store runtime package inside dist/mypkg, and make dist/mypkg1 and dist/
mypkg2 to import runtime package from mypkg.

Checking the content of .py files in output path to make it clear.

As a comparison, obfuscating 3 packages without this option:

$ pyarmor gen -O dist2 src/mypkg mypkg1 mypkg2

And check .py files in the path dist2.

-e DATE, --expired DATE
Expired date of obfuscated scripts.

It supports 4 forms:

• A number stands for valid days

• A date with iso format YYYY-MM-DD

• A leading . with above 2 forms

44 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

Without leading dot, the obfuscated scripts checks NTP server time. For example:

$ pyarmor gen -e 30 foo.py
$ pyarmor gen -e 2022-12-31 foo.py

With leading dot, it checks local time. For example:

$ pyarmor gen -e .30 foo.py
$ pyarmor gen -e .2022-12-31 foo.py

-b DEV, --bind-device DEV
Use this option multiple times to bind multiple machines

Bind obfuscated script to specified device. Now only harddisk serial number, ethernet address and IPv4 address are
available.

For example:

$ pyarmor gen -b 128.16.4.10 foo.py
$ pyarmor gen -b 52:38:6a:f2:c2:ff foo.py
$ pyarmor gen -b HXS2000CN2A foo.py

Also set 30 valid days for this device:

$ pyarmor gen -e 30 -b 128.16.4.10 foo.py

Check all of hardware informations in this device:

$ pyarmor gen -b "128.16.4.10 52:38:6a:f2:c2:ff HXS2000CN2A" foo.py

Using this options multiple times means binding many machines. For example, the following command makes the
obfuscated scripts could run 2 machiens:

$ pyarmor gen -b "52:38:6a:f2:c2:ff" -b "f8:ff:c2:27:00:7f" foo.py

In case there are more network cards, binding anyone by this form:

$ pyarmor gen -b "<2a:33:50:46:8f>" foo.py

Bind all network cards by this form:

$ pyarmor gen -b "<2a:33:50:46:8f,f0:28:69:c0:24:3a>" foo.py

In Linux, it’s possible to bind named ethernet card:

$ pyarmor gen -b "eth1/fa:33:50:46:8f:3d" foo.py

If there are many harddisks. In Windows, binding anyone by sequence no:

$ pyarmor gen -b "/0:FV994730S6LLF07AY" foo.py
$ pyarmor gen -b "/1:KDX3298FS6P5AX380" foo.py

In Linux, binding to specify name:

$ pyarmor gen -b "/dev/vda2:KDX3298FS6P5AX380" foo.py

--bind-data DATA
DATA may be @FILENAME or string

3.3. References 45

Pyarmor Documentation, Release 8.1.8

Store any private data to runtime key, then check it in the obfuscated scripts by yourself. It’s mainly used with the
hook script to extend runtime key verification method.

If DATA has a leading @, then the rest is a filename. Pyarmor reads the binary data from file, and store into runtime
key.

For any other case, DATA is converted to bytes as private data.

--period N

Check Runtime Key periodically.

Support units:

• s

• m

• h

The default unit is hour, for example, the following examples are equivalent:

$ pyarmor gen --period 1 foo.py
$ pyarmor gen --period 3600s foo.py
$ pyarmor gen --period 60m foo.py
$ pyarmor gen --period 1h foo.py

Note: If the obfuscated script enters an infinite loop without call any obfuscated function, it doesn’t trigger periodic
check.

--outer
Enable outer key

It tells the obfuscated scripts find runtime key in outer file.

Once this option is specified, pyarmor gen key must be used to generate an outer key file and copy to the corresponding
path in target device. Otherwise the obfuscated scripts will complain of missing license key to run the
script

The default name of outer key is pyarmor.rkey, it can be changed by this command:

$ pyarmor cfg outer_keyname=".pyarmor.key"

By this command the name of outer key is set to .pyarmor.key.

--platform NAME
Specify target platform to run obfuscated scripts.

The name must be one of standard platform defined by Pyarmor.

It requires pyarmor.cli.runtime to get prebuilt binary libraries of other platforms.

--private
Enable private mode for scripts.

When private mode is enabled, the function name is empty in traceback. And the obfuscated scripts could not be
imported by plain script or Python interpreter.

It can’t be used with --restrict, the latter enables private mode implicitly.

--restrict
Enable restirct mode for package, do not use it to obfuscate scripts.

46 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

It enables --private implicitly, and has all the features of private mode.

When restrict mode is enabled, all the modules excpet __init__.py in the package could not be imported by plain
scripts.

For example, obfuscate a restrict package to dist/joker:

$ pyarmor gen -i --restrict joker
$ ls dist/
... joker/

Then create a plaint script dist/foo.py

import joker
print('import joker should be OK')
from joker import queens
print('import joker.queens should fail')

Run it to verify:

$ cd dist
$ python foo.py
... import joker should be OK
... RuntimeError: unauthorized use of script

If there are extra modules need to be exported, list all the modules in this command:

$ pyarmor cfg exclude_restrict_modules="__init__ queens"

Then obfuscate the package again.

--obf-module <0,1>
Enable the whole module (default is 1)

--obf-code <0,1>
Enable each function in module (default is 1)

--no-wrap
Disable wrap mode

If wrap mode is enabled, when enter a function, it’s restored. but when exit, this function will be obfuscated again.

If wrap mode is disabled, once the function is restored, it’s never be obfuscated again.

If --obf-code is 0, this option is meaningless.

--enable <jit,rft,bcc,themida>
Enable different obfuscation features.

--enable-jit

Use JIT to process some sentensive data to improve security.

--enable-rft
Enable RFT Mode to obfuscate the script pro

--enable-bcc
Enable BCC Mode to obfuscate the script pro

--enable-themida
Use Themida to protect extension module in runtime package

Only works for Windows platform.

3.3. References 47

https://www.themida.com

Pyarmor Documentation, Release 8.1.8

--mix-str
Mix the string constant in scripts basic

--assert-call
Assert function is obfuscated

If this option is enabled, Pyarmor scans each function call in the scripts. If the called function is in the obfuscated
scripts, protect it as below, and leave others as it is. For example,

def fib(n):
a, b = 0, 1
return a, b

print('hello')
fib(n)

will be changed to

def fib(n):
a, b = 0, 1

print('hello')
__assert_armored__(fib)(n)

The function __assert_armored__ is a builtin function in obfuscated script. It checks the argument, if it’s an
obfuscated function, then returns this function, otherwise raises protection exception.

In this example, fib is protected, print is not.

--assert-import
Assert module is obfuscated

If this option is enabled, Pyarmor scans each import statement in the scripts. If the imported module is obfuscated,
protect it as below, and leave others as it is. For example,

import sys
import foo

will be changed to

import sys
import foo
__assert_armored__(foo)

The function __assert_armored__ is a builtin function in obfuscated script. It checks the argument, if it’s an
obfuscated module, then return this module, otherwise raises protection exception.

This option neither touchs statement from import, nor the module imported by function __import__.

--pack BUNDLE
Repack bundle with obfuscated scripts

Here BUNDLE is an executable file generated by PyInstaller

Pyarmor just obfuscates the script first.

Then unpack the bundle.

Next replace all the .pyc in the bundle with obfuscated scripts, and append all the runtime files to the bundle.

Finally repack the bundle and overwrite the original BUNDLE.

48 Chapter 3. Table of Contents

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.1.8

pyarmor gen key

Generate outer key for obfuscated scripts.

Syntax
pyarmor gen key <options>

Options

-O PATH, --output PATH output path

-e DATE, --expired DATE set expired date

--period N check runtime key periodically

-b DEV, --bind-device DEV bind obfuscated scripts to device

--bind-data store private data to runtime key

Description

This command is used to generate outer key, the options in this command have same meaning as in the pyarmor gen.

There must be at least one of option -e or -b for outer key.

It’s invalid that outer key is neither expired nor binding to a device. For this case, don’t use outer key.

By default the outer key is saved to dist/pyarmor.rkey. For example:

$ pyarmor gen key -e 30
$ ls dist/pyarmor.rkey

Save outer key to other path by this way:

$ pyarmor gen key -O dist/mykey2 -e 10
$ ls dist/mykey2/pyarmor.rkey

By default the outer key name is pyarmor.rkey, use the following command to change outer key name to any
others. For example, sky.lic:

$ pyarmor cfg outer_keyname=sky.lic
$ pyarmor gen key -e 30
$ ls dist/sky.lic

pyarmor cfg

Configure or show Pyarmor environments

Syntax
pyarmor cfg <options> [OPT[=VALUE]] . . .

Options

-h, --help show this help message and exit

-p NAME private settings for special module or package

-g, --global do everything in global settings, otherwise local settings

-r, --reset reset option to default value

--encoding ENCODING specify encoding to read configuration file

Description

3.3. References 49

Pyarmor Documentation, Release 8.1.8

Run this command without arguments to show all available options:

$ pyarmor cfg

Show one exact option obf_module:

$ pyarmor cfg obf_module

Show all options which start with obf:

$ pyarmor cfg obf*

Set option to int value by any of these forms:

$ pyarmor cfg obf_module 0
$ pyarmor cfg obf_module=0
$ pyarmor cfg obf_module =0
$ pyarmor cfg obf_module = 0

Set option to boolean value:

$ pyarmor cfg wrap_mode 0
$ pyarmor cfg wrap_mode=1

Set option to string value:

$ pyarmor cfg outer_keyname "sky.lic"
$ pyarmor cfg outer_keyname = "sky.lic"

Append word to an option. For example, pyexts has 2 words .py .pyw, append new one to it:

$ pyarmor cfg pyexts + ".pym"

Current settings
pyexts = .py .pyw .pym

Remove word from option:

$ pyarmor cfg pyexts - ".pym"

Current settings
pyexts = .py .pyw

Append new line to option:

$ pyarmor cfg rft_excludes ^ "/win.*/"

Current settings
rft_excludes = super

/win.*/

Reset option to default:

$ pyarmor cfg rft_excludes ""
$ pyarmor cfg rft_excludes=""
$ pyarmor cfg -r rft_excludes

Change option excludes in the section finder by this form:

50 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

$ pyarmor cfg finder:excludes "ast"

If no prefix finder, for example:

$ pyarmor cfg excludes "ast"

Not only option excludes in section finder, but also in other sections assert.call, mix.str etc. are
changed.

Sections

Section is group name of options, here are popular sections

• finder: how to search scripts

• builder: how to obfuscate scripts, main section

• runtime: how to generate runtime package and runtime key

These are not popular sections * mix.str: how to filter mix string * assert.call: how to filter assert function * as-
sert.import: how to filter assert module * bcc: how to convert function to C code

-p NAME
Private settings for special module or package

All the settings is only used for specified module NAME.

-g, --global
Do everything in global settings

Without this option, all the changed settings are stored in Local Path, generally it’s ./.pyarmor/config. By this
option, everything is stored in Global Path, generally it’s ~/.pyarmor/config/global

-r, --reset
Reset option to default value

pyarmor reg

Register Pyarmor or upgrade Pyarmor license

Syntax
pyarmor reg [OPTIONS] [FILENAME]

Options

-h, --help show this help message and exit

-p NAME, --product NAME license to this product

-u, --upgrade upgrade Pyarmor license

-g ID, --device ID device no. in group license

Arguments

The FILENAME must be one of these forms:

• pyarmor-regcode-xxxx.txt got by purchasing Pyarmor license

• pyarmor-regfile-xxxx.zip got by initial registration with above file

Description

Check the registration information:

3.3. References 51

Pyarmor Documentation, Release 8.1.8

$ pyarmor -v

Initial registration

Initial registration by the following command, replace NAME with real product name or non-profits:

$ pyarmor reg -p NAME pyarmor-regcode-xxxx.txt

A registration file pyarmor-regfile-xxxx.zip will be generated after initial registration completed. Using this
file for subsequent registration:

$ pyarmor reg pyarmor-regfile-xxxx.zip

Upgrading old license

Upgrading old license by the following command, if product name is not same as old license, it’s ignored:

$ pyarmor reg -p NAME pyarmor-regcode-xxxx.txt

A registration file pyarmor-regfile-xxxx.zip will be generated after upgrade completed. Using this file for
subsequent registration:

$ pyarmor reg pyarmor-regfile-xxxx.zip

Using group license

Pyarmor group also need internet connect to initial registration, and generate the corresponding registration file.

One group license could have 100 offline devices, each device has its own number, from 1 to 100.

For each device, first install Pyarmor 8.2+, and generate one device file. For example, run this command in device no.
1 to generate group device file pyarmor-group-device.1:

$ pyarmor reg -g 1

Next prepare to generate device regfile pyarmor-device-regfile-xxxx.1.zip for this device. It requires
internet connection, group device file pyarmor-group-device.1, group license registration file.

For example, copy group device file to initial registration machine, save it to path .pyarmor/group/, run the
following command to generate pyarmor-device-regfile-xxxx.1.zip:

$ mkdir -p .pyarmor/group
$ cp pyarmor-group-device.1 .pyarmor/group/

$ pyarmor reg -g 1 pyarmor-regfile-xxxx.zip

Copy device regfile to device no. 1, then run the following command:

$ pyarmor reg pyarmor-device-regfile-xxxx.1.zip

Repeat above steps for the rest device no. 2, no. 3 . . .

-p NAME, --product NAME
Set product name bind to license

For non-commercial use, set product name to non-profits

When initial registration, use this option to set proudct name for this license.

It’s meanless to use this option after initial registration.

52 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

TBD is a special product name. If product name is TBD at initial registration, the product name can be changed later.

For any other product name, it can’t be changed any more.

Only Pyarmor basic and Pyarmor pro could set product name to TBD

-u, --upgrade
Upgrade old license to Pyarmor 8.0 Licese

Not all the old license could be upgrade to new license, check License Types

-g ID, --device ID
specify device no. in group license

Valid value is from 1 to 100

Environment Variables

The following environment variables only used in Build Machine when generating the obfuscated scripts, not in Target
Device.

PYARMOR_HOME
Same as pyarmor --home

It mainly used in the shell scrits to change Pyarmor settings. If pyarmor --home is set, this environment var is
ignored.

PYARMOR_PLATFORM
Set the right Platform to run pyarmor

It’s mainly used in some platforms Pyarmor could not tell right but still works.

PYARMOR_CC
Specify C compiler for bccmode

PYARMOR_CLI
Only for compatible with old Pyarmor, ignore this if you don’t use old command prior to 8.0

If you do not use new commands in Pyarmor 8.0, and prefer to only use old commands, set it to 7, for example:

In Linux
export PYARMOR_CLI=7
pyarmor -h

Or
PYARMOR_CLI=7 pyarmor -h

In Windows
set PYARMOR_CLI=7
pyarmor -h

It forces command pyarmor to use old cli directly.

Without it, pyarmor first try new cli, if the command line couldn’t be parsed by new cli, fallback to old cli.

This only works for command pyarmor.

3.3.3 Building Environments

Command pyarmor runs in build machine to geneate obfuscated scripts and all the other required files.

3.3. References 53

Pyarmor Documentation, Release 8.1.8

Here list everything related to pyarmor.

Above all it only runs in the supported platforms by supported Python versions.

Command line options, configuration options, plugins, hooks and a few environment variables control how to generate
obfuscated scripts and runtime files.

All the command line options and environment variables are described in Man Page

Supported Python versions

Table 2: Table-1. Supported Python Versions
Python Version 2.7 3.0~3.4 3.5~3.6 3.7~3.10 3.11 3.12+ Remark
pyarmor 8 RFT Mode No No No Y Y N/y 1

pyarmor 8 BCC Mode No No No Y Y N/y
pyarmor 8 others No No No Y Y N/y
pyarmor-7 Y Y Y Y No No

Supported platforms

Table 3: Table-2. Supported Platforms
OS Windows Apple Linux
Arch x86/x86_64 x86_64 arm64 x86/x86_64 aarch64 armv7 armv6
Themida Protection Y No No No No No No
pyarmor 8 RFT Mode Y Y Y Y Y Y No
pyarmor 8 BCC Mode Y Y Y Y Y N/y No
pyarmor 8 others Y Y Y Y Y Y No
pyarmor-72 Y Y Y Y Y Y Y

notes

Important: pyarmor-7 is bug fixed Pyarmor 7.x version, it’s same as Pyarmor 7.x, and only works with old license.
Do not use it with new license, it may report HTTP 401 error.

Configuration options

There are 3 kinds of configuration files

• global: an ini file ~/.pyarmor/config/global

• local: an ini file ./.pyarmor/config

• private: each module may has one ini file in Local Path. For example, ./.pyarmor/foo.rules is private
configuration of module foo

Use command pyarmor cfg to change options in configuration files.

1 N/y means not yet now, but will be supported in future.
2 pyarmor-7 also supports more linux arches, refer to Pyarmor 7.x platforms.

54 Chapter 3. Table of Contents

https://pyarmor.readthedocs.io/en/v7.7/platforms.html

Pyarmor Documentation, Release 8.1.8

Plugins

New in version 8.2.

Plugin is a Python script used to do some post-build work in generating obfuscated scripts.

Plugin use cases:

• Additional processing in the output path

• Fix import statement in the obfuscated script for special cases

• Add comment to outer key file

• Rename binary extension pyarmor_runtime suffix to avoid name confilcts

• In Darwin use install_name_tool to fix extension module pyarmor_runtime couldn’t be loaded if Python is
not installed in the stardard path

Plugin script must define attribute __all__ to export plugin name.

Plugin script could be any name.

Plugin script could define one or more plugin classes:

class PluginName

static post_build(ctx, inputs, outputs, pack=None)
This method is optional.

This method is called when all the obfuscated scripts and runtime files have been geneated by pyarmor
gen

Parameters

• ctx (Context) – building context

• inputs (list) – all the input paths

• outputs (list) – all the output paths

• pack (str) – if not None, it’s an executable file specified by --pack

static post_key(ctx, keyfile, expired=None, devices=None, data=None, period=None)
This method is optional.

This method is called when outer key has been generated by pyarmor gen key

Parameters

• ctx (Context) – building context

• keyfile (str) – path of generated key file

• expired (long) – expired epoch or None

• devices (list) – binding device hardware informations or None

• data (str) – binding data or None

• period (int) – period in seconds or None

static post_runtime(ctx, source, dest, platform)
This method is optional.

This method is called when the runtime extension module pyarmor_runtime.so in the runtime pack-
age has been generated by pyarmor gen.

3.3. References 55

Pyarmor Documentation, Release 8.1.8

It may be called many times if many platforms are specified in the command line. :param Context ctx:
building context :param str source: source path of pyarmor extension :param str dest: output path of
pyarmor extension :param str platform: standard platform name

To make plugin script work, configure it with script name without extension .py by this way:

$ pyarmor cfg plugins + "script name"

Pyarmor search plugin script in these paths in turn:

• Current path

• local path, generally .pyarmor/

• global path, generally ~/.pyarmor/

Here it’s an example plugin script fooplugin.py

__all__ = ['EchoPlugin']

class EchoPlugin:

@staticmethod
def post_runtime(ctx, source, dest, platform):

print('-------- test fooplugin ----------')
print('ctx is', ctx)
print('source is', source)
print('dest is', dest)
print('platform is', platform)

Store it to local path .pyarmor/fooplugin.py, and enable it:

$ pyarmor cfg plugins + "fooplugin"

Check it, this plugin information should be printed in the console:

$ pyarmor gen foo.py

Disable this plugin:

$ pyarmor cfg plgins - "fooplugin"

Hooks

New in version 8.2.

Hook is a Python script which is embedded into the obfuscated script, and executed when the obfuscated script is
running.

When obfuscating the scripts, Pyarmor searchs path hooks in the local path and global path in turn. If there is any
same name script exists, it’s called module hook script.

For example, .pyarmor/hooks/foo.py is hook script of foo.py, .pyarmor/hooks/joker.card.py is
hook script of joker/card.py.

When generating obfuscate script by this command:

$ pyarmor gen foo.py

56 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

.pyarmor/hooks/foo.py will be inserted into the beginning of foo.py.

A hook script is a normal Python script, it could do everything Python could do. And it could use 2 special function
__pyarmor__() and __assert_armored__() to do some interesting work.

Note that all the source lines in the hook script are inserted into module level of original script, be careful to avoid
name confilicts.

See also:

__pyarmor__() __assert_armorred__()

3.3.4 Target Environments

Obfuscated scripts run in target device, support platforms, arches and Python versions are same as Building Environ-
ments

A few sys attributes and environment variables may change behaviours of obfuscated scripts.

sys._MEIPASS

Borrowed from PyInstaller, set search path for outer key.

sys._PARLANG

It’s used to set runtime error language.

If it’s set, LANG is ignored.

LANG
OS environment variable, used to select runtime error language.

PYARMOR_LANG
It’s used to set language runtime error language.

If it’s set, both LANG and sys._PARLANG are ignored.

PYARMOR_RKEY
Set search path for outer key

Supported Third-Party Interpreter

About third-party interperter, for example Jython, and any embeded Python C/C++ code, only they could work with
CPython extension module, they could work with Pyarmor. Check third-parth interperter documentation to make sure
this.

A few known issues

• On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by dlopen, otherwise obfuscated scripts
couldn’t work.

• Boost::python does not load libpythonXY.so with RTLD_GLOBAL by default, so it will raise error “No
PyCode_Type found” as running obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os.RTLD_GLOBAL) as initializing.

• PyPy could not work with pyarmor, it’s total different from CPython

3.3. References 57

https://www.pyinstaller.org/

Pyarmor Documentation, Release 8.1.8

Specialized builtin functions

New in version 8.2.

There are 2 specialized builtin functions, both of them could be used without import in the obfuscated scripts.

Generally they’re used with inline marker or in the hook scripts.

__pyarmor__(arg, kwarg, name, flag)

Parameters

• name (bytes) – must be b'hdinfo' or b'keyinfo'

• flag (int) – must be 1

get hdinfo

When name is b'hdinfo', call it to get hardware information.

Parameters

• arg (int) – query which kind of device

• kwarg (str) – None or device name

Returns arg == 0 return the serial number of first harddisk

Returns arg == 1 return mac address of first network card

Returns arg == 2 return ipv4 address of first network card

Returns arg == 3 return device name

Return type str

Raises RuntimeError – when something is wrong

For example,

__pyarmor__(0, None, b'hdinfo', 1)
__pyarmor__(1, None, b'hdinfo', 1)

In Linux, kwarg is used to get named network card or named harddisk. For example:

__pyarmor__(0, "/dev/vda2", b'hdinfo', 1)
__pyarmor__(1, "eth2", b'hdinfo', 1)

In Windows, kwarg is used to get all network cards and harddisks. For example:

__pyarmor__(0, "/0", b'hdinfo', 1) # First disk
__pyarmor__(0, "/1", b'hdinfo', 1) # Second disk

__pyarmor__(1, "*", b'hdinfo', 1)
__pyarmor__(1, "*", b'hdinfo', 1)

get keyinfo

When name is b'keyinfo', call it to query user data in the runtime key.

Parameters

• arg (int) – what information to get from runtime key

• kwarg – always None

Returns arg == 0 return bind data, no bind data return empty bytes

58 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

Return type Bytes

Returns arg == 1 return expired epoch, -1 if there is no expired date

Return type Long

Returns None if something is wrong

For example:

print('bind data is', __pyarmor__(0, None, b'keyinfo', 1))
print('expired epoch is' __pyarmor__(1, None, b'keyinfo', 1))

__assert_armored__(arg)

Parameters arg (object) – arg is a module or callable object

Returns return arg self if arg is obfuscated, otherwise, raise protection error.

For example

m = __import__('abc')
__assert_armored__(m)

def hello(msg):
print(msg)

__assert_armored__(hello)
hello('abc')

3.3.5 Error Messages

Here list all the errors when running pyarmor or obfuscated scripts.

If something is wrong, search error message here to find the reason.

If no exact error message found, most likely it’s not caused by Pyarmor, search it in google or any other search engine
to find the solution.

Building Errors

Here list all the errors when run pyarmor in building machine

Table 4: Table-1. Build Errors
Error Reasons
out of license Using not available features, for example, big script

Purchasing license to unlock the limitations, refer to License Types
not machine id This machine is not registered, or the hardware information is changed.

Try to register Pyarmor again to fix it.
query machine id failed Could not get hardware information in this machine

Pyarmor need query harddisk serial number, mac address etc.
If it could not get hardware information, it complains of this.

relative import “%s” overflow Obfuscating .py script which uses relative import
Solution: obfuscating the whole package (path), instead of one module (file)
separately

The following errors may occur when registering Pyarmor

3.3. References 59

Pyarmor Documentation, Release 8.1.8

Table 5: Table-1.1 Register Errors
Error Reasons
HTTP Error 400: Bad Request

1. Running upgrading command pyarmor -u more than once
Try to register Pyarmor again with zip, for example:: pyarmor

reg pyarmor-regfile-xxxxxx.zip

HTTP Error 401: Unauthorized Using old pyarmor commands with new license
Please using Pyarmor 8 commands to obfuscate the scripts

HTTP Error 503: Service Tem-
porarily Unavailable

Invoking too many register command in 1 minute
For security reason, the license server only allows 3 register request in 1
minute

unknown license type OLD Using old license in Pyarmor 8, the old license only works for Pyarmor 7.x
Here are the latest licenses
Please use pyarmor-7 or downgrade pyarmor to 7.7.4

This code has been used too many
times

Runtime Errors

Here list error messages reported by pyarmor

Table 6: Table-2. Runtime Errors of Obfuscated Scripts
Error Message Reasons
error code out of range
this license key is expired
this license key is not for this ma-
chine
missing license key to run the script
unauthorized use of script
this Python version is not supported
the script doesn’t work in this sys-
tem
the format of obfuscated script is in-
correct 1. the obfuscated script is made by other Pyarmor version

2. can not get runtime package path

the format of obfuscated function is
incorrect
RuntimeError: Resource temporar-
ily unavailable

When using option -e to obfusate the script, the obfuscated script need
connect to NTP server to check expire date. If network is not available, or
something is wrong with network, it raises this error.
Solutions:

1. use local time if device is not connected to internet.
2. try it again it may works.

Here list error messages reported by Python interpreter, generelly they are not pyarmor issues. Please consult Python
documentation or google error message to fix them.

60 Chapter 3. Table of Contents

http://www.ntp.org

Pyarmor Documentation, Release 8.1.8

Table 7: Table-2.1 Other Errors of Obfuscated Scripts
Error Message Reasons
ImportError: attempted relative im-
port with no known parent package 1. from .pyarmor_runtime_000000 import

__pyarmor__
Do not use -i or --prefix if you don’t know what
they’re doing.

For all the other relative import issue, please check Pythont documentation
to learn about relative import knowledge, then check Pyarmor Man Page to
understand how to generate runtime packages in different locations.

Outer Errors

Here list some outer errors. Most of them are caused by missing some system libraries, or unexpected configuration.
It need nothing to do by Pyarmor, just install necessary libraries or change system configurations to fix the problem.

By searching error message in google or any other search engine to find the solution.

• Operation did not complete successfully because the file contains a virus or is potentially unwanted soft-
ware question

It’s caused by Windows Defender, not Pyarmor. I’m sure Pyarmor is safe, but it uses some technics which let
anti-virtus tools make wrong decision. The solutions what I thought of

1. Check documentation of Windows Defender

2. Ask question in MSDN

3. Google this error message

• Library not loaded: ‘@rpath/Frameworks/Python.framework/Versions/3.9/Python’

When Python is not installed in the standard path, or this Python is not Framework, pyarmor reports this error.
The solution is using install_name_tool to change pytransform3.so. For example, in anaconda3
with Python 3.9, first search which CPython library is installed:

$ otool -L /Users/my_username/anaconda3/bin/python

Find any line includes Python.framework, libpython3.9.dylib, or libpython3.9.so, the file-
name in this line is CPython library. Or find it in the path:

$ find /Users/my_username/anaconda3 -name "Python.framework/Versions/3.9/Python"
$ find /Users/my_username/anaconda3 -name "libpython3.9.dylib"
$ find /Users/my_username/anaconda3 -name "libpython3.9.so"

Once find CPython library, using install_name_tool to change and codesign it again:

$ install_name_tool -change @rpath/Frameworks/Python.framework/Versions/3.9/
→˓Python /Users/my_username/anaconda3/lib/libpython3.9.dylib /Users/my_username/
→˓anaconda3/lib/python3.9/site-packages/pyarmor/cli/core/pytransform3.so
$ codesign -f -s - /Users/my_username/anaconda3/lib/python3.9/site-packages/
→˓pyarmor/cli/core/pytransform3.so

3.3. References 61

Pyarmor Documentation, Release 8.1.8

3.4 Topics

3.4.1 Insight Into Obfuscation

TODO:

3.4.2 Understanding Obfuscated Script

Remain as standard ‘.py‘ files

The obfuscated scripts are normal Python scripts, it’s clear by checking the content of dist/foo.py:

1 from pyarmor_runtime_000000 import __pyarmor__
2 __pyarmor__(__name__, __file__, b'\xa...')

It’s a simple script, first imports function __pyarmor__ from package pyarmor_runtime_000000, then call
this function.

Runtime package

This package pyarmor_runtime_000000 is generated by Pyarmor, it’s also a normal Python package, here it’s
package content:

$ ls dist/pyarmor_runtime_000000
... __init__.py
... pyarmor_runtime.so

There is binary extension module pyarmor_runtime, this is a big difference from plain Python script. Generally
using binary extensions means the obfuscated scripts

• may not be compatible with different builds of CPython interpreter.

• often will not work correctly with alternative interpreters such as PyPy, IronPython or Jython

For example, when obfuscating scripts by Python 3.8, they can be run by any Python 3.8.x, but can’t be run by Python
3.7, 3.9 etc.

For example, packaging pure .py script is easy, but packaging binary extension need more work.

For example, in Android pure .py script can be run in any location, but binary extensions must be in special system
paths.

The runtime package pyarmor_runtime_000000 could be in any path, it can be taken as a third-party package,
save it in any location, and import it following Python import system.

pyarmor provides serveral options -i, --prefix to help generating right code to import it.

Runtime key

The runtime key generally is embedded into extension module pyarmor_runtime, it also could be an outer file. It
stores expire date, bind devices, and user private data etc.

Extension module pyarmor_runtime will not load the obfuscated script unless the runtime key exists and is valid.

User also could store any private data in the runtime key, then use hook script to check private data in the obfuscated
scripts.

If runtime key is stored in an outer file, any readable text in the header will be ignored. User can add comment at the
header of runtime key file, the rest part are bytes data, only in the obfuscaed scripts they could be read.

62 Chapter 3. Table of Contents

https://docs.python.org/3.11/glossary.html#term-extension-module

Pyarmor Documentation, Release 8.1.8

The differences of obfuscated scripts

Although use obfuscated scripts as they’re normal Python scripts, but the obfuscated scripts are still different from
pure Python scripts, they changes a few Python features and results in some third party packages could not work.

Here are major changed features:

• The obfsucated scripts are bind to Python major/minor version. For example, if it’s obfuscated by Python 3.6, it
must run by Python 3.6. It doesn’t work for Python 3.5

• The obfuscated scripts are platform-dependent, supported platforms and Python versions refer to Building En-
vironments

• If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it will crash to run obfuscated scripts.

• Any module may not work if it try to visit the byte code, or some attributes of code objects in the obfuscated
scripts. For example most of inspect function are broken.

• Pass the obfuscated code object by cPickle or any third serialize tool may not work.

• sys._getframe([n]) may get the different frame. Note that many third packages uses this feature to get
local variable and broken. For example, pandas, cherrypy.

• The code object attribute __file__ is <frozen name> other than real filename.

Note that module attribute __file__ is still filename. For example, obfuscate the script foo.py and run it:

def hello(msg):
print(msg)

The output will be 'foo.py'
print(__file__)

The output will be '<frozen foo>'
print(hello.__file__)

A few options may also change something:

• pyarmor cfg mix_argname=1 hides annotations.

• --private, --restrict hide function names in trace back

See also:

Work with Third-Party Libraries

Supported Third-Party Interpreter

About third-party interperter, for example Jython, and any embeded Python C/C++ code, only they could work with
CPython extension module, they could work with Pyarmor. Check third-parth interperter documentation to make sure
this.

A few known issues

• On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by dlopen, otherwise obfuscated scripts
couldn’t work.

• Boost::python does not load libpythonXY.so with RTLD_GLOBAL by default, so it will raise error “No
PyCode_Type found” as running obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os.RTLD_GLOBAL) as initializing.

• PyPy could not work with pyarmor, it’s total different from CPython

3.4. Topics 63

Pyarmor Documentation, Release 8.1.8

See also:

Target Environments

3.4.3 Insight Into Pack Command

Pyarmor 8.0 has no command pack, but --pack. It could specify an executable file generated by PyInstaller:

pyinstaller foo.py
pyarmor gen --pack dist/foo/foo foo.py

If no this option, pyarmor only obfuscates the scripts.

If this option is set, pyarmor first obfuscates the scripts, then does extra work:

• Unpacking this executable to a temporary folder

• Replacing the scripts in bundle with obfuscated ones

• Appedning runtime files to the bundle in this temporary folder

• Repacking this temporary folder to an executable file and overwite the old

Packing obfuscated scripts manually

If something is wrong with --pack, or the final bundle doesn’t work, try to pack the obfuscated scripts manually.

You need know how to using PyInstaller and using spec file, if not, learn it by yourself.

Here is an example to pack script foo.py in the path /path/to/src

• First obfuscating the script by Pyarmor1:

cd /path/to/src
pyarmor gen -O obfdist -a foo.py

• Moving runtime package to current path2:

mv obfdist/pyarmor_runtime_000000 ./

• Already have foo.spec, appending runtime package to hiddenimports

a = Analysis(
...
hiddenimports=['pyarmor_runtime_000000'],
...

)

• Otherwise generating foo.spec by PyInstaller3:

pyi-makespec --hidden-import pyarmor_runtime_000000 foo.py

• Patching foo.spec by inserting extra code after a = Analysis

1 Do not use -i and --prefix to obfuscate the scripts
2 Just let PyInstaller could find runtime package without extra pypath
3 Most of other PyInstaller options could be used here

64 Chapter 3. Table of Contents

https://www.pyinstaller.org/
https://pyinstaller.org/en/stable/usage.html
https://pyinstaller.org/en/stable/spec-files.html

Pyarmor Documentation, Release 8.1.8

a = Analysis(
...

)

Patched by PyArmor
_src = r'/path/to/src'
_obf = r'/path/to/src/obfdist'

_count = 0
for i in range(len(a.scripts)):

if a.scripts[i][1].startswith(_src):
x = a.scripts[i][1].replace(_src, _obf)
if os.path.exists(x):

a.scripts[i] = a.scripts[i][0], x, a.scripts[i][2]
_count += 1

if _count == 0:
raise RuntimeError('No obfuscated script found')

for i in range(len(a.pure)):
if a.pure[i][1].startswith(_src):

x = a.pure[i][1].replace(_src, _obf)
if os.path.exists(x):

if hasattr(a.pure, '_code_cache'):
with open(x) as f:

a.pure._code_cache[a.pure[i][0]] = compile(f.read(), a.pure[i][1],
→˓ 'exec')

a.pure[i] = a.pure[i][0], x, a.pure[i][2]
Patch end.

pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

• Generating final bundle by this patched foo.spec:

pyinstaller foo.spec

If following this example, please

• Replacing all the /path/to/src with actual path

• Replacing all the pyarmor_runtime_000000 with actual name

how to verify obfuscated scripts have been packed

Inserting some print statements in the foo.spec to print which script is replaced, or add some code only works in
the obfuscated script.

For example, add one line in main script foo.py

print('this is __pyarmor__', __pyarmor__)

If it’s not obfuscated, the final bundle will raise error.

notes

3.4.4 Insight Into RFT Mode

For a simple script, pyarmor may reform the scripts automatically. In most of cases, it need extra work to make it
works.

3.4. Topics 65

Pyarmor Documentation, Release 8.1.8

This chapter describes how RFT mode work, it’s helpful to solve RFT mode issues of complex package and scripts.

What’re RFT mode changed?

• function

• class

• method

• global variable

• local variable

• builtin name

• import name

What’re RFT mode not changed?

• argument in function definition

• keyword argument name in call

• all the strings defined in the module attribute __all__

• all the name startswith __

It’s simple to decide whether or not transform a single name, but it’s difficult for each name in attribute chains. For
example,

foo().stack[2].count = 3
(a+b).tostr().get()

So how to handle attribute stack, count, tostr and get? The problem is that it’s impossible to confirm function
return type or expression result type.In some cases, it may be valid to return different types with different arguments.

There are 2 methods for RFT mode to handle name in the attribute chains which don’t know parent type.

• rft-auto-exclude

This is default method.

The idea is search all attribute chains in the scripts and analysis each name in the chain. If not sure it’s safe to
rename, add it to exclude table, and do not touch all the names in exclude table.

By default the file .pyarmor/rft_exclude_table is used to store exclude table.

When pyarmor rft mode first run, exclude table is empty. It scans each script and append unknown names
to exclude table. After all the scripts are obfuscated, it stores all the names in the exclude table to the file
.pyarmor/rft_exclude_table.

RFT mode doesn’t remove this file, only append new names to it repeatly, please delete it manually when
needed.

When second run rft mode, it loads exclude table from .pyarmor/rft_exclude_table. Comparing with
the first time exclude table is empty, obviously the second time more names are kept, it may fix some name
errors.

It’s simple to use, but may leave more names not changed.

• rft-auto-include

This method first search all the functions, classes and methods in the scripts, add them to include table, and
transform all of them. If same name is used in attribute chains, but can’t make sure its type, leave attribute name
as it is.

66 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

For a simple script, Pyarmor could transform the script automatically. But for a complex script, it may raise
name binding error. For example:

$ python dist/foo.py

AttributeError: module 'foo' has no attribute 'register_namespace'

In order to fix this proble, exclude the problem name, leave it as it is by this way:

$ pyarmor cfg rft_excludes + "register_namespace"
$ pyarmor gen --enable-rft foo.py
$ python dist/foo.py

Repeat these steps to exclude all problem names, until it works.

This method could transform more names, but need more efforts to make the scripts work.

Enable RFT Mode

Enable RFT mode in command line:

$ pyarmor gen --enable-rft foo.py

Enable it by pyarmor cfg:

$ pyarmor cfg enable_rft=1
$ pyarmor gen foo.py

Enable rft-auto-include method by disable rft_auto_exclude:

$ pyarmor cfg rft_auto_exclude=0

Enable rft-auto-exclude method again:

$ pyarmor cfg rft_auto_exclude=1

Check transformed script

When trace rft mode is enabled, RFT mode will generate transformed script in the path .pyarmor/rft with full
package name:

$ pyarmor cfg trace_rft 1
$ pyarmor gen --enable-rft foo.py
$ ls .pyarmor/rft

Check the transformed script:

$ cat .pyarmor/rft/foo.py

Note: This feature only works for Python 3.9+

3.4. Topics 67

Pyarmor Documentation, Release 8.1.8

Trace rft log

When both of trace log and trace rft are enabled, RFT mode will log which names and attributes are transformed:

$ pyarmor cfg enable_trace=1 trace_rft=1
$ pyarmor gen --enable-rft foo.py
$ grep trace.rft .pyarmor/pyarmor.trace.log

trace.rft foo:1 (import sys as pyarmor__1)
trace.rft foo:12 (self.wScan->self.pyarmor__4)

The first log means module sys is transformed to pyarmor__1

The second log means wScan is transformed to pyarmor__4

Exclude name rule

When RFT scripts complain of name not found error, just exclude this name. For example, if no found name
mouse_keybd, exclude this name by this command:

$ pyarmor cfg rft_excludes "mouse_keybd"
$ pyarmor gen --enable-rft foo.py

If no found name like pyarmor__22, find the original name in the trace log:

$ grep pyarmor__22 .pyarmor/pyarmor.trace.log

trace.rft foo:65 (self.height->self.pyarmor__22)
trace.rft foo:81 (self.height->self.pyarmor__22)

From search result, we know height is the source of pyarmor__22, let’s append it to exclude table:

$ pyarmor cfg rft_excludes + "height"
$ pyarmor gen --enable-rft foo.py
$ python dist/foo.py

Repleat these step until all the problem names are excluded.

Handle wild card form of import

The wild card form of import — from module import * — is a special case.

If this module is in the obfuscated pakcage, RFT mode will parse the source and check the module’s namespace for a
variable named __all__

If this module is outer package, RFT mode could not get the source. So RFT mode will import it and query mod-
ule attribute __all__. If this module could not be imported, it may raise ModuleNotFoundError, please set
PYTHONPATH or any otherway let Python could import this module.

If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not
begin with an underscore character (‘_’).

Handle module attribute __all__

By default RFT mode doesn’t touch all the names in the module __all__. If this name is defined as a Class, its
methods and attributes are not changed.

68 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

It’s possible to ignore this attribute by this command:

$ pyarmor cfg rft_export__all__ 0

It will transform names in the __all__, but it may not work if it’s imported by other scripts.

3.4.5 Insight Into BCC Mode

BCC mode could convert most of functions and methods in the scripts to equivalent C functions, those c functions will
be comipled to machine instructions directly, then called by obfuscated scripts.

It requires c compiler. In Linux and Darwin, gcc and clang is OK. In Windows, only clang.exe works. It could
be configured by one of these ways:

• If there is any clang.exe, it’s OK if it could be run in other path.

• Download and install Windows version of LLVM

• Download https://pyarmor.dashingsoft.com/downloads/tools/clang-9.0.zip, it’s about 26M bytes, there is only
one file in it. Unzip it and save clang.exe to $HOME/.pyarmor/. $HOME is home path of current logon
user, check the environment variable HOME to get the real path.

Enable BCC mode

After compiler works, using --enable-bcc to enable BCC mode:

$ pyarmor gen --enable-bcc foo.py

All the source in module level is not converted to C function.

Trace bcc log

To check which functions are converted to C function, enable trace mode before obfuscate the script:

$ pyarmor cfg enable_trace=1
$ pyarmor gen --enable-bcc foo.py

Then check the trace log:

$ ls .pyarmor/pyarmor.trace.log
$ grep trace.bcc .pyarmor/pyarmor.trace.log

trace.bcc foo:5:hello
trace.bcc foo:9:sum2
trace.bcc foo:12:main

The first log means foo.py line 5 function hello is protected by bcc. The second log means foo.py line 9
function sum2 is protected by bcc.

Ignore module or function

When BCC scripts reports errors, a quick workaround is to ignore these problem modules or functions. Because
BCC mode converts some functions to C code, these funtions are not compatiable with Python function object. They
may not be called by outer Python scripts, and can’t be fixed in Pyarmor side. In this case use configuration option
bcc:excludes and bcc:disabled to ignore function or module, and make all the others work.

3.4. Topics 69

https://releases.llvm.org

Pyarmor Documentation, Release 8.1.8

To ignore one module pkgname.modname by this command:

$ pyarmor cfg -p pkgname.modname bcc:disabled=1

To ignore one function in one module by this command:

$ pyarmor cfg -p pkgname.modname bcc:excludes + "function name"

Use -p to specify module name and option bcc:excludes for function name. No -p, same name function in the
other scripts will be ignored too.

Exclude more functions by this way:

$ pyarmor cfg -p foo bcc:excludes + "hello foo2"

Let’s enable trace mode to check these functions are ignored:

$ pyarmor cfg enable_trace 1
$ pyarmor gen --enable-bcc foo.py
$ grep trace.bcc .pyarmor/pyarmor.trace.log

Another example, in the following commands BCC mode ignores joker/card.py, but handle all the other scripts
in package joker:

$ pyarmor cfg -p joker.card bcc:disabled=1
$ pyarmor gen --enable-bcc /path/to/pkg/joker

By both of bcc:excludes and bcc:disabled, make all the problem code fallback to default obfuscation mode,
and let others could be converted to c function and work fine.

Changed features

Here are some changed features in the BCC mode:

• Calling raise without argument not in the exception handler will raise different exception.

>>> raise
RuntimeError: No active exception to reraise

In BCC mode
>>> raise
UnboundlocalError: local variable referenced before assignment

• Some exception messages may different from the plain script.

• Most of function attributes which starts with __ doesn’t exists, or the value is different from the original.

Unsupport features

If a function uses any unsupoported features, it could not be converted into C code.

Here list unsupport features for BCC mode:

unsupport_nodes = (
ast.ExtSlice,

ast.AsyncFunctionDef, ast.AsyncFor, ast.AsyncWith,

(continues on next page)

70 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

(continued from previous page)

ast.Await, ast.Yield, ast.YieldFrom, ast.GeneratorExp,

ast.NamedExpr,

ast.MatchValue, ast.MatchSingleton, ast.MatchSequence,
ast.MatchMapping, ast.MatchClass, ast.MatchStar,
ast.MatchAs, ast.MatchOr

)

And unsupport functions:

• exec

• eval

• super

• locals

• sys._getframe

• sys.exc_info

For example, the following functions are not obfuscated by BCC mode, because they use unsupported features or
unsupported functions:

async def nested():
return 42

def foo1():
for n range(10):

yield n

def foo2():
frame = sys._getframe(2)
print('parent frame is', frame)

3.4.6 Performance and Security

Pyarmor focus on protecting Python scripts, not good at memory protection and anti-debug.

Generally even using debugger to trace binary extension pyarmor_runtime could not help to restore obfuscated
scripts, but it may by pass runtime key verification.

Pyarmor provides runtime hook feature to help users to block this risk, users could write C functions or python scripts
to detect the debugger or any attack behaviours. Pyarmor embedded these hooks into the obfuscated scripts, and called
by the obfuscated scripts on required. It could improve security significantly, but user need be expert at Python and
anti-debug.

In Windows, using --enable-themida could prevent from this leak, it could protect extension module
pyarmor_runtime.pyd very well. But in the other platforms, it need extra tools to protect binary extension
pyarmor_runtime.so.

Pyarmor provides rich options to obfuscate scripts to balance security and performance.

If anyone announces he could broken pyarmor, please try a simple script with different security options, refer
to Highest security and performace. If any irreversible obfusation could be broken, report this security issue to
pyarmor@163.com. Do not paste any hack link in pyarmor project.

3.4. Topics 71

mailto:pyarmor@163.com

Pyarmor Documentation, Release 8.1.8

Though the highest security could protect Python scripts from any hack method, but it may reduce performance. In
most of cases, we need pick the right options to balance security and performance.

Here we test some options to understand their impace on performace. All the following tests use 2 scripts
benchmark.py and testben.py. Note that the test data is different even run same test script in same machine
twice, not speak of different test script in different machine. So the elapse time in the result table is only guideline, not
exact value.

The content of benchmark.py

import sys

class BenTest(object):

def __init__(self):
self.a = 1
self.b = "b"
self.c = []
self.d = {}

def foo():
ret = []
for i in range(100000):

ret.extend(sys.version_info[:2])
ret.append(BenTest())

return len(ret)

The content of testben.py

import benchmark
import sys
import time

def metric(func):
if not hasattr(time, 'process_time'):

time.process_time = time.clock

def wrap(*args, **kwargs):
t1 = time.process_time()
result = func(*args, **kwargs)
t2 = time.process_time()
print('%-16s: %10.3f ms' % (func.__name__, ((t2 - t1) * 1000)))
return result

return wrap

@metric
def test_import():

import benchmark2 as m2
return m2

@metric
def test_foo():

benchmark.foo()

(continues on next page)

72 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

(continued from previous page)

if __name__ == '__main__':
print('Python %s.%s' % sys.version_info[:2])
test_import()
test_foo()

Different Python Version Performance

Frist obfuscate the scripts with default options, run it in different Python version, compare the elapase time with
original scripts.

In order to test the difference without and with __pycache__, run scripts twice.

There are 3 check points:

1. Import fresh module without __pycache__

2. Import module 2nd with __pycache__

3. Run function "foo", an obfuscated class is called 10,000 times

Here are test steps:

$ rm -rf dist __pycache__

$ cp benchmark.py benchmark2.py
$ python testben.py

Python 3.7
test_import : 1.303 ms
test_foo : 250.360 ms

$ python testben.py

Python 3.7
test_import : 0.290 ms
test_foo : 252.273 ms

$ pyarmor gen testben.py benchmark.py benchmark2.py
$ python dist/testben.py

Python 3.7
test_import : 0.907 ms
test_foo : 311.076 ms

$ python dist/testben.py

Python 3.7
test_import : 0.454 ms
test_foo : 359.138 ms

3.4. Topics 73

Pyarmor Documentation, Release 8.1.8

Table 8: Table-1. Pyarmor Permormace with Python Version
Time (ms) Import fresh module Import module 2nd Run function “foo”
Python Origin Pyarmor Origin Pyarmor Origin Pyarmor
3.7 1.303 0.907 0.290 0.454 252.2 311.0
3.8 1.305 0.790 0.286 0.338 272.232 295.973
3.9 1.198 1.681 0.265 0.449 267.561 331.668
3.10 1.070 1.026 0.408 0.300 281.603 322.608
3.11 1.510 0.832 0.464 0.616 164.104 289.866

RFT Mode Performance

RFT mode should be same fast as original scripts.

Here we compare RFT mode with default options, the test data is got by this way.

First obfuscate scripts with default options, then run it.

Then obfuscate scritps with RFT mode, and run it again:

$ rm -rf dist
$ pyarmor gen testben.py benchmark.py benchmark2.py
$ python dist/testben.py

$ rm -rf dist
$ pyarmor gen --enable-rft testben.py benchmark.py benchmark2.py
$ python dist/testben.py

Table 9: Table-2. Performace of RFT Mode
Time (ms) Import fresh module Run function “foo” Remark
Python Pyarmor RFT Mode Pyarmor RFT Mode
3.7 1.083 1.317 334.313 324.023
3.8 0.774 1.109 239.217 241.697
3.9 0.775 0.809 304.838 301.789
3.10 2.182 1.049 310.046 339.414
3.11 0.882 0.984 258.309 264.070

Next, we compare RFT mode and --obf-code 0 with original scritps by this way:

$ rm -rf dist __pycache__
$ python testben.py
...

$ pyarmor gen --enable-rft --obf-code=0 testben.py benchmark.py benchmark2.py
$ python testben.py
...

Table 10: Table-2.1 Performance of RFT Mode and obf-code 0
Time (ms) Import fresh module Run function “foo” Remark
Python Pyarmor RFT Mode Pyarmor RFT Mode
3.7 0.757 1.844 307.325 272.672
3.8 0.791 0.747 276.865 243.436
3.9 1.276 0.986 246.407 236.138
3.10 2.563 1.142 256.583 260.196
3.11 0.952 0.938 185.435 154.390

74 Chapter 3. Table of Contents

Pyarmor Documentation, Release 8.1.8

They’re almost same.

BCC Mode Performance

BCC mode is special. It takes a long time to load modules, because it need handle binary code, actually it’s a simplified
version of dyld.

The following test data got by this way:

$ rm -rf dist __pycache__
$ python testben.py
...

$ python testben.py
...

$ pyarmor gen --enable-bcc testben.py benchmark.py benchmark2.py
$ python dist/testben.py
...

$ python dist/testben.py
...

Table 11: Table-3. Performance of BCC Mode with Python Version
Time (ms) Import fresh module Import module 2nd Run function “foo”
Python Origin BCC Mode Origin BCC Mode Origin BCC Mode
3.7 1.130 327.906 1.000 283.469 325.828 283.972
3.8 1.358 269.592 0.277 287.710 249.187 264.473
3.9 1.383 297.131 0.781 254.888 278.289 264.585
3.10 1.261 285.891 0.325 277.887 230.421 272.073
3.11 1.248 212.937 0.219 251.810 148.020 176.307

Impact of Different Options

In order to facilitate comparison, each option is used separately. For example, test --no-wrap by this way:

$ rm -rf dist __pycache__
$ pyarmor testben.py
...

$ pyarmor gen --no-wrap testben.py benchmark.py benchmark2.py
$ pyarmor dist/testben.py

Python 3.7
test_import : 0.971 ms
test_foo : 306.261 ms

3.4. Topics 75

Pyarmor Documentation, Release 8.1.8

Table 12: Table-4. Impact of Different Options
Option Performance Security
--no-wrap Increase Reduce
--obf-module 0 Slightly increase Slightly reduce
--obf-code 0 Remarkable increase Remarkable reduce
--enable-rft Almost same Remarkable increase
--enable-themida Remarkable reduce Remarkable increase
--mix-str Reduce Increase
--assert-call Reduce Increase
--assert-import Slightly reduce Increase
--private Reduce Increase
--restrict Reduce Increase

3.4.7 Localization and Internationalization

TODO:

3.5 License Types

Contents

• Introduction

• License types

– License features

• Purchasing license

– Refund policy

• Upgrading old license

– Upgrading to Pyarmor-Basic

– Upgrading to Pyarmor-Pro

3.5.1 Introduction

This documentation is only apply to Pyarmor 8.0 plus.

Pyarmor is published as shareware, free trial version never expires, but there are some limitations:

a. Can not obfuscate big scritps1

b. Can not use feature mix-str2 to obfuscate string constant in scripts

c. Can not use RFT Mode3, BCC Mode4

1 Big Script means file size exceeds a cerntain value.
2 Mix Str: obfscating string constant in script
3 RFT Mode: renaming function/class/method/variable in Python scripts
4 BCC Mode: Transforming some Python functions in scripts to c functions, compile them to machine instructions directly

76 Chapter 3. Table of Contents

https://pypi.python.org/pypi/pyarmor/

Pyarmor Documentation, Release 8.1.8

d. Can not be used for any commercial product without permission

e. Can not be used to provide obfuscation service in any form

These limitations can be unlocked by different License Types except last one.

3.5.2 License types

Pyarmor has 3 kind of licenses:

Pyarmor Basic Basic license could unlock big script1 and mix-str2 feature.

It requires internet connection to verify license

Pyarmor Pro Pro license could unlock big script1 and mix-str2 feature.

Pro license also unlocks BCC Mode4 and RFT Mode3

It requires internet connection to verify license

Pyarmor Group Group license unlocks all limitions and doesn’t require internet.

Internet connection is only used to verify Pyarmor License in the build machine to generate the obfuscated scripts.

For the obfuscated scripts run in the customer’s device, Pyarmor has no any limitions, it’s totally controlled by users.
Pyarmor only cares about build machine.

Each license has an unique number, the format is pyarmor-vax-xxxxxx, which x stands for a digital.

Each product requires one License No. So any product in global also has an unique number in Pyarmor world.

If user has many products, many license are required.

One product in Pyarmor world means a product name and everything that makes up this name.

It includes all the devices to develop, build, debug, test product.

It also includes product current version, history versions and all the future versions.

One product may has several variants, each variant name is composed of product name plus feature name. As long as
the proportion of the variable part is far less than that of the common part, they’re considered as “one product”.

Pyarmor License could be installed in many machines and devices which belong to licensed product. But there is
limitation to be used at the same time.

In 24 hours only less than 100 devices can use one same Pyarmor License. Pyarmor License be used means use any
feature of Pyarmor in one machine. Running obfuscated scripts generated by Pyarmor is not considered as Pyarmor
License be used.

In details read EULA of Pyarmor

What’s one product

First of all, if not for sale, all the Python scripts are belong to one product.

Pyarmor is one product, it includes Pyarmor basic, Pyarmor pro, and Pyarmor group. It also include pyarmor-webui
which provides graphics interface for pyarmor. Besides, the order system of Pyarmor is a django app running in cloud-
server. This django app also belongs to one product Pyarmor. The laptop used to develop Pyarmor, the PCs used to
test Pyarmor, the cloud-server to serve order system of Pyarmor, all of them belong to one product Pyarmor.

Microsoft Office is not one product, because each product in Microsoft Office is functional independence. For exam-
ple, Microsoft Word and Microsoft Excel belong to Microsoft Office, but they’re totally different.

Microsoft Word is one product, and Micorsoft Word 2003Word 2007 etc. are belong to one product Microsoft word.

3.5. License Types 77

https://github.com/dashingsoft/pyarmor/blob/master/LICENSE

Pyarmor Documentation, Release 8.1.8

License features

Table 13: Table-1. License Features
Features Trial Basic Pro Group Remark
Basic Obfuscation Y Y Y Y 5

Expired Script Y Y Y Y 6

Bind Device Y Y Y Y 7

JIT Protection Y Y Y Y 8

Assert Protection Y Y Y Y 9

Themedia Protection Y Y Y Y 10

Big Script No Y Y Y
Mix Str No Y Y Y
RFT MODE No No Y Y
BCC MODE No No Y Y

notes

3.5.3 Purchasing license

Open shopping cart in any web browser:

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg --buy

In the shopping cart, select License Type and complete the payment online.

Please fill regname with personal or company name when placing order.

Table 14: Table-2. License Prices
License Type Net Price($) Remark
Basic 52
Pro 89
Group 158

An activation file named pyarmor-regcode-xxxx.txt will be sent by email immediately after payment is com-
pleted successfully.

Following the guide in activation file to take the purchased license effects. Or check Register Pyarmor

There are no additional license fees, apart from the cost of the license. And it only needs to be paid once, not
periodically

5 Basic Obfuscation: obfuscating the scripts by default options
6 Expired Script: obfuscated scripts has expired date
7 Bind Device: obfuscated scripts only run in specified devices
8 JIT Protection: processing some sentensive data by runtime generated binary code
9 Assert Protection: preventing others from hacking obfuscated scripts

10 Themedia Protection: using Themedia to protect Widnows dlls

78 Chapter 3. Table of Contents

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

Pyarmor Documentation, Release 8.1.8

Refund policy

If activation file isn’t used, and purchasing date is in 30 days, refund is accepted. Please

1. Email to Ordersupport@mycommerce.com with order information and ask for refund.

2. Or click FindMyOrder page to submit refund request

Out of 30 days, or activation file has been used, refund request will be rejected.

3.5.4 Upgrading old license

Not all the old license could be upgraded to latest version.

The old license could be upgraded to Pyarmor Basic freely only if it matchs these conditions:

• Following new EULA of Pyarmor

• The license no. starts with pyarmor-vax-

• The original activation file pyarmor-regcode-xxxx.txt is used not more than 100 times

• No error returns by license server

If failed to upgrade the old license, please purchase new license to use Pyarmor latest version.

Upgrading to Pyarmor Pro needs extra fees.

Table 15: Table-3. Upgrade fee from old license
License Type Upgrading fee($) Remark
Basic 0 following new EULA and match some conditions
Pro 50
Group N/A

Upgrading to Pyarmor-Basic

First find the activation file pyarmor-regcode-xxxx.txt, which is sent to registration email when purchasing
the license.

Next upgrade to Pyarmor 8.0+, according to new EULA of Pyarmor, each license is only for one product.

Assume this license will be used to obfuscate product Robot Studio, run this command:

$ pyarmor reg -u -p "Robot Studio" pyarmor-regcode-xxxx.txt

Check the upgraded license information:

$ pyarmor -v

If old license is used by many products (mainly old personal license), only one product could be used after upgrading.
For the others, it need purchase new license.

Upgrading to Pyarmor-Pro

Open shopping cart in any web browser:

https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

3.5. License Types 79

mailto:Ordersupport@mycommerce.com
https://www.findmyorder.com/store?Action=DisplayEmailCustomerServicePage&Env=BASE&Locale=en_US&SiteID=findmyor
https://github.com/dashingsoft/pyarmor/blob/master/LICENSE
https://github.com/dashingsoft/pyarmor/blob/master/LICENSE
https://order.mycommerce.com/product?vendorid=200089125&productid=301044051

Pyarmor Documentation, Release 8.1.8

If you have Pyarmor 8.0+ installed, this command also could open shopping cart:

$ pyarmor reg --buy

In the shopping cart, select Pyarmor-upgrade and complete the payment online.

A file named pyarmor-regcode-to-pro.txt will be sent by email immediately after payment is completed
successfully.

Following the guide in this file to take the purchased license effects.

3.6 FAQ

3.6.1 Asking questions in Github

Before ask question, please try these solutions:

• If using pyarmor-7 or Pyarmor < 8.0, please check Pyarmor 7.x Doc

• If you have not read Getting Started, read it

• Check Error Messages

• If you have trouble in pack, check Insight Into Pack Command

• If you have trouble in RFT Mode, check Using rftmode pro

• If you have trouble in BCC Mode, check Using bccmode pro

• If you have trouble with third-party libraries, check Work with Third-Party Libraries

• If it’s related to security and performance, check Performance and Security

• Look through this page

• Enable debug mode and trace log, check console log and trace log to find more information

• Make sure the scripts work without obfuscation

• Do a simple test, obfuscate a hello world script, and run it with python

• If not using latest Pyarmor version, try to upgrade Pyarmor to latest version.

• Search in the Pyarmor issues

• Search in the Pyarmor discussions

Please report bug in issues and ask questions in discussions

When report bug in issues, please copy the whole command line pyarmor gen and first 4 lines in the console, do
not mask version and platform information, and do not paste snapshot image:

$ pyarmor gen -O dist --assert-call foo.py
INFO Python 3.10.0
INFO Pyarmor 8.1.1 (trial), 000000, non-profits
INFO Platform darwin.x86_64

80 Chapter 3. Table of Contents

https://pyarmor.readthedocs.io/en/v7.7/
https://github.com/dashingsoft/pyarmor/issues/
https://github.com/dashingsoft/pyarmor/discussions/
https://github.com/dashingsoft/pyarmor/issues/
https://github.com/dashingsoft/pyarmor/discussions/
https://github.com/dashingsoft/pyarmor/issues/

Pyarmor Documentation, Release 8.1.8

3.6.2 License

• we use Docker to build/obfuscate the code locally then publish the Dockerfile to the client. After the build
stage, the whole environment (and the license) is gone. I wonder how the workflow would be? Can I add
the license file to the pipeline and register everytime and build?

It’s no problem to run Pyarmor in Docker or CI pipeline to obfuscate application. Each build registering pyarmor
with pyarmor-regfile-xxxx.zip which is generated in initial registration. But It’s not allowed to dis-
tribute pakcage pyarmor and Pyarmor Basic, Pyarmor Pro, Pyarmor Group License to customer, and don’t run
too many build dockers.

• We are currently using a trial license for testing, but unfortunately our scripts are big and we are not able
to statistically test the operation of Pyarmor. Do you have a commercial trial license for a certain trial
period so that we can test the operation of Pyarmor for our scripts?

Sorry, Pyarmor is a small tool and only cost small money, there is no demo license plan.

Most of features could be verified in trial version, other advanced features, for example, mix-str, bcc mode and
rft mode, could be configured to ignore one function or one script so that all the others could work with these
advanced features.

• Is the Internet connection only required to generate the obfuscated script? No internet connection is
required on the target device that uses such script?

No internet connection is required on target device.

Pyarmor has no any control or limitation to obfuscated scripts, the behaviours of obfuscated scripts are totally
defined by user.

Please check Pyarmor EULA 3.4.1

• I am interested to know if the users are entitled to updates to ensure compatibility with future versions of
Python.

No. Pyarmor license works with current Pyarmor version forever, but may not work with future Pyarmor version.
I can’t make sure current Pyarmor version could support all the future versions of Python, so the answer is no.

• If we buy version 8 license, is it compatible with earlier versions like 6.7.2?

No. Pyarmor 8 license can’t be used with earlier versions, it may report HTTP 401 error or some unknown
errors.

• Our company has a suite of products that we offer together or separately to our clients. Do we need a
different license for each of them?

For a suite of products, if each product is different totally, for example, a suite “Microsoft Office” includes
“Microsoft Excel”, “Microsoft Word”, each product need one license.

If a suite of products share most of Python scripts, as long as the proportion of the variable part of each product
is far less than that of the common part, they’re considered as “one product”.

If each product in a suite of products is functionally complementary, for example, product “Editor” for editing
the file, product “Viewer” for view the file, they’re considered as “one product”

Upgrading

• Can we obfuscate our codebase with the same level as current? (we are obfuscating our code using super
plus mode (”–advanced 5”). Is that available on PyArmor Basic? If we upgrade the old license, will the
current license expire? (no more available in terms of PyArmor v7? How long is the current license valid?
Is there a published end-of-support schedule?

3.6. FAQ 81

Pyarmor Documentation, Release 8.1.8

The old license is valid for ever. In this case need not upgrade old license to Pyarmor Basic licnse, just install
Pyarmor 8.x, and using pyarmor-7 with old license.

Check License Types for more information about upgrading

3.6.3 Purchasing

• How to refund my order?

If this key of this order isn’t activated, you can refund the order by one of ways

1. Email to Ordersupport@mycommerce.com with order information and ask for refund.

2. Or click FindMyOrder page to submit refund request

82 Chapter 3. Table of Contents

mailto:Ordersupport@mycommerce.com
https://www.findmyorder.com/store?Action=DisplayEmailCustomerServicePage&Env=BASE&Locale=en_US&SiteID=findmyor

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

83

Pyarmor Documentation, Release 8.1.8

84 Chapter 4. Indices and tables

Python Module Index

p
pyarmor, 40
pyarmor.cli, 40
pyarmor.cli.core, 40
pyarmor.cli.runtime, 40

85

Pyarmor Documentation, Release 8.1.8

86 Python Module Index

Index

Symbols
-assert-call

pyarmor-gen command line option, 48
-assert-import

pyarmor-gen command line option, 48
-bind-data DATA

pyarmor-gen command line option, 45
-enable <jit,rft,bcc,themida>

pyarmor-gen command line option, 47
-enable-bcc

pyarmor-gen command line option, 47
-enable-jit

pyarmor-gen command line option, 47
-enable-rft

pyarmor-gen command line option, 47
-enable-themida

pyarmor-gen command line option, 47
-home PATH[,GLOBAL[,LOCAL[,REG]]]

pyarmor command line option, 42
-mix-str

pyarmor-gen command line option, 47
-no-wrap

pyarmor-gen command line option, 47
-obf-code <0,1>

pyarmor-gen command line option, 47
-obf-module <0,1>

pyarmor-gen command line option, 47
-outer

pyarmor-gen command line option, 46
-pack BUNDLE

pyarmor-gen command line option, 48
-period N

pyarmor-gen command line option, 46
-platform NAME

pyarmor-gen command line option, 46
-prefix PREFIX

pyarmor-gen command line option, 44
-private

pyarmor-gen command line option, 46

-restrict
pyarmor-gen command line option, 46

-O PATH, -output PATH
pyarmor-gen command line option, 44

-b DEV, -bind-device DEV
pyarmor-gen command line option, 45

-d, -debug
pyarmor command line option, 41

-e DATE, -expired DATE
pyarmor-gen command line option, 44

-g ID, -device ID
pyarmor-reg command line option, 53

-g, -global
pyarmor-cfg command line option, 51

-i
pyarmor-gen command line option, 44

-p NAME
pyarmor-cfg command line option, 51

-p NAME, -product NAME
pyarmor-reg command line option, 52

-q, -silent
pyarmor command line option, 41

-r, -recursive
pyarmor-gen command line option, 44

-r, -reset
pyarmor-cfg command line option, 51

-u, -upgrade
pyarmor-reg command line option, 53

__assert_armored__() (built-in function), 59
__pyarmor__() (built-in function), 58

A
Activation File, 39

B
BCC Mode, 39
Build Machine, 39

E
environment variable

87

Pyarmor Documentation, Release 8.1.8

LANG, 27, 28, 57
PYARMOR_CC, 53
PYARMOR_CLI, 53
PYARMOR_HOME, 42, 53
PYARMOR_LANG, 27, 57
PYARMOR_PLATFORM, 53
PYARMOR_RKEY, 20, 39, 57
PYTHONPATH, 68

extension module, 39

G
Global Path, 39

H
Home Path, 39
Hook script, 39

J
JIT, 39

L
LANG, 27, 28, 57
Local Path, 39

O
Outer Key, 39

P
Platform, 39
Plugin script, 40
PluginName (built-in class), 55
post_build() (PluginName static method), 55
post_key() (PluginName static method), 55
post_runtime() (PluginName static method), 55
Pyarmor, 40
pyarmor (module), 40
Pyarmor Basic, 40, 77
pyarmor command line option

-home PATH[,GLOBAL[,LOCAL[,REG]]],
42

-d, -debug, 41
-q, -silent, 41

Pyarmor Group, 40, 77
Pyarmor Home, 40
Pyarmor License, 40
Pyarmor Package, 40
Pyarmor Pro, 40, 77
Pyarmor Users, 40
pyarmor-cfg command line option

-g, -global, 51
-p NAME, 51
-r, -reset, 51

pyarmor-gen command line option
-assert-call, 48

-assert-import, 48
-bind-data DATA, 45
-enable <jit,rft,bcc,themida>, 47
-enable-bcc, 47
-enable-jit, 47
-enable-rft, 47
-enable-themida, 47
-mix-str, 47
-no-wrap, 47
-obf-code <0,1>, 47
-obf-module <0,1>, 47
-outer, 46
-pack BUNDLE, 48
-period N, 46
-platform NAME, 46
-prefix PREFIX, 44
-private, 46
-restrict, 46
-O PATH, -output PATH, 44
-b DEV, -bind-device DEV, 45
-e DATE, -expired DATE, 44
-i, 44
-r, -recursive, 44

pyarmor-reg command line option
-g ID, -device ID, 53
-p NAME, -product NAME, 52
-u, -upgrade, 53

pyarmor.cli (module), 40
pyarmor.cli.core (module), 40
pyarmor.cli.runtime (module), 40
PYARMOR_HOME, 42
PYARMOR_LANG, 27
PYARMOR_RKEY, 20, 39
Python, 40
Python Package, 40
Python Script, 40
PYTHONPATH, 68

R
Registration File, 40
RFT Mode, 40
Runtime Files, 40
Runtime Key, 40
Runtime Package, 40

T
Target Device, 40

88 Index

	How the documentation is organized
	Getting help
	Table of Contents
	Tutorials
	Getting Started
	Installation
	Basic Tutorial
	Advanced Tutorial
	Customization and Extension

	How To
	Highest security and performace
	Obfuscating django app
	Building obfuscated wheel
	Packing with outer key
	Protecting system packages
	Fix encoding error
	Removing docstring
	Work with Third-Party Libraries
	Register Pyarmor

	References
	Concepts
	Man Page
	Building Environments
	Target Environments
	Error Messages

	Topics
	Insight Into Obfuscation
	Understanding Obfuscated Script
	Insight Into Pack Command
	Insight Into RFT Mode
	Insight Into BCC Mode
	Performance and Security
	Localization and Internationalization

	License Types
	Introduction
	License types
	Purchasing license
	Upgrading old license

	FAQ
	Asking questions in Github
	License
	Purchasing

	Indices and tables
	Python Module Index
	Index

