PyArmor Documentation
Release 6.6.2

Jondy Zhao

Feb 28, 2021

Contents

1 Installation and Uninstallation 3
1.1 Verifying the installation e e e 3
1.2 Installed commands e 3
1.3 Cleanuninstallation e e e e e e e 4

2 Using PyArmor 5
2.1 Obfuscating Python Scripts L e 5
2.2 Distributing Obfuscated Scripts e e 6
2.3 Generating License For Obfuscated Scripts e 6
2.4 Extending License Type i i i i e e e e e e e e 7
2.5 Obfuscating Single Module e e e e 7
2.6 Obfuscating Whole Package e 7
2.7 Packing Obfuscated Scripts L e 8
2.8 Improving Security Further L 8

3 Advanced Topics 11
3.1 UsingSuperMode L e 11
32 Howtouseouterlicensefile e 12
3.3 Obfuscating Many Packages e 12
3.4 Solve Conflicts With Other Obfuscated Libraries 13
3.5 Distributing Obfuscated Packages L 13
3.6 Distributing Obfuscated Scripts To Other Platform 14
3.7 Obfuscating Scripts By Other Python Version 16
3.8 Runbootstrap code in plain sCripts L. e e e e 16
3.9 Let Python Interpreter Recognize Obfuscated Scripts Automatically 17
3.10 Obfuscating Python Scripts In Different Modes 18
3.11 Using Plugin to Extend License Type 19
3.12 Bundle Obfuscated Scripts To One Executable File 19
3.13 Bundle obfuscated scripts with customized specfile 0oL, 20
3.14 TImproving The Security By RestrictMode 21
3.15 Using Plugin To Improve Security o 0 v v i i et e e e e e e e e 22
3.16 Call pyarmor From Python Script e 24
3.17 Check license periodly when the obfuscated scriptisrunning 25
3.18 Work with Nuitka 0 o e 25
3.19 Work with Cython o e e e e e e e e 26
3.20 Work with PyUpdater o e e e e e 27
3.21 Binding obfuscated scripts to Python interpreter oL oL 27

3.22 Customizing cross protection code e e e e e e e e
3.23 Storing runtime file license.lictoany location Lo oo
3.24 Register multiple pyarmor in same machine o oL oL
3.25 How to get license information of one obfuscated package
326 Howtoprotectdatafiles e
3.27 How toremove dOCStrings v v v v v vttt e e e e e e e e e e
3.28 Using restrict mode with threading and multiprocessing,
3.29 Repack Pylnstaller bundle with obfuscated scripts Lo ...
3.30 Build obfuscated scripts to €Xtensions oo e e e e e e e e e
3.31 Distributing Obfuscated Package Withpip
Examples

4.1 Obfuscating and Packing PyQt Application
4.2 Running obfuscated Django site with Apache and mod_wsgi
Using Project

5.1 Managing Obfuscated Scripts With Project Lo 0oL,
5.2 Obfuscating Scripts With Different Modes o
5.3 Obfuscating Some Special Scripts With Child Project
5.4 Project Configuration File e e e
Man Page

6.1 Common OptoONS ot vt i e e e e e e e
6.2 obfuscate
6.3 LHCenSes
6.4 pack. . ..o e
6.5 hdinfo. L
6.6 NIt e e
6.7 config e e e e e e e
6.8 build
6.9 Info
6.10 check L L e e e
6.11 banchmark e
6.12 TEISIEr e e e e e e e e e e e e e
6.13 download
6.14 runtime
Understanding Obfuscated Scripts

7.1 Global Capsule
7.2 Obfuscated Scripts L. e e e
7.3 BootstrapCode e e e e e e e e e
7.4 Runtime Package L e
7.5 The License File for Obfuscated Script
7.6 Key Points to Use Obfuscated Scripts
7.7 The Differences of Obfuscated Scripts
7.8 About Third-Party Interpreter L o e e e
How PyArmor Does It

8.1 How to Obfuscate Python Scripts
8.2 HowtoDeal With Plugins e
8.3 Special Handling of Entry Script o e
8.4 How to Run Obfuscated Script o e
8.5 How To Pack Obfuscated Scripts o o e e e e e e

Runtime Module pytransform

37
37
38

41
41
42
42
43

47
48
48
52
55
57
58
59
60
61
62
62
63
63
64

67
67
67
68
69
70
70
70
71

73
73
74
76
78
79

83

0.1 CONENLS . . v . v v o e e e e e e e e e e 83

0.2 Examples e e e e e e e e e e e e 85
10 Support Platfroms 87
10.1 Features o v v i i e e e e e e e e e e e 88
10.2 Standard Platform Names 89
10.3 Downloading Dynamic Library By Manual 90
11 The Modes of Obfuscated Scripts 93
I1.1 SuperMode e e e e e e 93
11.2 Advanced Mode L e e e e e e e e 94
11.3 VM Mode e e e 94
11.4 Obfuscating Code Mode ittt e 94
11.5 WrapMode o . e e e e e e e e e e e e 95
11.6 Obfuscatingmodule Mode e e e e e 96
11.7 Restrict Mode o e e e e e e 96
12 The Performance of Obfuscated Scripts 101
12.1 The performance in differentmodes L 102
12.2 Run cProfile with obfuscated scritps L. e e e 103
12.3 Performance of Big Script oL e e 103
13 The Security of PyArmor 105
13.1 Cross Protection for _pytransform e e e e 105
13.2 The security of different feature number 0oL 107
13.3 Changing core algorithm from time totime o 107
14 When Things Go Wrong 109
14.1 Necessary Knowledges o e e e 109
142 Common SOIUtIONS v vt v e e e e e e e 110
14.3 Segmentfault L. e e e e e e e e e 111
14.4 Bootstrap Problem L e e e e 112
14.5 Obfuscating Scripts Problem L e 114
14.6 Running Obfuscated Scripts Problem 0o oo 115
14.7 Packing Obfuscated Scripts Problem L L 119
14.8 PyArmor Registration Problem e e 119
149 KnownlIssues. e e e 120
14.10 Misc. QUESLIONS v o i e e e e e e e e e e e e e e e e e 120
15 License 123
I5.1 Purchase e e e 124
152 Upgrade NOtes o o i it e e e e e e e e e e e e e 124
15.3 Technical SUpport e e e e e e e e e e e 124
154 Q& A . . e e e 125
16 Change Logs 127
16.1 Incompatible iSSUES L e e e e e e e e e e 127
162 dev VerSion i e e e e e e e e e e e 127
163 6.6.2 . . . e e 128
164 6.6.1 e e 128
16.5 6.6.0 . . . e e e 128
16.6 6.5.0 . . . e e 128
16.7 6.5.5 . o e e e 129
16.8 6.5.3 . . . e 129
16.9 6.5.2 . . . 129

16.10 6.5.1 « o o 129

16.11 6.5.0 « . o 129
16.12 6.4.4 . . 130
16.13 6.4.3 . o e e 130
16.14 6.4.2 e 130
16.15 6.4.1 o o 130
16.16 6.4.0 . . . 130
16.17 6.3.7 . o o 131
16.18 6.3.6 131
16.19 6.3.5 . o e e 131
1620 6.3.4 e e 131
16.21 6.3.3 131
1622 6.3.2 . . 132
16.23 6.3.1 . . o 132
1624 6.3.0 . . . e 132
16.25 6.2.9 . . L e e 132
16.26 6.2.8 . . . L 133
16.27 6.2.7 . . o o 133
1628 6.2.6 133
16.29 6.2.5 . . e e 133
1630 6.2.4 133
1631 6.2.3 . . o e 133
1632 6.2.2 . o 134
1633 6.2.1 . . 134
1634 6.2.0 . . . 134
1635 6.1.0 . . . o e 135
1636 6.0.2 e e 135
1637 6.0.1 . . . 135
1638 5.9.8 .« . 136
16.39 5.9.7 . 136
16.40 5.9.6 . . . e 136
16.41 5.9.5 . . L e 136
1642 5.9.4 136
1643 5.9.3 137
16.44 5.9.2 . . o L 137
16.45 5.9.1 . o e e 137
16.46 5.9.0 e 137
16.47 5.8.9 . . L e 138
1648 5.8.8 . . L 138
16.49 5.8.7 . 138
16.50 5.8.6 . . . 138
16.51 5.8.5 . o o e 138
16.52 5.8.4 . . L e 139
16.53 5.8.3 . 139
16.54 5.8.2 . 139
16.55 5.8.1 o o 139
16.56 5.8.0 . . . e 139
16.57 5.7.10 .« o o o e 139
16.58 5.7.9 .« o 140
16.59 5.77.8 o 140
16.60 5.7.7 . . . o 140
16.61 5.7.6 . . o e 140
16.62 57.5 . o o e 140

16.63 5.7.4 . . L e e 140

16.64 5.7.3 . o 140

16.65 5.7.2 . . o o 141
16.660 5.7.1 141
16.67 5.7.0 . . o e e e 141
16.68 5.6.8 e 142
16.60 5.6.7 e 142
16.70 5.6.6 142
16.71 5.6.5 . . 142
16.72 5.6.4 . . . 143
16.73 5.6.3 . o e 143
1674 5.6.2 e 143
16.75 5.6.1 o o 143
16.76 5.6.0 . . . 143
L1677 5.5.7 o o o 144
16.78 5.5.6 . o e 144
16.79 5.5.5 .« o o e e 144
16.80 5.5.4 144
16.81 5.5.3 & o o 144
16.82 5.5.2 . 144
16.83 5.5.1 . o o e 145
16.84 5.5.0 . . L . e 145
16.85 5.4.6 . . . 145
16.86 5.4.5 . . 145
16.87 5.4.4 . . o 146
16.88 5.4.3 . . 146
16.80 5.4.2 . o L e 146
1690 5.4.1 . . L o e e 146
1691 5.4.0 « . 146
16.92 53,13 . . . 146
1693 5.3.12 . . . 146
16.94 53,11 . . o o o e 146
1695 53.10 . . . o o e 147
16.96 5.3.9 147
16.97 5.3.8 . 147
16.98 5.3.7 . 147
16.99 5.3.6 . . e 147
16.1005.3.5 . . . o e 147
16.1015.3.4 . . L o e 147
16.1025.3.3 . . o 147
16.1035.3.2 . . L 148
16.1045.3.1 . . o 148
16.1055.3.0 . . . o e 148
16.1065.2.9 e 148
16.1075.2.8 .« o o 148
16.1085.2.7 . . o 148
16.1095.2.6 149
16.1105.2.5 . o o e e 149
16.1115.2.4 . o o o e 149
16.1125.2.3 o o o 149
16.1135.2.2 . 149
L16.1145.2.1 . 149
16.1155.2.0 . o o o o e e 149
I6.1165.1.2 . L o o e 150
T6.1TT5. 1.1 o o o o e 150

T6.1185.1.0 .« o o 150

16.1195.0.5 .« o o o 150
16.1206.0.4 . . . L 151
16.1215.03 . o o e e 151
16.1225.0.2 . . L L e 151
16.1235.0.1 « o o 151
16.1244.6.3 . . . 151
L6.1254.6.2 . . . 152
L16.1264.6.1 . . o o o 152
16.1274.6.0 . . o e 152
L6.284.5.5 . o o o e e 152
16.129.5.4 152
16.1304.5.3 .« . o 152
16.1314.5.2 . . 152
6132451 L o o e e 152
16.1334.5.0 . o o e 152
16.1344.4.2 . L 153
16.1354.4.2 . . 153
L6.1364.4.1 . . 153
16.1374.4.0 . . o e e e 153
16.1384.3.4 . L L e 153
16.13M.3.3 L L e 153
16.1404.3.2 . L 153
16.1414.3.1 . . 154
16.1424.3.0 . . . L 154
16.1434.2.3 L L L e 154
16.1444.2.2 L L L L e 154
L6.1454.2.1 . 154
16.1464.1.4 . . 154
L6.I4TA L3 . o o 155
6. 14812 L o e 155
T6.14M 1.1 . o L e 155
16.1504.0.3 .« o o 155
16.1514.0.2 . . o 155
16.1524.0.1 . . o o 155
16.1533.9.9 . . e e 155
16.1543.9.8 . . L . e 155
16.1553.9.7 . 156
16.1563.9.6 156
16.1573.9.5 . . 156
16.158.9.4 . . 156
16.1593.9.3 . o L e 156
16.16(B.9.2 e e 156
16.1613.9.1 .« . 156
16.1623.9.0 156
16.1633.8.10 o o 157
16.1643.8.9 . . . e 157
16.1653.8.8 e 157
16.1663.8.7 . . o o e 157
16.1673.8.0 157
16.1683.8.5 . . . 157
16.169.8.4 . . . o 158
16.170B.8.3 . . . o e 158
16.1713.8.2 . L o o e 158

vi

L6.1723.8.1 o 158

16.1733.8.0 . . . o e e e 158
L6.1743.77.5 o . o e e e e e e e e e 158
16.1753.7.4 . . o e e e e 158
16.1763.7.3 . o o e e 158
L6.1773.7.2 o o o e e 158
L6.1783.7.1 o o e e e e e e 159
16.179.7.0 . . o o e e e e e 159
16.18(B.6.2 . . . o e e e e e e e e 159
16.1813.6.1 e e e 159
16.1823.6.0 L e e 159
16.1833.5.1 . . o o e e e 159
16.1843.5.0 e e e e e 159
16.1853.4.3 . . o e e e 160
16.18G3.4.2 . . . e e 160
16.08T3.4.1 . . o e 160
16.1883.4.0 e e e 160
16.1893.3.1 . . o o e e e e 160
16.1903.3.0 e e e e e 160
16.1913.2.1 . . o e e 161
16.1923.2.0 e e 161
16.1933. 1.7 . . o o e e 161
T6.1943.1.6 . . . o e e e e 161
16.1953.1.5 . . o o e e e e e 161
16.19G3. 1.4 e e e e e e 161
16.1973.1.3 . o o e s 162
T6.1983.1.2 . . o o e 162
T16.1993. 1.1 . . o o e e 162
16.2003.0.1 . . . o e e e e e 162
16.2012.6.1 . . o L e e e e e e e 163
16.2022.5.5 . . e 163
16.2032.5.4 . . o L e 163
16.2042.5.3 . . o L e 163
16.2052.5.2 . o o e e e 163
16.2062.5.1 . . o o e e e 163
16.2072.4.1 . . o e e 163
16.2082.3.4 . . . L s 164
16.2092.3.3 . . L e e 164
16.2102.3.2 . o o e e e 164
T16.2112.3.1 . o e e e e e e 164
16.2122.2.1 . . o e e e e e e e 164
L16.2132.1.2 . o e e 164
T6.2142. 1.1 . . o o e e 164
16.2132.0.1 . o o o e e 164
16.2161.7.7 . . o o e e e e e 165
L6.2171.7.6 . . o o e e e e e e e e e e e 165
16.2181.7.5 . . e e 165
16.2101.7.4 . . o e 165
16.2201.7.3 . . o e 165
T6.2211.7.2 o o o e e e 165
16.2221.7.1 . e e e e e 165
16.2231.7.0 . . o e e e e 166
17 Indices and tables 167

vii

Index 169

viii

PyArmor Documentation, Release 6.6.2

Version PyArmor 6.6

Homepage https://pyarmor.dashingsoft.com/

Contact jondy.zhao@gmail.com

Authors Jondy Zhao

Copyright This document has been placed in the public domain.

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts. It protects Python scripts by the following ways:

* Obfuscate code object to protect constants and literal strings.
» Obfuscate co_code of each function (code object) in runtime.
* Clear f_locals of frame as soon as code object completed execution.
* Verify the license file of obfuscated scripts while running it.
PyArmor supports Python 2.6, 2.7 and Python 3.
PyArmor is tested against Windows, Mac OS X, and Linux.

PyArmor has been used successfully with FreeBSD and embedded platform such as Raspberry Pi, Banana
Pi,Orange Pi,TS-4600 / TS-7600 etc. butis not fullly tested against them.

Contents:

Contents 1

https://pyarmor.dashingsoft.com/
mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 6.6.2

2 Contents

CHAPTER 1

Installation and Uninstallation

PyArmor is a normal Python package. You can download the archive from PyPi, but it is easier to install using pip
where is available, for example:

’pip install pyarmor

or upgrade to a newer version:

’pip install --upgrade pyarmor

There is also web ui for pyarmor, install it by this command:

’pip install pyarmor-webui

1.1 Verifying the installation

On all platforms, the command pyarmor should now exist on the execution path. To verify this, enter the command:

’pyarmor —-—version

The result should show PyArmor Version X.Y.ZorPyArmor Trial Version X.Y.Z.

If the command is not found, make sure the execution path includes the proper directory.

1.2 Installed commands

The complete installation places these commands on the execution path:
e pyarmor is the main command. See Using PyArmor.

* pyarmor-webui is used to open web ui of PyArmor.

https://pypi.python.org/pypi/pyarmor/
http://www.pip-installer.org/

PyArmor Documentation, Release 6.6.2

If you do not perform a complete installation (installing via pip), these commands will not be installed as commands.
However, you can still execute all the functions documented below by running Python scripts found in the distribution
folder. The equivalent of the pyarmor command is pyarmor-folder/pyarmor.py.

pyarmor-webui is pyarmor-folder/webui/server.py.

1.3 Clean uninstallation

The following files are created by pyarmor after it has been installed:

~/.pyarmor/.pyarmor_capsule.zip (since v6.2.0)
~/.pyarmor/license.lic (since v5.8.0)
~/.pyarmor/platforms/

{pyarmor—-folder}/license.lic (before v5.8.0)
~/.pyarmor_capsule.zip (before v6.2.0)

/path/to/project/.pyarmor_config (if using project)

Run the following commands to make a clean uninstallation:

pip uninstall pyarmor

rm
rm
rm

rm

-rf ~/.pyarmor
-rf {pyarmor-folder} (before v5.8.0)
-rf ~/.pyarmor_capsule.zip (before v6.2.0)

/path/to/project/.pyarmor_config

Note: The path ~ may be different when logging by different user.

Chapter 1. Installation and Uninstallation

CHAPTER 2

Using PyArmor

The syntax of the pyarmor command is:

pyarmor [command] [options]

2.1 Obfuscating Python Scripts

Use command obfuscate to obfuscate python scripts. In the most simple case, set the current directory to the location
of your program myscript . py and execute:

’pyarmor obfuscate myscript.py

PyArmor obfuscates myscript .py and all the = . py in the same folder:
¢ Create .pyarmor_capsule.zip in the HOME folder if it doesn’t exists.
* Creates a folder di st in the same folder as the script if it does not exist.
* Writes the obfuscated myscript .py in the dist folder.
* Writes all the obfuscated * . py in the same folder as the script in the dist folder.
» Copy runtime files used to run obfuscated scripts to the dist folder.

In the dist folder the obfuscated scripts and all the required files are generated:

dist/
myscript.py

pytransform/
__init__.py
_pytransform.so/.dll/.dylib

The extra folder pyt ransform called Runtime Package, it’s required to run the obfuscated script.

Normally you name one script on the command line. It’s entry script. The content of myscript .py would be like
this:

PyArmor Documentation, Release 6.6.2

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor___(__ name__, file_ , b'\x06\x0£f...")

The first 2 lines called Bootstrap Code, are only in the entry script. They must be run before using any obfuscated file.
For all the other obfuscated = . py, there is only last line:

__pyarmor__ (__name__, file. , b'\x0a\x02...'")

Run the obfuscated script:

cd dist
python myscript.py

By default, only the ».py in the same path as the entry script are obfuscated. To obfuscate all the % .py in the
sub-folder recursively, execute this command:

’pyarmor obfuscate —--recursive myscript.py

2.2 Distributing Obfuscated Scripts

Just copy all the files in the output path dist to end users. Note that except the obfuscated scripts, the Runtime Package
need to be distributed to end users too.

PyArmor only deals with .py files, if there are data files or binary extension in the package, copy them to dist
manually.

The Runtime Package may not with the obfuscated scripts, it could be moved to any Python path, only if import
pytransform works.

About the security of obfuscated scripts, refer to The Security of PyArmor

Note: PyArmor need NOT be installed in the runtime machine

2.3 Generating License For Obfuscated Scripts

Use command /icenses to generate new 1icense.lic for obfuscated scripts.

Generate an expired license for obfuscated script:

pyarmor licenses ——expired 2019-01-01 r001

PyArmor generates new license file:
¢ Read data from .pyarmor_capsule.zip in the HOME folder
e Create license.licinthe licenses/r001 folder
e Create l1icense.lic.txt inthe licenses/r001 folder

Obfuscate the scripts with this new one:

pyarmor obfuscate —--with-license licenses/r001/license.lic myscript.py

6 Chapter 2. Using PyArmor

PyArmor Documentation, Release 6.6.2

Now run obfuscated script, It will report error after Jan. 1, 2019:

cd dist
python myscript.py

Generate license to bind obfuscated scripts to fixed machine, first get hardware information:

pyarmor hdinfo

Then generate new license bind to harddisk serial number and mac address:

pyarmor licenses —--bind-disk "100304PBN2081SEF3NJS5T" —-bind-mac "20:cl:d2:2f:a0:96"
—code-002

Run obfuscated script with new license:

pyarmor obfuscate —-with-license licenses/code-002/license.lic myscript.py

cd dist/
python myscript.py

It also could be use an outer license file license.lic with the obfuscated scripts. By outer license, just obfuscate scripts
once, then generate new license to overwrite the old license on demand. This is the tradional way, refer to How to use
outer license file

2.4 Extending License Type

It’s easy to extend any other licese type for obfuscated scripts: just add authentication code in the entry script.
The script can’t be changed any more after it is obfuscated, so do whatever you want in your script. In this case the
Runtime Module pytransform would be useful.

The prefer way is Using Plugin to Extend License Type. The advantage is that your scripts needn’t be changed at all.
Just write authentication code in a separated script, and inject it in the obfuscated scripts as obfuscating. For more
information, refer to How to Deal With Plugins

Here are some plugin examples

https://github.com/dashingsoft/pyarmor/tree/master/plugins

2.5 Obfuscating Single Module

To obfuscate one module exactly, use option ——exact:

’pyarmor obfuscate ——-exact foo.py

Only foo.py is obfuscated, now import this obfuscated module:

cd dist
python -c¢ "import foo"

2.6 Obfuscating Whole Package

Run the following command to obfuscate a package:

2.4. Extending License Type 7

https://github.com/dashingsoft/pyarmor/tree/master/plugins

PyArmor Documentation, Release 6.6.2

pyarmor obfuscate —-recursive —-output dist/mypkg mykpg/__init__ .py

To import the obfuscated package:

cd dist
python -c¢ "import mypkg"

2.7 Packing Obfuscated Scripts

Use command pack to pack obfuscated scripts into the bundle.

First install PyInstaller:

’pip install pyinstaller

Set the current directory to the location of your program myscript . py and execute:

’pyarmor pack myscript.py

PyArmor packs myscript.py:

¢ Execute pyarmor obfuscate to obfuscate myscript.py

e Execute pyinstaller myscipt.py tocreate myscript.spec

» Update myscript . spec, replace original scripts with obfuscated ones

* Execute pyinstaller myscript.spec to bundle the obfuscated scripts
In the dist/myscript folder you find the bundled app you distribute to your users.

Run the final executeable file:

dist/myscript/myscript

Generate an expired license for the bundle:

pyarmor licenses ——expired 2019-01-01 code-003
pyarmor pack --with-license licenses/code-003/license.lic myscript.py

dist/myscript/myscript

For complicated cases, refer to command pack and How To Pack Obfuscated Scripts.

2.8 Improving Security Further

These PyArmor features could import security further:

1. Using Super Mode to obufscate scripts if possible, otherwise enable Advanced Mode if the platform is supported.
In Windows and the performance meets the requirement, enable VM Mode

2. Try to Binding obfuscated scripts to Python interpreter if they’re distributed as one executable bundle.
3. Make sure the entry script is patched by cross protection code, and try to Customizing cross protection code

4. Use the corresponding Restrict Mode to make sure no one can import the obfuscated module.

8 Chapter 2. Using PyArmor

https://pyarmor.dashingsoft.com/
https://pyarmor.readthedocs.io/en/latest/how-to-do.html#special-handling-of-entry-script

PyArmor Documentation, Release 6.6.2

5. Use the high security code obfuscation —obf-code=2

6. Using Plugin To Improve Security by injecting your private checkpoints in the obfuscated scripts, there is one
decorator assert_armored and one function check_armored in the :module:‘pytransfrom® used to prevent mon-
key trick hacking. You can also add any other check points to make sure the obfuscated scripts are not hacked.

7. If data files need to be protected, refer to How to protect data files

About the security of obfuscated scripts, refer to 7he Security of PyArmor

2.8. Improving Security Further 9

PyArmor Documentation, Release 6.6.2

10 Chapter 2. Using PyArmor

CHAPTER 3

Advanced Topics

3.1 Using Super Mode

The Super Mode is introduced since v6.2.0, there is only one extension module required to run the obfuscated scripts,
and the Bootstrap Code which may confused some users before is gone now, all the obfuscated scripts are same.
It improves the security remarkably, and makes the usage simple. The only problem is that only the latest Python
versions 2.7, 3.7, 3.8 and 3.9 are supported.

Enable super mode by option ——advanced 2, for example:

pyarmor obfuscate --advanced 2 foo.py

When distributing the obfuscated scripts to any other machine, so long as extension module pytransform in any
Python path, the obfuscated scrips could work well.

In order to restirct the obfuscated scripts, generate a 1 icense. lic in advanced. For example:

pyarmor licenses —--bind-mac xx:xx:xx:xx regcode-01

Then specify this license with option ——with-1icense, for example:

pyarmor obufscate —-with-license licenses/regcode-01/license.lic \
—-—advanced 2 foo.py

By this way the specified license file will be embedded into the extension module pytransform. If you prefer to
use outer License.lic, so it can be replaced with the others easily, just set option ——with-1icense to special
value outer, for example:

pyarmor obfuscate —--with-license outer --advanced 2 foo.py

More information, refer to next section.

11

PyArmor Documentation, Release 6.6.2

3.2 How to use outer license file

Since v6.3.0, the runtime file license.lic has been embeded to dynamic library. If you prefer to use outer 1icense.
lic, so it can be replaced with the others easily, just set option ——with-1icense to special value outer, for
example:

pyarmor obfuscate --with-license outer foo.py

When the obfuscated scripts start, it will search 1icense.lic in order:
1. Check environment variable PYARMOR_LICENSE, if set, use this filename
2. Ifit’s not set, search 1icense. lic in the current path
3. If not found, search the path of extension module pytransform

4. Raise exception if there is still not found

3.3 Obfuscating Many Packages

There are 3 packages: pkgl, pkg2, pkg2. All of them will be obfuscated, and use shared runtime files.

First change to work path, create 3 projects:

mkdir build
cd build

pyarmor init --src /path/to/pkgl --entry __init__ .py pkgl
pyarmor init —--src /path/to/pkg2 ——-entry __init__ .py pkg2
pyarmor init --src /path/to/pkg3 --entry _ init_ .py pkg3

Then make the Runtime Package, save it in the path dist:

’pyarmor build —-output dist --only-runtime pkgl

Or run command runtime to generate Runtime Package directly:

’pyarmor runtime —--output dist

Next obfuscate 3 packages, save them in the dist:

pyarmor build —-output dist —--no-runtime pkgl
pyarmor build —--output dist —--no-runtime pkg2
pyarmor build —--output dist —--no-runtime pkg3

Check all the output and test these obfuscated packages:

1s dist/

cd dist

python -c¢ '"import pkgl
import pkg2

import pkg3'

Note: The runtime package pytransform in the output path dist also could be move to any other Python path,
only if it could be imported.

12 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

From v5.7.2, the Runtime Package also could be generate by command runtime separately:

’pyarmor runtime

3.4 Solve Conflicts With Other Obfuscated Libraries

Note: New in v5.8.7

Suppose there are 2 packages obfuscated by different developers, could they be imported in the same Python inter-
preter?

If both of them are obfuscated by trial version of pyarmor, no problem, the answer is yes. But if anyone is obfuscated
by registerred version, the answer is no.

Since v5.8.7, the scripts could be obfuscated with option ——enable-suffix to generate the Runtime Package with
an unique suffix, other than fixed name pyt ransform. For example:

pyarmor obfuscate —--enable-suffix foo.py

The output would be like this:

dist/
foo.py
pytransform_vax_000001/
__init_ .py

The suffix _vax_000001 is based on the registration code of PyArmor.

For project, set enable-suffix by command config:

pyarmor config —-enable-suffix 1
pyarmor build -B

Or disable it by this way:

pyarmor config —--enable-suffix 0
pyarmor build -B

3.5 Distributing Obfuscated Packages

If there are many packages to distribute, it’s recommend to generate a Runtime Package with enable suffix separately
and share it for all of these packages.

For example, first generate Runtime Package by command runtime:

pyarmor runtime --enable-suffix -0 dist/shared

The output package may looks like dist/shared/pytransform_vax_000001

For each package, obfuscated it with this shared pytransform:

3.4. Solve Conflicts With Other Obfuscated Libraries 13

PyArmor Documentation, Release 6.6.2

pyarmor obfuscate --enable-suffix —--recursive —-bootstrap 2 \
-0 dist/pkgl —--runtime @dist/shared src/pkgl/__init__ .py

If option ——runt ime is not available, it’s new in v6.3.7, replace it with ——no-runt ime:

pyarmor obfuscate --enable-suffix —--recursive --bootstrap 2 \
-0 dist/pkgl ——no-runtime src/pkgl/__init__ .py

Then distribute package pytransform_vax_000001 as a normal package.

Finally, distribute obfuscated package dist/pkgl, add a dependency in setup script. For example:

install_requires=['pytransform vax_000001"']

Do the same thing as pkg! for other packages pkg2, pkg3 etc.

3.6 Distributing Obfuscated Scripts To Other Platform

First list all the avaliable platform names by command download:

pyarmor download
pyarmor download ——-help-platform

Display the detials with option ——1ist:

pyarmor download —--1list
pyarmor download --list windows
pyarmor download —--list windows.x86_64

Then specify platform name when obfuscating the scripts:

pyarmor obfuscate —--platform linux.armv7 foo.py

For project
pyarmor build --platform linux.armv7

3.6.1 Obfuscating scripts with different features

There may be many available dynamic libraries for one same platform. Each one has different features. For example,
both of windows.x86_64.0 and windows.x86_64.7 work in the platform windwos.x86_64. The last
number stands for the features:

* 0: No anti-debug, JIT, advanced mode features, high speed
* 7: Include anti-debug, JIT, advanced mode features, high security

It’s possible to obfuscate the scripts with special feature. For example:

’pyarmor obfuscate —-platform linux.x86_64.7 foo.py

Note that the dynamic library with different features aren’t compatible. For example, try to obfuscate the scripts with
——platform linux.arm.O0 in Windows:

’pyarmor obfuscate —-platform linux.arm.0 foo.py

14 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

Because the default platform is full features windows.x86_64.7 in Windows, so PyArmor have to reboot with
platform windows .x86_64 . 0, then obfuscate the script for this low feature platform 1inux.arm. 0.

It also could be set the enviornment variable PYARMOR_PLATFORM to same feature platform as target machine. For
example:

PYARMOR_PLATFORM=windows.x86_64.0 pyarmor obfuscate —-platform linux.arm.0 foo.py

In Windows

set PYARMOR_PLATFORM=windows.x86_64.0

pyarmor obfuscate —-platform linux.arm.0 foo.py
set PYARMOR_PLATFORM=

3.6.2 Running Obfuscated Scripts In Multiple Platforms
From v5.7.5, the platform names are standardized, all the available platform names list here Standard Platform Names.
And the obfuscated scripts could be run in multiple platforms.

In order to support multiple platforms, all the dynamic libraries for these platforms need to be copied to Runtime
Package. For example, obfuscating a script could run in Windows/Linux/MacOS:

pyarmor obfuscate —-platform windows.x86_64 \
——platform linux.x86_64 \
——platform darwin.x86_64 \
foo.py

The Runtime Package also could be generated by command runtime once, then obfuscate the scripts without runtime
files. For examples:

pyarmor runtime --platform windows.x86_64,1linux.x86_64,darwin.x86_64

pyarmor obfuscate ——no-runtime --recursive \
——-platform windows.x86_64,1linux.x86_64,darwin.x86_64 \
foo.py

Because the obfuscated scripts will check the dynamic library, the platforms must be specified even if there is option
—--no-runtime. Butif the option -—no-cross-protection is specified, the obfuscated scripts will not check
the dynamic library, so no platform is required. For example:

pyarmor obfuscate —--no-runtime --recursive --no-cross-protection foo.py

Note: If the feature number is specified in one of platform, for example, one is windows.x86_64 .0, then all the
other platforms must be same feature.

Note: If the obfuscated scripts don’t work in other platforms, try to update all the downloaded files:

pyarmor download —-update

If it still doesn’t work, try to remove the cahced platform files in the path $SHOME/ . pyarmor

3.6. Distributing Obfuscated Scripts To Other Platform 15

PyArmor Documentation, Release 6.6.2

3.7 Obfuscating Scripts By Other Python Version

If there are multiple Python versions installed in the machine, the command pyarmor uses default Python. In case the
scripts need to be obfuscated by other Python, run pyarmor by this Python explicitly.

For example, first find pyarmor.py:

’find /usr/local/lib -name pyarmor.py

Generally it should be in the /usr/local/lib/python2.7/dist-packages/pyarmor in most of linux.

Then run pyarmor as the following way:

’/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py

It’s convenient to create a shell script /usr/local/bin/pyarmor3, the content is:

’/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py "S@"

And

’chmod +x /usr/local/bin/pyarmor3

then use pyarmor3 as before.

In the Windows, create a bat file pyarmor3.bat, the content would be like this:

’C:\Python36\python C:\Python27\Lib\site-packages\pyarmor\pyarmor.py %=

3.8 Run bootstrap code in plain scripts

Before v5.7.0 the Bootstrap Code could be inserted into plain scripts directly, but now, for the sake of security, the
Bootstrap Code must be in the obfuscated scripts. It need another way to run the Bootstrap Code in plain scripts.

First create one bootstrap package pytransform_bootstrap by command runtime:

’pyarmor runtime -1

Next move bootstrap package to the path of plain script:

’mv dist/pytransform_bootstrap /path/to/script

It also could be copied to python system library, for examples:

mv dist/pytransform_bootstrap /usr/lib/python3.5/ (For Linux)
mv dist/pytransform bootstrap C:/Python35/Lib/ (For Windows)

Then edit the plain script, insert one line:

import pytransform bootstrap

Now any other obfuscated modules could be imported after this line.

Note: Before v5.8.1, create this bootstrap package by this way:

16 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

echo "" > __init__ .py
pyarmor obfuscate -0 dist/pytransform_bootstrap --exact __init__ .py

3.8.1 Run unittest of obfuscated scripts
In most of obfuscated scripts there are no Bootstrap Code. So the unittest scripts may not work with the obfuscated
scripts.

Suppose the test scriptis /path/to/tests/test_foo.py, first patch this test script, refer to run bootstrap code
in plain scripts

After that it works with the obfuscated modules:

cd /path/to/tests
python test_foo.py

The other way is patch system package unittest directly. Make sure the bootstrap package
pytransform_bootstrap is copied in the Python system library, refer to run bootstrap code in plain scripts

Then edit /path/to/unittest/__init__ .py, insert one line:

’ import pytransform bootstrap

Now all the unittest scripts could work with the obfuscated scripts. It’s useful if there are many unittest scripts.

3.9 Let Python Interpreter Recognize Obfuscated Scripts Automati-
cally

In a few cases, if Python Interpreter could recognize obfuscated scripts automatically, it will make everything simple:
* Almost all the obfuscated scripts will be run as main script
¢ In the obfuscated scripts call multiprocessing to create new process
* Or call Popen, os.exec etc. to run any other obfuscated scripts

Here are the base steps:

1. First create one bootstrap package pytransform_bootstrap:

pyarmor runtime -i

Before v5.8.1, it need be created by obfuscating an empty package:

echo "" > __init__.py
pyarmor obfuscate -0 dist/pytransform bootstrap —--exact __init__ .py

2. Then create virtual python environment to run the obfuscated scripts, move the bootstrap package to virtual
python library. For example:

3.9. Let Python Interpreter Recognize Obfuscated Scripts Automatically 17

PyArmor Documentation, Release 6.6.2

For windows
mv dist/pytransform_bootstrap venv/Lib/

For linux
mv dist/pytransform_bootstrap venv/lib/python3.5/

4. Edit vemv/lib/site.py or venv/lib/pythonX.Y/site.py, import pytransform_bootstrap before the main line:

import pytransform bootstrap

if name == '_ _main '

It also could be inserted into the end of function main, or anywhere they could be executed as module site is
imported.

After that in the virtual environment python could run the obfuscated scripts directly, because the module site is
automatically imported during Python initialization.

Refer to https://docs.python.org/3/library/site.html

Note: The command pyarmor doesn’t work in this virtual environment, it’s only used to run the obfuscated scripts.

Note: Before v5.7.0, you need create the bootstrap package by the Runtime Files manually.

3.10 Obfuscating Python Scripts In Different Modes

Advanced Mode is introduced from PyArmor 5.5.0, it’s disabled by default. Specify option ——advanced to enable
it:

pyarmor obfuscate —-—-advanced 1 foo.py

For project

cd /path/to/project

pyarmor config —--advanced 1
pyarmor build -B

From PyArmor 5.2, the default Restrict Mode is 1. It could be changed by the option ——restrict:

pyarmor obfuscate —--restrict=2 foo.py
pyarmor obfuscate —--restrict=3 foo.py

For project

cd /path/to/project

pyarmor config —--restrict 4
pyarmor build -B

All the restricts could be disabled by this way if required:

pyarmor obfuscate —-restrict=0 foo.py

For project

(continues on next page)

18 Chapter 3. Advanced Topics

https://docs.python.org/3/library/site.html

PyArmor Documentation, Release 6.6.2

(continued from previous page)

pyarmor config —-restrict=0
pyarmor build -B

The modes of Obfuscating Code Mode, Wrap Mode, Obfuscating module Mode could not be changed in command
obfucate. They only could be changed by command config when Using Project. For example:

pyarmor init —--src=src —--entry=main.py .
pyarmor config —--obf-mod=1 --obf-code=1 —--wrap-mode=0
pyarmor build -B

3.11 Using Plugin to Extend License Type

PyArmor could extend license type for obfuscated scripts by plugin. For example, check internet time other than local
time.

First create plugin script check_ntp_time.py. The key function in this script is check_ntp_time, the other important
function is _get_license_data which used to get extra data from the license.lic of obfuscated scripts.

Then insert 2 comments in the entry script foo.py:

{PyArmor Plugins}
PyArmor Plugin: check_ntp_time ()

Now obfuscate entry script:

’pyarmor obfuscate —--plugin check_ntp_time foo.py

If the plugin file isn’t in the current path, use absolute path instead:

’pyarmor obfuscate —-plugin /usr/share/pyarmor/check_ntp_time foo.py

Finally generate one license file for this obfuscated script, pass extra license data by option —x, this data could be got
by function _get_license_data in the plugin script:

pyarmor licenses —-x 20190501 rcode-001
cp licenses/rcode-001/license.lic dist/

More examples, refer to https://github.com/dashingsoft/pyarmor/tree/master/plugins

About how plugins work, refer to How to Deal With Plugins

Important: The output function name in the plugin must be same as plugin name, otherwise the plugin will not take
effects.

3.12 Bundle Obfuscated Scripts To One Executable File

Run the following command to pack the script foo.py to one executable file dist/foo.exe. Here foo.py isn’t obfuscated,
it will be obfuscated before packing:

pyarmor pack -e " --onefile" foo.py
dist/foo.exe

3.11. Using Plugin to Extend License Type 19

https://github.com/dashingsoft/pyarmor/blob/master/plugins/check_ntp_time.py
https://github.com/dashingsoft/pyarmor/blob/master/plugins/foo.py
https://github.com/dashingsoft/pyarmor/tree/master/plugins

PyArmor Documentation, Release 6.6.2

If you don’t want to bundle the license.lic of the obfuscated scripts into the executable file, but put it outside of the
executable file. For example:

dist/
foo.exe
license.lic

So that we could generate different licenses for different users later easily. Here are basic steps:

1. First create runtime-hook script copy_license.py:

import sys
from os.path import join, dirname
with open(join(dirname (sys.executable), 'license.lic'), 'rb') as fs:
with open(join(sys._MEIPASS, 'license.lic'), 'wb') as fd:
fd.write(fs.read())

2. Then pack the scirpt with extra options:

pyarmor pack —--clean —--without-license -x " —--exclude copy_license.py" \

—e " —-onefile ——-icon logo.ico —--runtime-hook copy_license.py" foo.py

Option ——without-1icense tells pack not to bundle the license.lic of obfuscated scripts to the final
executable file. By option ——runt ime-hook of ‘Pylnstaller‘_, the specified script copy_license.
py will be executed before any obfuscated scripts are imported. It will copy outer 1icense.lic to
right path.

Try torun dist/foo.exe, it should report license error.

3. Finally run licenses to generate new license for the obfuscated scripts, and copy new license.lic and
dist/foo.exe toend users:

pyarmor licenses -e 2020-01-01 code-001
cp license/code-001/license.lic dist/

dist/foo.exe

3.13 Bundle obfuscated scripts with customized spec file

If there is a customized .spec file works, for example:

’pyinstaller myscript.spec

Refer to repack pyinstaller bundle with obfuscated scripts

Or obfuacate and pack scripts with option —s directly:

’pyarmor pack —-s myscript.spec myscript.py

If it raises this error:

’Unsupport .spec file, no XXX found

Check .spec file, make sure there are 2 lines in top level (no identation):

20 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

a = Analysis (...

pyz = PYZ (...

And there are 3 key parameters when creating an Analysis object, for example:

a = Analysis(

pathex=...,
hiddenimports=...,
hookspath=.. .,

PyArmor will append required options to these lines automatically. But before v5.9.6, it need to be patched by manual:
* Add module pytransform to hiddenimports
* Add extra path DISTPATH/obf/temp to pathex and hookspath

After changed, it may be like this:

a = Analysis(['myscript.py'l]l,
pathex=[os.path. join (DISTPATH, 'obf', 'temp'), ...]1,
binaries=[],
datas=[],
hiddenimports=['pytransform', ...],
hookspath=[os.path.join (DISTPATH, 'obf', 'temp'), ...1,

Note: This featuer is introduced since v5.8.0

Before v5.8.2, the extra path is DISTPATH/obf, not DISTPATH/obf/temp

3.14 Improving The Security By Restrict Mode

By default the scripts are obfuscated by restrict mode 1, that is, the obfuscated scripts can’t be changed. In order to
improve the security, obfuscating the scripts by restrict mode 2 so that the obfuscated scripts can’t be imported out of
the obfuscated scripts. For example:

’pyarmor obfuscate —-restrict 2 foo.py

Or obfuscating the scripts by restrict mode 3 for more security. It will even check each function call to be sure all the
functions are called in the obfuscated scripts. For example:

’pyarmor obfuscate —-restrict 3 foo.py

However restrict mode 2 and 3 aren’t applied to Python package. There is another solution for Python package to
improve the security:

* The .py files which are used by outer scripts are obfuscated by restrice mode 1
* All the other .py files which are used only in the package are obfuscated by restrict mode 4

For example, mypkg includes 2 files:

3.14. Improving The Security By Restrict Mode 21

PyArmor Documentation, Release 6.6.2

e __init__.py
* foo.py
Here it’s the content of mypkg/__init _.py

from .foo import hello

def open_hello (msg) :
print ('This is public hello: ' % msqg)

def proxy_hello(msg) :
print ('This is proxy hello from foo: ' % msg)
hello (msqg)

Now obfuscate this package by this way:

cd /path/to/mypkg
pyarmor obfuscate -0 obf/mypkg --exact __init__ .py
pyarmor obfuscate -O obf/mypkg —-restrict 4 —--recursive --exclude __init__ .py

So it’s OK to import mypkg and call any function in the __init__.py:

cd /path/to/mypkg/obf
python

>>> import mypkg
>>> mypkg.open_hello ("it should work™")
>>> mypkg.proxy_hello("also OK")

But it doesn’t work to call any function in the mypkg.foo. For example:

cd /path/to/mypkg/obf
python

>>> import mypkg
>>> mypkg.foo.hello("it should not work")

More information about restrict mode, refer to Restrict Mode

3.15 Using Plugin To Improve Security

By plugin any private checkpoint could be injected into the obfuscated scripts, and it doesn’t impact the original
scripts. Most of them must be run in the obfuscated scripts, if they’re not commented as plugin, it will break the plain
scripts.

No one knows your check logic, and you can change it in anytime. So it’s more security. For example, check there is
debugger process, check the sum of byte code of caller, which could be got by sys._getframe etc.

3.15.1 Using Inline Plugin To Check Dynamic Library

Althouth PyArmor provides cross protection, it also could check the dynamic library in the startup to make sure it’s
not changed by others. This example uses inline plugin to check the modified time protecting the dynamic library by
inserting the following comment to main.py

22 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

PyArmor Plugin: import os

PyArmor Plugin: libname = os.path.join(os.path.dirname(__file), '_pytransform.
—so')

PyArmor Plugin: 1if not os.stat(libname).st_mtime ns == 102839284238:

PyArmor Plugin: raise RuntimeError ('Invalid Library')

Then obfuscate the script and enable inline plugin by this way:

pyarmor obfuscate —--plugin on main.py

Once the obfuscated script starts, the following plugin code will be run at first

import os
libname = os.path.join(os.path.dirname(_ file), '_pytransform.so')
if not os.stat(libname).st_mtime _ns == 102839284238:

raise RuntimeError ('Invalid Library')

3.15.2 Checking Imported Function Is Obfuscated

In the :module:‘pytransfrom® there is one decorator assert_armored and one function check_armored used to make
sure the imported functions from other module are obfuscated.

For example, there are 2 scripts main.py and foo.py

#
This 1is main.py
#

import foo

def start_server () :
foo.connect ('root', 'root password')
foo.connect2 ('user', 'user password')

#
This is foo.py
#

def connect (username, password) :
mysgl.dbconnect (username, password)

def connect2 (username, password) :
db2.dbconnect (username, password)

In the main.py, it need to be sure foo.connect is obfuscated. Otherwise the end users may replace the obfuscated foo.py
with this plain script, and run the obfuscated main.py

def connect (username, password) :
print ('password is ', password)

The password is stolen, in order to avoid this, use decorator function to make sure the function connect is obfuscated
by plugin.

Now let’s edit main.py, insert inline plugin code

3.15. Using Plugin To Improve Security 23

PyArmor Documentation, Release 6.6.2

import foo
PyArmor Plugin: from pytransform import assert_armored
PyArmor Plugin: (@assert_armored(foo.connect, foo.connect2)

def start_server () :
foo.connect ('root', 'root password')

Then obfuscate it with plugin on:

pyarmor obfuscate --plugin on main.py

The obfuscated script would be like this

import foo
from pytransform import assert_armored
@assert_armored (foo.connect, foo.connect?2)

def start_server():
foo.connect ('root', 'root password')

Before call start_server, the decorator function assert_armored will check both connect functions are
pyarmored, otherwise it will raise exception.

You can also check it by check_armored

import foo
from pytransform import check_armored
def start_server () :
if not check_armored(foo.connect, foo.connect2):
print ('Found hacker')

return

foo.connect ('root', 'root password')

3.16 Call pyarmor From Python Script

It’s also possible to call PyArmor methods inside Python script not by os.exec or subprocess.Popen etc. For example

from pyarmor.pyarmor import main as call_pyarmor
call_pyarmor (['obfuscate', '—-—-recursive', '—-output', 'dist', 'foo.py'l])

In order to suppress all normal output of pyarmor, call it with ——silent

from pyarmor.pyarmor import main as call_pyarmor
call pyarmor(['--silent', 'obfuscate', '—-recursive', '—-output', 'dist', 'foo.py'l)

From v5.7.3, when pyarmor called by this way and something is wrong, it will raise exception other than call sys.exit.

24 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

3.16.1 Generating license key by web api

It’s also possible to generate license key as string other than writing to a file inside Python script. It may be useful in
case the new license need to be generated by web api.

from pyarmor.pyarmor import licenses as generate_license_key

lickey = generate_license_key (name="reg-001",
expired='2020-05-30",
bind_disk="'013040BP2N80S13FJNTS5",
bind_mac="'70:f1:a1:23:£0:94",
bind_ipv4='192.168.121.110",
bind_data="any string')

print ('Generate key: ' % lickey)

If there are more than one product need generate licenses from one Web API, set keyword home to each registerred
product. For example

from pyarmor.pyarmor import licenses as generate_license_key
lickey = generate_license_key (name="product-001",
expired='2020-06-15",

home="'~/.pyarmor—1")
print ('Generate key for product 1: ' % lickey)
lickey = generate_license_key (name="'product-002",

expired='2020-05-30",

home="'~/.pyarmor-2")
print ('Generate key for product 2: ' % lickey)

3.17 Check license periodly when the obfuscated script is running

Generally only at the startup of the obfuscated scripts the license is checked. Since v5.9.3, it also could check the
license per hour. Just generate a new license with ——enable-period-mode and overwrite the default one. For
example:

pyarmor obfuscate foo.py
pyarmor licenses —--enable-period-mode code-001
cp licenses/code-001/license.lic ./dist

3.18 Work with Nuitka

Because the obfuscated scripts could be taken as normal scripts with an extra runtime package pytransform, they
also could be translated to C program by Nuitka. When obfuscating the scripts, the option ——restrict 0 and
—-—-no-cross—-protection should be set, otherwise the final C program could not work. For example, first obfus-
tate the scripts:

pyarmor obfuscate —-restrict 0 —-—-no-cross-protection --package-runtime 0 foo.py

Then translate the obfuscated one as normal python scripts by Nuitka:

cd ./dist
python -m nuitka —-—-include-package pytransform foo.py
./foo.bin

3.17. Check license periodly when the obfuscated script is running 25

PyArmor Documentation, Release 6.6.2

There is one problem is that the imported modules (packages) in the obfuscated scripts could not be seen by Nuitka.
To fix this problem, first generate the corresponding . pyi with original script, then copy it within the obfuscated one.
For example:

Generating "mymodule.pyi"
python -m nuitka —--module mymodule.py

pyarmor obfuscate --restrict 0 —--no-bootstrap --package-runtime 0 mymodule.py
cp mymodule.pyi dist/

cd dist/
python -m nuitka --module mymodule.py

But it may not take advantage of Nuitka features by this way, because most of byte codes aren’t translated to ¢ code
indeed.

Note: So long as the C program generated by Nuitka is linked against libpython to execute, pyarmor could work with
Nuitka. But in the future, just as said in the Nuitka official website:

It will do this - where possible - without accessing libpython but in C
with its native data types.

In this case, pyarmor maybe not work with Nuitka.

3.19 Work with Cython

Here it’s an example show how to cythonize a python script foo.py obfuscated by pyarmor with Python37:

’print('Hello Cython')

First obfuscate it with some extra options:

’pyarmor obfuscate --package-runtime 0 --no-cross-protection --restrict 0 foo.py

The obfuscated script and runtime files will be saved in the path dist, about the meaning of each options, refer to
command obfuscate.

Next cythonize both foo.py and pytransform.py with extra options —k and ——lenient to generate foo.c and pytrans-
form.c:

cd dist
cythonize -3 -k ——-lenient foo.py pytransform.py

Without options —k and ——lenient, it will raise exception:

undeclared name not builtin: __ _pyarmor_

Then compile foo.c and pytransform.c to the extension modules. In MacOS, just run the following commands, but in
Linux, with extra cflag —~fPIC:

gcc -shared $(python-config —--cflags) $(python-config --1dflags) \
-0 foo$ (python-config --extension-suffix) foo.c

(continues on next page)

26 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

(continued from previous page)

gcc —-shared $ (python-config --cflags) $(python-config —--1ldflags) \
-0 pytransform$ (python-config —--extension-suffix) pytransform.c

Finally test it, remove all the .py files and import the extension modules:

mv foo.py pytransform.py /tmp
python —-c '"import foo'

It will print Hello Cython as expected.

3.20 Work with PyUpdater

PyArmor should work with PyUpdater by this way, for example, there is a script foo.py:
1. Generate foo.spec by PyUpdater

2. Generate foo-patched.spec by pyarmor with option ——debug:

pyarmor pack —--debug -s foo.spec foo.py

If the final executable raises protection error, try to disable restirct mode
by the following extra options
pyarmor pack —--debug -s foo.spec -x " —-restrict 0 ——no-cross—-protection" foo.py

This patched foo-patched.spec could be used by PyUpdater in build command

If your Python scripts are modified, just obfuscate them again, all the options for command obfuscate could be got
from the output of command pack

If anybody is having issues with the above. Just normally compiling it in PyArmor then zipping and putting it into
“/pyu-data/new” works. From there on you can just normally sign, process and upload your update.

More information refer to the description of command pack and advanced usage bundle-obfuscated-scripts-with-
customized-spec-file

3.21 Binding obfuscated scripts to Python interpreter

In order to improve the security of obfuscated scripts, it also could bind the obfuscated scripts to one fixed Python
interperter, the obfuscated scripts will not work if the Python dynamic library are changed.

If you use command obfuscate, after the scripts are obfuscated, just generate a new license.lic which is bind to the
current Python and overwrite the default license. For example:

pyarmor licenses --fixed 1 -O dist/license.lic

When start the obfuscated scripts in target machine, it will check the Python dynamic library, it may be pythonXY.dll,
libpythonXY.so or libpythonXY.dylib in different platforms. If this library is different from the python dynamic library
in build machine, the obfuscated script will quit.

If you use project to obfuscate scripts, first generate a fixed license:

cd /path/to/project
pyarmor licenses ——-fixed 1

By default it will be saved to licenses/pyarmor/license.lic, then configure the project with this license:

3.20. Work with PyUpdater 27

https://www.pyupdater.org/

PyArmor Documentation, Release 6.6.2

pyarmor config —-license=licenses/pyarmor/license.lic

If obfuscate the scripts for different platform, first get the bind key in target platform. Create a script then run it with
Python interpreter which would be bind to:

from ctypes import CFUNCTYPE, cdll, pythonapi, string_at, c_void_p, c_char_p
from sys import platform

def get_bind_key():

if platform.startswith('win'"):
from ctypes import windll
dlsym = windll.kernel32.GetProcAddressA
else:
prototype = CFUNCTYPE (c_void_p, c_void_p, c_char_p)
dlsym = prototype(('dlsym', cdll.LoadLibrary (None)))

refuncl = dlsym(pythonapi._handle, b'PyEval EvalCode')
refunc2 = dlsym(pythonapi._handle, b'PyEval GetFrame')

size = refunc2 - refuncl

code = string_at (refuncl, size)

print ('Get bind key: ' % sum(bytearray (code)))
if name == '_ _main_ ':

get_bind_key ()

It will print the bind key xxxxxx, then generate one fixed license with this bind key:

pyarmor licenses ——-fixed xxxxxx -0 dist/license.lic

It also could bind the license to many Python interpreters by passing multiple keys separated by ,:

pyarmor licenses --fixed 1,key2,key3 -O dist/license.lic
pyarmor licenses --fixed keyl,key2,key3 -0 dist/license.lic

The special key I means current Python interpreter.

Note: Do not use this feature in 32-bit Windows, because the bind key is different in different machine, it may be
changed even if python is restarted in the same machine.

3.22 Customizing cross protection code

In order to protect core dynamic library of PyArmor, the default protection code will be injected into the entry scripts,
refer to Special Handling of Entry Script. However this public protection code may be bypassed deliberately, the better
way is to write your private protection code, it could improve the security largely.

Since v6.2.0, command runtime could generate the default protection code, it could be as template to write your own
protection code. Of course, you may write it by yourself. Only if it could make sure the runtime files aren’t changed
by someone else as running the obfuscated scripts.

28 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

First generate protection script build/pytransform_protection.py:

pyarmor runtime —--advanced 2 —-output build

Then edit it with your private code, after that, obfuscate the scripts and set option ——cross—-protection to this
customized script, for example:

pyarmor obfuscate —--cross-protection build/pytransform_protection.py \
——advanced 2 foo.py

Note: The option ——advanced in command obfuscate must be same as in command runtime, because the runtime
files may be different totaly.

3.23 Storing runtime file license.lic to any location

By creating a symbol link in the runtime package, it’s easy to store runtime file 1icense. lic to any location when
running the obfuscated scripts.

In linux, for example, store license file in /opt /my_app:

’ln -s /opt/my_app/license.lic /path/to/obfuscated/pytransform/license.lic

In windows, store license file in C: /Users/Jondy/my_app:

’mklink \path\to\obfuscated\pytransform\license.lic C:\Users\Jondy\my_app\license.lic

When distributing the obfuscated package, just run this function on post-install:

import os

def make_link_to_license_file (package_path, target_license="/opt/mypkg/license.lic"):
license_file = os.path.join(package_path, 'pytransform', 'license.lic')
if os.path.exists(license_file):
os.rename (license_file, target_license)
os.symlink (target_license, license_file)

3.24 Register multiple pyarmor in same machine

From v5.9.0, pyarmor reads license and capsule data from environment variable PYARMOR_HOME, the default
value is ~/pyarmor. So it’s easy to register multiple pyarmor in one machine by setting environment variable
PYARMOR_HOME to another path before run pyarmor.

It also could create a new command pyarmor2 for the second project by the following way.

In Linux, create a shell script pyarmor?2

export PYARMOR_HOME=$HOME/.pyarmor_2
pyarmor "$@"

Save it to /usr/local/pyarmor2, and change its mode:

3.23. Storing runtime file license.lic to any location 29

PyArmor Documentation, Release 6.6.2

chmod +x /usr/local/pyarmor2

In Windows, create a bat script pyarmor?2 .bat

SET PYARMOR_HOME=%HOMES%\another_pyarmor
pyarmor S$x

After that, run pyarmor2 for the second project:

pyarmor2 register pyarmor-regkey-2.zip
pyarmor2 obfuscate foo2.py

3.25 How to get license information of one obfuscated package

How to get the license information of one obfuscated package? Since v6.2.5, just run this script in the path of runtime
package pytransform

from pytransform import pyarmor_init, get_license_info

pyarmor_init (is_runtime=1)

licinfo = get_license_info()

print ('This obfuscated package is issued by ' % licinfo['ISSUER'])
print ('License information:'")

print (licinfo)

For the scripts obfuscated by super mode, there is no package pytransform, but an extension pytransform. It’s simiar
and more simple

from pytransform import get_license_info

licinfo = get_license_info()

print ('This obfuscated package is issued by " % licinfo['ISSUER'])
print ('License information:'")

print (licinfo)

Since v6.2.7, it also could call the helper script by this way:

cd /path/to/obfuscated_package
python -m pyarmor.helper.get_license_info

3.26 How to protect data files

This is still an experiment feature.

PyArmor does not touch data files, but it could wrap data file to python module, and then obfuscate this data module
by restrict mode 4, so that it only could be imported from the obfuscated scripts. By this way, the data file could be
protected by PyArmor.

Since v6.2.7, there is a helper script which could create a python module from data file, for example:

python —-m pyarmor.helper.build_data_module data.txt > data.py

Next obfuscate this data module with restrict mode 4:

30 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

pyarmor obfuscate --exact --restrict 4 --no-runtime data.py

After that, use the data file in other obfuscated scripts. For example:

import data

Here load the content of data file to memory variable "text"
And clear it from memory as exiting the context
with data.Safestr () as text:

Before v6.2.7, download this helper script build_data_module.py and run it directly:

’python build_data_module.py data.txt > data.py

3.27 How to remove docstrings

By setting PYTHONOPTIMIZE=2 in the command line the docstrings could be removed from the obfuscated scripts.
For examples:

In linux
PYTHONOPTIMIZE=2 pyarmor obfuscate foo.py

In Windows
set PYTHONOPTIMIZE=2
pyarmor obfuscate foo.py

3.28 Using restrict mode with threading and multiprocessing

It may complain of protection exception if using multiprocessing or threading with restrict mode 3 and
4 directly. Because both of these system modules aren’t obfuscated, but they try to call the function in the restrict
modules.

One solution is to extend system Thread to overwrite its method run with lambda function. For example,

from threading import Thread
class PrivateThread (Thread) :

def lambda_run(self):
try:
if self._target:
self._target (xself._args, =*=*self._kwargs)
finally:
del self._target, self._args, self._kwargs

run = lambda self : self.lambda_run/()

def foo():
print ('Hello'")

t = PrivateThread (target=£foo)
t.start ()

3.27. How to remove docstrings 31

https://github.com/dashingsoft/pyarmor/raw/master/src/helper/build_data_module.py

PyArmor Documentation, Release 6.6.2

If you have extended system Thread and defined method run by yourself, just rename run to lambda_run, and add
lambda method run. For example

from threading import Thread
class MyThread (Thread) :
def run(self):

def lambda_run(self):

Define a lambda method ‘run’
run = lambda self : self.lambda_run ()

Another solution is to define a public module with restrict mode 1, let plain scripts call functions in this public module.

For example, here is a script foo . py using public module pub_foo.py

import multiprocessing as mp
import pub_foo

def hello(q):
print ('module name: ' % _ name_)
g.put ("hello')
if name == '_ _main_ ':
ctx = mp.get_context ('spawn')
g = ctx.Queue()
call "proxy_hello" instead private "hello"
p = ctx.Process (target=pub_foo.proxy_hello, args=(qg,))
p.start ()
print (g.get ())
p.Jjoin ()

The content of public module pub_foo.py

import foo

def proxy_hello(q):
return foo.hello(q)

Now obfuscate foo.py with mode 3 and pub_ foo . py with mode 1:

pyarmor obfuscate --restrict 3 foo.py
both of options —-—-exact and —-no-runtime are required
pyarmor obfuscate --restrict 1 —-—-exact —--no-runtime pub_foo.py

The third solution is to obfuscate system module threading or some modules in package multiprocessing
with mode 1. Make sure the caller is obfuscated.

3.29 Repack Pyinstaller bundle with obfuscated scripts

Since v6.5.5, PyArmor provides a helper script repack . py which is used to repack PyInstaller bundle with obfus-
cated scripts.

32 Chapter 3. Advanced Topics

PyArmor Documentation, Release 6.6.2

First pack the script by Pylnstaller, next obfuscate the scripts by PyArmor, finally run this script to repack the bundle
with obfuscated scripts.

Pack the script with PyInstaller, make sure the final bundle works. For real scripts, other options may be required,
please check Pylnstaller documentation. If the final bundle could not work in this step, please report issues to
Pylnstaller:

One folder mode
pyinstaller foo.py

Check it works
dist/foo/foo.exe

If prefer to one file mode, run this command
pyinstaller —-onefile foo.py

Check it works
dist/foo.exe

Obfuscate the scripts to “obfdist”, make sure the obfuscated scripts work. For real scripts, other options may be
required, please check obfuscate to find more usages, and the scripts also could be obfuscated by build:

Option —--package-runtime should be set to 0
pyarmor obfuscate -0 obfdist —--package-runtime 0 foo.py

If prefer to super mode, run this command
pyarmor obfuscate -0 obfdist -—-advanced 2 foo.py

Check it works
python dist/foo.py

Repack the final executable, use the same Python interpreter as Pylnstaller using:

If one folder mode
python repack.py -p obfdist dist/foo/foo.exe

Overwrite the old one
cp foo-obf.exe dist/foo/foo.exe

If one file mode
python repack.py -p obfdist dist/foo.exe

Overwrite the old one
cp foo-obf.exe dist/foo.exe

Here foo-obf.exe is the patched bundle.

The obfuscated scripts in the obfdist must be in the same path as it in the PyInstaller bundle. The option —d is used
to print the archive information, copy the obfuscated scripts to the right place according to the structure of the archive.
For example, this command could print the archive information:

python repack.py -d -p obfdist dist/foo.exe

Note that if the structure of obfuscated scripts are changed, run the main script by Python directly, make sure it still
works.

Note:

Before v6.5.5, please download repack . py from

3.29.

Repack Pylnstaller bundle with obfuscated scripts 33

https://pyinstaller.readthedocs.io
https://github.com/pyinstaller/pyinstaller/issues

PyArmor Documentation, Release 6.6.2

https://github.com/dashingsoft/pyarmor/raw/master/src/helper/repack.py

Since v6.5.5, run it by this way:

’python -m pyarmor.helper.repack -p obfdist dist/foo

3.30 Build obfuscated scripts to extensions

There is a helper script buildext . py in the package of pyarmor used to build obfuscated scripts to extensions

1. Obfuscate the script with ——no—-cross—-protection and ——restrict O, for example:

’pyarmor obfuscate --no-cross-protection --restrict 0 foo.py

2. Build obfuscated script to extension, for example:

’python buildext.py dist/foo.py

If option —1 is specified, the obfuscated scripts will be deleted after building, so the output path dist is clean. For
example:

’python buildext.py -1 dist/

By default only the obfuscated scripts in the dist are handled, if there are sub-directories, list all of them like this:

’python buildext.py dist/ dist/a/ dist/b/

Or list all the scripts in the command line, for example:

In Linix
python buildext.py $(find dist/ -name "x.py")

In Windows
FOR /R dist\ %I IN (x.py) DO python buildext.py %I

The extension will ignore the block 1f _ _name__ == "__main__", in order to run this block as main script,
build it with option —e to generate an executable, for example:

python buildext.py —-e dist/foo.py
dist/foo.exe

This executable must be run in the current Python environment, it equals:

’python dist/foo.py

Show more usage and options by —h:

’python buildext.py -h

Note: Before v6.6.0, please download buildext .py from
https://github.com/dashingsoft/pyarmor/raw/master/src/helper/buildext.py

Since v6.6.0, run it by this way:

34 Chapter 3. Advanced Topics

https://github.com/dashingsoft/pyarmor/raw/master/src/helper/repack.py
https://github.com/dashingsoft/pyarmor/raw/master/src/helper/buildext.py

PyArmor Documentation, Release 6.6.2

python -m pyarmor.helper.buildext

Note: For Windows, if something is wrong with building extension, just write a simple setup . py to build demo.c
to demo.pyd:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])
setup (name = 'pyarmor.helper.buildext',
version = '1.0",
description = 'This is a helper package to build extension',
ext_modules = [modulel])

Then run it::

python setup.py build_ext

3.31 Distributing Obfuscated Package With pip

Here it’s a simple package:

L— mylib
mylib

|: __init___.py
main.py

setup.py

First generate unique Runtime Package with ——enable-suffix 1:

cd mylib
pyarmor runtime -O dist/share —--enable-suffix 1

Then obfuscate the package with this runtime:

pyarmor obfuscate —-with-runtime @dist/share mylib/__init__ .py

Next edit setup . py, add all the required runtime files as data files. For example, suppose the unique package name
ispytransform_vax_xXXxxx

setup (name="mylib"',

packages=['mylib'],
package_dir={'mylib': 'dist'},
data_files=[('pytransform_vax_xxxxxx', 'dist/share/pytransform_vax_xxxxxx/*"')]

Finally build the source package:

3.31. Distributing Obfuscated Package With pip 35

PyArmor Documentation, Release 6.6.2

python setup.py sdist

Note: Do not obfuscate setup.py

For super mode, the runtime files are different, please modify setup . py as required.

36 Chapter 3. Advanced Topics

CHAPTER 4

Examples

Here are some examples.

4.1 Obfuscating and Packing PyQt Application

There is a tool easy-han based on PyQt. Here list the main files:

config. json

main.py

ui_main.py

readers/
__init__ .py
msexcel.py

tests/
vnev/py36

Here the shell script used to pack this tool by PyArmor:

cd /path/to/src
pyarmor pack —--name easy-han \

-e " —-hidden-import comtypes
g "
cd dist/easy-han
./easy—han

—-—add-data

'config. json; .
—-—exclude vnev —--exclude tests" main.py

v

n

\

By option —e passing extra options to run PylInstaller, to be sure these options work with Pylnstaller:

cd /path/to/src

pyinstaller ——name easy-han --hidden-import comtypes --add-data

=Py

'config.json;." main.

(continues on next page)

37

https://www.pyinstaller.org/
https://www.pyinstaller.org/

PyArmor Documentation, Release 6.6.2

(continued from previous page)

cd dist/easy-han
./easy—-han

By option —x passing extra options to obfuscate the scripts, there are many .py files in the path tests and vnev, but all
of them need not to be obfuscated. By passing option ——exclude to exclude them, to be sure these options work
with command obfuscate:

cd /path/to/src
pyarmor obfuscate -r —-—-exclude vnev --exclude tests main.py

Important: The command pack will obfuscate the scripts automatically, do not try to pack the obfuscated the scripts.

Note: From PyArmor 5.5.0, it could improve the security by passing the obfuscated option ——advanced 1 to
enable Advanced Mode. For example:

"

’pyarmor pack -x ——advanced 1 —--exclude tests" foo.py

4.2 Running obfuscated Django site with Apache and mod_wsgi

Here is a simple site of Django:

/path/to/mysite/
db.sglite3
manage.py
mysite/
__init___.py
settings.py
urls.py
wsgi.py
polls/
__init__ .py
admin.py
apps.py
migrations/
__init___.py
models.py
tests.py
urls.py
views.py
First obfuscating all the scripts:
Create target path
mkdir -p /var/www/obf_site
Copy all files to target path, because pyarmor don't deal with any data files
cp —a /path/to/mysite/* /var/www/obf_site/
cd /path/to/mysite

(continues on next page)

38 Chapter 4. Examples

PyArmor Documentation, Release 6.6.2

(continued from previous page)

Obfuscating all the scripts in the current path recursively, specify the entry,,
—script "wsgi.py"

The obfuscate scripts will be save to "/var/www/obf_site"

pyarmor obfuscate --src="." -r —-output=/var/www/obf_site mysite/wsgi.py

Then edit the server configuration file of Apache:

WSGIScriptAlias / /var/www/obf_site/mysite/wsgi.py
WSGIPythonHome /path/to/venv

The runtime files required by pyarmor are generated in this path
WSGIPythonPath /var/www/obf_site

<Directory /var/www/obf_site/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Finally restart Apache:

apachectl restart

4.2. Running obfuscated Django site with Apache and mod_wsgi 39

PyArmor Documentation, Release 6.6.2

40

Chapter 4. Examples

CHAPTER B

Using Project

Project is a folder include its own configuration file, which used to manage obfuscated scripts.
There are several advantages to manage obfuscated scripts by Project:

* Increment build, only updated scripts are obfuscated since last build

* Filter obfuscated scripts in the project, exclude some scripts

* Obfuscate the scripts with different modes

* More convenient to manage obfuscated scripts

5.1 Managing Obfuscated Scripts With Project

Use command inif to create a project:

cd examples/pybench
pyarmor init —--entry=pybench.py

It will create project configuration file . pyarmor_config in the current path. Or create project in another path:

’pyarmor init --src=examples/pybench —--entry=pybench.py projects/pybench

The project path projects/pybench will be created, and . pyarmor_config will be saved there.

The common usage for project is to do any thing in the project path:

cd projects/pybench

Show project information:

’pyarmor info

Obfuscate all the scripts in this project by command build:

41

PyArmor Documentation, Release 6.6.2

’pyarmor build

Change the project configuration by command config.

For example, exclude the dist, test, the .py files in these folder will not be obfuscated:

’pyarmor config ——manifest "include x.py, prune dist, prune test"

The data files also could be listed in manifest, and they will be copied to output path when building the project. For
example:

pyarmor config —-manifest "include *.py, include config.json"
pyarmor build

By ——manifest, the project scripts could be selected exactly, more information refer to the description of the
attribute manifest in the section Project Configuration File

Force rebuild:

pyarmor build —--force

Run obfuscated script:

cd dist
python pybench.py

After some scripts changed, just run build again:

cd projects/pybench
pyarmor build

5.2 Obfuscating Scripts With Different Modes

First configure the different modes, refer to The Modes of Obfuscated Scripts:

’pyarmor config —-obf-mod=1 —--obf-code=0

Then obfuscating scripts in new mode:

’pyarmor build -B

5.3 Obfuscating Some Special Scripts With Child Project

Suppose most of scripts in the project are obfuscated with restrict mode 3, but a few of them need to be obfuscated
with restrict mode 2. The child project is right for this case.

1. First create a project in the source path:

cd /path/to/src
pyarmor init --entry foo.py
pyarmor config —--restrict 3

2. Next clone the project configuration file to create a child project named .pyarmor_config-1:

42 Chapter 5. Using Project

PyArmor Documentation, Release 6.6.2

cp .pyarmor_config .pyarmor_config-1

3. Then config the child project with special scripts, no entry script, and restrict mode 2:

pyarmor config ——entry "" \
—-—-manifest "include a.py other/path/sax.py" \
——restrict 2 \
.pyarmor_config-1

4. Finally build the project and child project:

pyarmor build -B
pyarmor build —--no-runtime -B .pyarmor_config-1

5.4 Project Configuration File

Each project has a configure file. It’s a json file named . pyarmor_config stored in the project path.
* name
Project name.
* title
Project title.
* src
Base path to match files by manifest template string.
It could be absolute path, or relative path based on project folder.
* manifest

A string specifies files to be obfuscated, same as MANIFEST.in of Python Distutils, default value is:

’globalfinclude *.py ‘

It means all .py files anywhere in the src tree matching.

Multi manifest template commands are spearated by comma, for example:

’globalfinclude *.py, exclude __mainfest__ .py, prune test ‘

The data files also could be selected by manifest, they’ll be copied to output path when building the
project.

Refer to https://docs.python.org/2/distutils/sourcedist.html#commands
* is_package
Available values: 0, 1, None

When it’s set to 1, the basename of src will be appended to output as the final path to save obfuscated
scripts, but runtime files are still in the path output

When init a project and no ——t ype specified, it will be set to 1 if entry script is __init__.py, other-
wise it’s None.

e restrict_mode

5.4. Project Configuration File 43

https://docs.python.org/2/distutils/sourcedist.html#commands

PyArmor Documentation, Release 6.6.2

Available values: 0, 1, 2, 3, 4
By defaultit’s set to 1.
Refer to Restrict Mode
¢ entry
A string includes one or many entry scripts.

When build project, insert the following bootstrap code for each entry:

from pytransform import pyarmor_runtime

pyarmor_runtime ()

The entry name is relative to src, or filename with absolute path.

Multi entries are separated by comma, for example:

main.py, another/main.py, /usr/local/myapp/main.py

Note that entry may be NOT obfuscated, if manifest does not specify this entry.
* output
A path used to save output of build. It’s relative to project path.

e capsule

Warning: Removed since v5.9.0

Filename of project capsule. It’s relative to project path if it’s not absolute path.
e obf code
How to obfuscate byte code of each code object, refer to Obfuscating Code Mode:
-0
No obfuscate
— 1 (Default)
Obfuscate each code object by default algorithm
-2
Obfuscate each code object by more complex algorithm
e wrap_mode
Available values: 0, 1, None
Whether to wrap code object with try..final block.
The default value is /, refer to Wrap Mode
* obf_mod
How to obfuscate whole code object of module, refer to Obfuscating module Mode:
-0
No obfuscate

— 1 (Default)

44 Chapter 5

. Using Project

PyArmor Documentation, Release 6.6.2

Obfuscate byte-code by DES algorithm
* cross_protection
How to proect dynamic library in obfuscated scripts:
-0
No protection
-1
Insert proection code with default template, refer to Special Handling of Entry Script
— Filename
Read the template of protection code from this file other than default template.
* runtime_path
None or any path.

When run obfuscated scripts, where to find dynamic library _pytransform. The default value is None,
it means it’s within the Runtime Package or in the same path of pytransform.py.

It’s useful when obfuscated scripts are packed into a zip file, for example, use py2exe to package
obfuscated scripts. Set runtime_path to an empty string, and copy Runtime Files to same path of zip
file, will solve this problem.

* plugins
None or list of string

Extend license type of obfuscated scripts, multi-plugins are supported. For example:

plugins: ["check_ntp_time", "show_license_info"]

About the usage of plugin, refer to Using Plugin to Extend License Type
* package_runtime
How to save the runtime files:
-0
Save them in the same path with the obufscated scripts
— 1 (Default)
Save them in the sub-path pytransform as a package

¢ enable_suffix

Note: New in v5.8.7

How to generate runtime package (module) and bootstrap code, it’s useful as importing the scripts
obfuscated by different developer:

— 0 (Default)
There is no suffix for the name of runtime package (module)
-1

The name of runtime package (module) has a suffix, for example,
pytransform_vax_00001

5.4. Project Configuration File 45

PyArmor Documentation, Release 6.6.2

* platform

Note: New in v5.9.0

A string includes one or many platforms. Multi platforms are separated by comma.
Leave it to None or blank if not cross-platform obfuscating

¢ license_file

Note: New in v5.9.0

Use this license file other than the default one.
Leave it to None or blank to use the default one.

* bootstrap_code

Note: New in v5.9.0

How to generate Bootstrap Code for the obfuscated entry scripts:
-0
Do not insert bootstrap code into entry script

— 1 (Default)

Insert the bootstrap code into entry script. If the script name is __init__ .py, make a
relative import with leading dots, otherwise make absolute import.

-2

The bootstrap code will always be made an absolute import without leading dots in the entry
script.

-3

The bootstrap code will always be made a relative import with leading dots in the entry
script.

46 Chapter 5. Using Project

CHAPTER O

Man Page

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts.

The syntax of the pyarmor command is:

pyarmor <command> [options]

The most commonly used pyarmor commands are:

obfuscate
licenses
pack
hdinfo

Obfuscate python scripts

Generate new licenses for obfuscated scripts
Obfuscate scripts then pack them to one bundle
Show hardware information

The commands for project:

init
config
build

info
check

Create a project to manage obfuscated scripts
Update project settings
Obfuscate all the scripts in the project

Show project information
Check consistency of project

The other commands:

benchmark
register
download
runtime

Run benchmark test in current machine

Make registration file work

Download platform-dependent dynamic libraries
Generate runtime package separately

See pyarmor <command> -h for more information on a specific command.

Note: From v5.7.1, the first character is command alias for most usage commands:

47

PyArmor Documentation, Release 6.6.2

’obfuscate, licenses, pack, init, config, build

For example:

’pyarmor o => pyarmor obfuscate

6.1 Common Options

-V, --version Show version information

-q, --silent Suppress all normal output

-d, --debug Print exception traceback and debugging message

--home PATH Select home path, generally for multiple registerred pyarmor

--boot PLATID Set boot platform, only for special usage

These options can be used after pyarmor, before sub-command. For example, print debug information to locate the
error:

’pyarmor -d obfuscate foo.py

Do not print log in the console:

’pyarmor --silent obfuscate foo.py

Obfuscate scripts with another purchased license:

pyarmor —-home ~/.pyarmor-2 register pyarmor-keyfile-2.zip
pyarmor --home ~/.pyarmor-2 obfuscate foo.py

6.2 obfuscate

Obfuscate python scripts.
SYNOPSIS:

pyarmor obfuscate <options> SCRIPT...

OPTIONS
-0, --output PATH Output path, default is dist

-1, --recursive Search scripts in recursive mode

-s, --src PATH Specify source path if entry script is not in the top most path

--exclude PATH Exclude the path in recusrive mode. Multiple paths are allowed, separated by “,”,
or use this option multiple times

--exact Only obfuscate list scripts

--no-bootstrap Do not insert bootstrap code to entry script

--bootstrap <0,1,2,3> How to insert bootstrap code to entry script

48 Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

--no-cross-protection Do not insert protection code to entry script
--plugin NAME Insert extra code to entry script, it could be used multiple times
--platform NAME Distribute obfuscated scripts to other platform
--advanced <0,1,2,3,4> Enable advanced mode /, super mode 2, vm mode 3 and 4
--restrict <0,1,2,3,4> Set restrict mode
-n, --no-runtime DO NOT generate runtime files
--runtime PATH Use prebuilt runtime package
--package-runtime <0,1> Save the runtime files as package or not
--enable-suffix Generate the runtime package with unique name
--obf-mod <0,1,2> Disable or enable to obfuscate module
--obf-code <0,1,2> Disable or enable to obfuscate function
--wrap-mode <0,1> Disable or enable wrap mode
--with-license FILENAME Use this licese, special value outer means no license
--cross-protection FILENAME Specify customized protection script
DESCRIPTION
PyArmor first checks whether Global Capsule exists in the HOME path. If not, make it.
Then find all the scripts to be obfuscated. There are 3 modes to search the scripts:
e Normal: find all the .py files in the same path of entry script
* Recursive: find all the .py files in the path of entry script recursively
» Exact: only these scripts list in the command line
The default mode is Normal, option ——recursive and ——exact enable the corresponding mode.

Note that only the .py files are touched by this command, all the other files aren’t copied to output path. If there are
many data files in the package, first copy the whole package to the output path, then obfuscate the .py files, thus all the
.py files in the output path are overwritten by the obfuscated ones.

If there is an entry script, PyArmor will modify it, insert cross protection code into the entry script. Refer to Special
Handling of Entry Script

If there is any plugin specified in the command line, PyArmor will scan all the source scripts and inject the plugin
code into them before obfuscating. Refer to How to Deal With Plugins

Next obfuscate all found scripts, save them in the default output path dist.
After that make the Runtime Package in the dist path.
Finally insert the Bootstrap Code into entry script.

Option —-src used to specify source path if entry script is not in the top most path. For example:

1if no option —--src, the "./mysite" is the source path
pyarmor obfuscate --src "." --recursive mysite/wsgi.py

Option ——-plugin is used to extend license type of obfuscated scripts, it will inject the content of plugin script into
the obfuscated scripts. The corresponding filename of plugin is NAME.py. More information about plugin, refer to
How to Deal With Plugins, and here is a real example to show usage of plugin Using Plugin to Extend License Type

6.2. obfuscate 49

PyArmor Documentation, Release 6.6.2

Option ——platform is used to specify the target platform of obfuscated scripts if target platform is different from
build platform. Use this option multiple times if the obfuscated scripts are being to run many platforms. From v5.7.5,
the platform names are standardized, command download could list all the available platform names.

Option ——restrict is used to set restrict mode, Restrict Mode

Option ——advanced is used to enable some advanced features to improve the security. The available value for this
option

* 0: Disable any advanced feature

* 1: Enable avanced mode

e 2: Enable Super Mode

* 3: Enable Advanced Mode and VM Mode

e 4: Enable Super Mode and VM Mode
For usage of option ——runt ime, refer to command runtime
RUNTIME FILES

If Super Mode is enabled, there is only one extension module:

pytransform.pyd/.so

For all the others, the runtime files will be saved in the separated folder pyt ransform as package:

pytransform/
__init___.py
_pytransform.so/.dl1l/.dylib

Butif ——package-runtime is 0, they will be saved in the same path with obfuscated scripts as four separated files:

pytransform.py
_pytransform.so/.dl1l/.dylib

If the option ——enable-suffix is set, the runtime package or module name will be pytransform_ xxx, here
xxx is unique suffix based on the registration code of PyArmor.

BOOTSTRAP CODE

If Super Mode is enabled, all the obfuscated scripts will import the runtime module at the first line, this is super mode
Bootstrap Code:

from pytransform import pyarmor

For non-super mode, the following Bootstrap Code will be inserted into the entry script only:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

If the entry scriptis __init__ .py, the Bootstrap Code will make a relative import by using leading dots like this:

from .pytransform import pyarmor_runtime
pyarmor_runtime ()

But the option ——bootstrap is set to 2, the Bootstrap Code always makes absolute import without leading dots. If
it is set to 3, the Bootstrap Code always makes relative import with leading dots.

If the option ——enable-suffix is set, the bootstrap code may like this:

50 Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

from pytransform vax_ 000001 import pyarmor_runtime
pyarmor_runtime (suffix="'vax_000001")

If -——no-bootstrap is set, or ——bootstrap is 0, then no bootstrap code will be inserted into the entry scripts.
EXAMPLES

* Obfuscate all the .py only in the current path:

’pyarmor obfuscate foo.py

* Obfuscate all the .py only in the current path and multiple entry scripts:

’pyarmor obfuscate foo.py foo-svr.py foo-client.py

* Obfuscate all the .py in the current path recursively:

’pyarmor obfuscate --recursive foo.py

» Obfuscate all the .py in the current path recursively, but entry script not in top most path:

’pyarmor obfuscate —-src "." —-recursive mysite/wsgi.py

» Obfuscate a script foo.py only, no runtime files:

’pyarmor obfuscate —--no-runtime --exact foo.py

* Obfuscate all the .py in a path recursive, no entry script, no generate runtime package:

pyarmor obfuscate --recursive —--no-runtime
pyarmor obfuscate --recursive —--no-runtime src/

¢ Obfuscate all the .py in the current path recursively, exclude all the .py in the path build and tests:

pyarmor obfuscate —--recursive --exclude build,tests foo.py
pyarmor obfuscate —--recursive —--exclude build --exclude tests foo.py

* Obfuscate only two scripts foo.py, moda.py exactly:

’pyarmor obfuscate —-exact foo.py moda.py

* Obfuscate all the .py file in the path mypkg/:

’pyarmor obfuscate —-output dist/mypkg mypkg/__init__ .py

» Obfuscate all the .py files in the current path, but do not insert cross protection code into obfuscated script
dist/foo.py:

’pyarmor obfuscate --no-cross-protection foo.py

* Obfuscate all the .py files in the current path, but do not insert bootstrap code at the beginning of obfuscated
script dist/foo.py:

’pyarmor obfuscate ——no-bootstrap foo.py

* Insert the content of check_ntp_time.py into foo.py, then obfuscating foo.py:

6.2. obfuscate 51

PyArmor Documentation, Release 6.6.2

’pyarmor obfuscate —--plugin check_ntp_time foo.py

* Only plugin assert_armored is called then inject it into the foo.py:

’pyarmor obfuscate --plugin @assert_armored foo.py

* If the script foo.py includes internal plugin, obfuscate it with special plugin name on:

’pyarmor obfuscate --plugin on foo.py

» Obfuscate the scripts in Macos and run obfuscated scripts in Ubuntu:

’pyarmor obfuscate —--platform linux.x86_64 foo.py

» Obfuscate the scripts in advanced mode:

’pyarmor obfuscate —-—-advanced 1 foo.py

* Obfuscate the scripts with restrict mode 2:

’pyarmor obfuscate —--restrict 2 foo.py

» Obfuscate all the .py files in the current path except __init _.py with restrice mode 4:

’pyarmor obfuscate —-restrict 4 --exclude _ _init__ .py —-recursive

» Obfuscate a package with unique runtime package name:

cd /path/to/mypkg
pyarmor obfuscate -r ——-enable-suffix --output dist/mypkg __init__ .py

* Obfuscate scripts by super mode with expired license:

pyarmor licenses -e 2020-10-05 regcode-01
pyarmor obfuscate —-with-license licenses/regcode-01/license.lic \
——advanced 2 foo.py

» Obfuscate scripts by super mode with customized cross protection scripts, and don’t embed license file to ex-
tension module, but use outer 1icense.lic:

pyarmor obfuscate —--cross-protection build/pytransform_protection.py \
—-with-license outer —-advanced 2 foo.py

» Use prebuilt runtime package to obfuscate scripts:

pyarmor runtime --advanced 2 --with-license outer -O myruntime-1

pyarmor obfuscate —-runtime myruntime-1 --with-license licenses/r001/license.lic_
—foo.py

pyarmor obfuscate --runtime @myruntime-1 --exact foo-2.py foo-3.py

6.3 licenses

Generate new licenses for obfuscated scripts.

SYNOPSIS:

52

Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

pyarmor licenses <options> CODE

OPTIONS
-0, --output OUTPUT Output path, stdout is supported
-e, --expired YYYY-MM-DD Expired date for this license
-d, --bind-disk SN Bind license to serial number of harddisk
-4, --bind-ipv4 IPV4 Bind license to ipv4 addr
-m, --bind-mac MACADDR Bind license to mac addr
-X, --bind-data DATA Pass extra data to license, used to extend license type
--disable-restrict-mode Disable all the restrict modes
--enable-period-mode Check license per hour when the obfuscated script is running
--fixed KEY Bind license to Python interpreter

DESCRIPTION

In order to run obfuscated scripts, it’s necessarey to hava a license.lic. As obfuscating the scripts, there is a default
license.lic created at the same time. In this license the obfuscated scripts can run on any machine and never expired.

This command is used to generate new licenses for obfuscated scripts. For example:

’pyarmor licenses —-expired 2019-10-10 mycode

An expired license will be generated in the default output path plus code name licenses/mycode, then overwrite the old
one in the same path of obfuscated script:

’cp licenses/mycode/license.lic dist/pytransform/

Since v6.3.0, the license.lic has been embedded into binary libraries by default, so the copy mode doesn’t work.
Instead of using option ——with-11icense when obfuscating the scripts, for example:

’pyarmor obfuscate —--with-license licenses/mycode/license.lic foo.py

If you prefer the tradional way, refer to How fo use outer license file

Another example, bind obfuscated scripts to mac address and expired on 2019-10-10:

’pyarmor licenses ——-expired 2019-10-10 —-bind-mac £8:ff:c2:27:00:7f r001

Before this, run command /dinfo to get hardware information:

pyarmor hdinfo

Hardware informations got by PyArmor:

Serial number of first harddisk: "EV994730S6LLEFO7AY"
Default Mac address: "f8:ff:c2:27:00:7£"

Ip address: "192.168.121.100"

If there are many network cards in the machine, pyarmor only checks the default mac address which is printed by
command hdinfo. For example:

pyarmor licenses —-bind-mac "f8:ff:c2:27:00:7f" r002

If binding to other network card, wrap the mac address with angle brackets. For example:

6.3. licenses 53

PyArmor Documentation, Release 6.6.2

’pyarmor licenses —-bind-mac "<2a:33:50:46:8f>" r002

It’s possible to bind all of mac addresses or some of them in same machine, for example:

’pyarmor licenses —--bind-mac "<2a:33:50:46:8£,£0:28:69:c0:24:3a>" r003

In Linux, it’s possible to bind mac address with ifname, for example:

’pyarmor licenses —-bind-mac "ethl/fa:33:50:46:8f:3d" r004

If there are many hard disks in the machine, pyarmor only checks the default hard disk which is printed by command
hdinfo. For example:

’pyarmor licenses ——bind-disk "FV994730S6LLFO7AY" r005

For binding other hard disk card, specify a name for it. For example:

In Windows, bind to the first, the second disk
pyarmor licenses --bind-disk "/0:FV994730S6LLFO7AY" r006
pyarmor licenses —-bind-disk "/1:KDX3298FS6P5AX380" r007

In Linux, bind to "/dev/vda2"
pyarmor licenses —-bind-disk "/dev/vda2:KDX3298FS6P5AX380" r008

By option -x any data could be saved into the license file, it’s mainly used to extend license tyoe. For example:

pyarmor licenses -x "2019-02-15" r005

In the obfuscated scripts, the data passed by -x could be got by this way:

from pytransfrom import get_license_info
info = get_license_info()
print (info['DATA'])

It also could output the license key in the stdout other than a file:

’pyarmor ——silent licenses ——output stdout -x "2019-05-20" reg-0001

By option ——f ixed, the license could be bind to Python interpreter. For example, use special key 7 to bind the license
to current Python interpreter:

’pyarmor licenses —--fixed 1

It also could bind the license to many Python interpreters by passing multiple keys separated by comma:

’pyarmor licenses —-fixed 4265050,5386060

How to get bind key of Python interpreter, refer to Binding obfuscated scripts to Python interpreter

Do not use this feature in 32-bit Windows, because the bind key is different in different machine, it may be changed
even if python is restarted in the same machine.

Note: Here is a real example Using Plugin to Extend License Type

54 Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

6.4 pack

Obfuscate the scripts or project and pack them into one bundle.

SYNOPSIS:

pyarmor pack <options> SCRIPT | PROJECT

OPTIONS
-0, --output PATH Directory to put final built distributions in.
-e, --options OPTIONS Pass these extra options to pyinstaller
-X, --xoptions OPTIONS Pass these extra options to pyarmor obfuscate
-s FILE Use external .spec file to pack the scripts
--without-license Do not generate license for obfuscated scripts

--with-license FILE Use this license file other than default one

--clean Remove cached files before packing

--debug Do not remove build files after packing

--name Name to assign to the bundled (default: the script’s basename)
DESCRIPTION

The command pack first calls Pylnstaller to generate .spec file which name is same as entry script. The options
specified by ——e will be pass to Pylnstaller to generate .spec file. It could be any option accepted by Pylnstaller
except —y, ——noconfirm, -n, ——name, ——distpath, ——specpath.

If there is in trouble, make sure the script could be bundled by Pylnstaller directly. For example:

pyinstaller foo.py

So long as Pylnstaller could work, just pass those options by —e, the command pack should work either.

Then pack will obfuscates all the .py files in the same path of entry script recursively. It will call command obfuscate
with options —r, ——output, ——package—-runtime O and the options specified by —x. However if packing a
project, pack will obfuscate the project by command build with option —B, and all the options specifed by —x will be
ignored. In this case config the project to control how to obfuscate the scripts.

Next pack patches the .spec file so that the original scripts could be replaced with the obfuscated ones.

Finally pack call Pylnstaller with this pacthed .spec file to generate the output bundle with obfuscated scripts. Refer
to How To Pack Obfuscated Scripts.

If the option ——debug is set, for example:

pyarmor pack —--debug foo.py

The following generated files will be kept, generally all of them are removed after packing end:

foo.spec

foo-patched. spec

dist/obf/temp/hook-pytransform.py

dist/obf/*.py # All the obfuscated scripts

The patched foo-patched.spec could be used by pyinstaller to pack the obfuscated scripts directly, for example:

6.4. pack 55

https://www.pyinstaller.org/
https://www.pyinstaller.org/
https://www.pyinstaller.org/
https://www.pyinstaller.org/
https://www.pyinstaller.org/
https://www.pyinstaller.org/

PyArmor Documentation, Release 6.6.2

pyinstaller -y —--clean foo-patched.spec

If some scripts are modified, just obfuscate them again, then run this command to pack them quickly. All the options
for command obfuscate could be got from the output of command pack.

If you’d like to change the final bundle name, specify the option ——name directly, do not pass it by the option —e, it
need some special handling.

If you have a worked .spec file, just specify it by option —s (in this case the option —e will be ignored), for example:

pyarmor pack -s foo.spec foo.py

The main script (here it’s foo.py) must be list in the command line, otherwise pack doesn’t know where to find the
scripts to be obfuscated. More refer to Bundle obfuscated scripts with customized spec file

If there are many data files or hidden imports, it’s better to write a hook file to find them easily. For example, create a
hook file named hook-sys.py:

from PyInstaller.utils.hooks import collect_data_files, collect_all
datas, binaries, hiddenimports = collect_all ('my_module_ name')
datas += collect_data_files ('submodule')

hiddenimports += ['_gdbm', 'socket', 'hbpy.defs']

datas += [('/usr/share/icons/education_x*.png', 'icons')]

Then call pack with extra option ——additional-hooks-dir . to tell pyinstaller find the hook in the current
path:

pyarmor pack -e " ——-additional-hooks-dir ." foo.py

More information about pyinstaller hook, refer to https://pyinstaller.readthedocs.io/en/stable/hooks.html#
understanding-pyinstaller-hooks

When something is wrong, turn on PyArmor debug flag to print traceback:

’pyarmor -d pack

EXAMPLES
* Obfuscate foo.py and pack them into the bundle dist/foo:

’pyarmor pack foo.py

* Remove the build folder, and start a clean pack:

’pyarmor pack —-—-clean foo.py

* Pack the obfuscated scripts by an exists myfoo.spec:

’pyarmor pack —-s myfoo.spec foo.py

* Pass extra options to run Pylnstaller:

pyarmor pack -e -w ——icon app.ico" foo.py
pyarmor pack -e " ——icon images\\app.ico" foo.py

* Pass extra options to obfuscate scripts:

pyarmor pack -x " —-—exclude venv —--exclude test" foo.py

56 Chapter 6. Man Page

https://pyinstaller.readthedocs.io/en/stable/hooks.html#understanding-pyinstaller-hooks
https://pyinstaller.readthedocs.io/en/stable/hooks.html#understanding-pyinstaller-hooks

PyArmor Documentation, Release 6.6.2

* Pack the obfuscated script to one file and in advanced mode:

pyarmor pack -e " —--onefile" -x " —--advanced 1" foo.py

* Pack the obfuscated scripts and expired on 2020-12-25:

pyarmor licenses -e 2020-12-25 cy2020
pyarmor pack --with-license licenses/cy2020/license.lic foo.py

* Change the final bundle name to my_app other than foo:

pyarmor pack —-—name my_app foo.py

 Pack a project with advanced mode:

pyarmor init —--entry main.py
pyarmor config —--advanced 1
pyarmor pack

Note: Since v5.9.0, possible pack one project directly by specify the project path in the command line. For example,
create a project in the current path, then pack it:

pyarmor init —--entry main.py
pyarmor pack

By this way the obfuscated scripts could be fully controlled.

Note: In Windows, use double black splash in extra options. For example:

"

pyarmor pack -e —-—icon images\\app.ico" foo.py

Note: For option —e and —x, pass an extra leading whitespace to avoid command line error:

pyarmor pack -e " —--onefile" -x " ——advanced 2" foo.py

Important: The command pack will obfuscate the entry script automatically, DO NOT obfuscate the entry script
before pack.

By default the command pack obfuscates all the . py files only in the entry script’s path recursively. It won’t obfuscate
all the dependencies out of this path.

6.5 hdinfo

Show hardware information of this machine, such as serial number of hard disk, mac address of network card etc. The
information got here could be as input data to generate license file for obfuscated scripts.

SYNOPSIS:

6.5. hdinfo 57

PyArmor Documentation, Release 6.6.2

pyarmor hdinfo

Without argument, this command displays all available hardware information.

In Windows, it also supports to query named hard disk, for example, get serial number from the first and third hard
disk:

pyarmor hdinfo /0 /2

In Linux, query named hard disk or network card, for example:

pyarmor hdinfo /dev/vda2
pyarmor hdinfo eth?2

If pyarmor isn’t installed, downlad this tool hdinfo
https://github.com/dashingsoft/pyarmor-core/tree/master/#hdinfo

And run it directly:

’hdinfo

It will print the same hardware information as pyarmor hdinfo

6.6 init

Create a project to manage obfuscated scripts.

SYNOPSIS:

pyarmor init <options> PATH

OPTIONS
-t, --type <auto,app,pkg> Project type, default value is auto
-s, --src SRC Base path of python scripts, default is current path
-e, --entry ENTRY Entry script of this project

DESCRIPTION

This command will create a project in the specify PATH, and a file .pyarmor_config will be created at the same time,
which is project configuration of JSON format.

If the option ——type is set to auto, which is the default value, the project type will set to pkg if the entry script is
__init__.py, otherwise to app.

The init command will set is_package to 1 if the new project is configured as pkg, otherwise it’s set to 0.
After project is created, use command config to change the project settings.

EXAMPLES

* Create a project in the current path:

pyarmor init --entry foo.py

* Create a project in the build path obf:

58 Chapter 6. Man Page

https://github.com/dashingsoft/pyarmor-core/tree/master/#hdinfo

PyArmor Documentation, Release 6.6.2

’pyarmor init —--entry foo.py obf

* Create a project for package:

’pyarmor init —-—-entry __init__ .py

 Create a project in the path obf, manage the scripts in the path /path/to/src:

’pyarmor init --src /path/to/src —--entry foo.py obf

6.7 config

Update project settings.
SYNOPSIS:

pyarmor config <options> [PATH]

OPTIONS
--name NAME Project name
--title TITLE Project title
--src SRC Project src, base path for matching scripts
--output PATH Output path for obfuscated scripts

--manifest TEMPLATE Manifest template string

--entry SCRIPT Entry script of this project

--is-package <0,1> Set project as package or not

--restrict <0,1,2,3,4> Set restrict mode

--obf-mod <0,1,2> Disable or enable to obfuscate module

--obf-code <0,1,2> Disable or enable to obfuscate function

--wrap-mode <0,1> Disable or enable wrap mode

--advanced <0,1,2,3,4> Enable advanced mode /, super mode 2, vim mode 3 or 4

--cross-protection <0,1> Disable or enable to insert cross protection code into entry script, it also
could be a filename to specify customized protection script

--rpath RPATH Set the path of runtime files in target machine

--plugin NAME Insert extra code to entry script, it could be used multiple times

--package-runtime <0,1> Save the runtime files as package or not

--bootstrap <0,1,2,3> How to insert bootstrap code to entry script

--enable-suffix <0,1> Generate the runtime package with unique name

--with-license FILENAME Use this license file, special value outer means no license
DESCRIPTION

Run this command in project path to change project settings:

6.7. config

59

PyArmor Documentation, Release 6.6.2

’pyarmor config —-option new-value

Or specify the project path at the end:

’pyarmor config --option new-value /path/to/project

Option ——-manifest is comma-separated list of manifest template command, same as MANIFEST.in of Python

Distutils.

Option ——ent ry is comma-separated list of entry scripts, relative to src path of project.
If option ——plugin is set to empty string, all the plugins will be removed.

For the details of each option, refer to Project Configuration File

EXAMPLES

* Change project name and title:

’pyarmor config ——name "project-1" -—-title "My PyArmor Project"

» Change project entries:

’pyarmor config ——entry foo.py,hello.py

 Exclude path build and dist, do not search .py file from these paths:

’pyarmor config ——manifest "global-include =*.py, prune build, prune dist"

* Copy all the .json files in the src path to output path:

’pyarmor config ——manifest "include x.py, include «*.Jjson"

* Obfuscate script with wrap mode off:

’pyarmor config —-wrap-mode 0O

* Set plugin for entry script. The content of check_ntp_time.py will be insert into entry script as building project:

’pyarmor config —-plugin check_ntp_time

* Remove all plugins:

’pyarmor config —-plugin ''

6.8 build

Build project, obfuscate all scripts in the project.

SYNOPSIS:

pyarmor config <options> [PATH]

OPTIONS
-B, --force Force to obfuscate all scripts

-1, --only-runtime Generate extra runtime files only

60

Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

-n, --no-runtime DO NOT generate runtime files

-0, --output OUTPUT Output path, override project configuration

--platform NAME Distribute obfuscated scripts to other platform

--package-runtime <0,1> Save the runtime files as package or not

--runtime PATH Use prebuilt runtime package
DESCRIPTION

Run this command in project path:

’pyarmor build

Or specify the project path at the end:

’pyarmor build /path/to/project

The option ——no-runt ime may impact on the Bootstrap Code, the bootstrap code will make absolute import without
leading dots in entry script.

About option ——platformand —-—package—-runtime, refer to command obfuscate
About option ——runt ime, refer to command runtime
EXAMPLES

* Only obfuscate the scripts which have been changed since last build:

’pyarmor build

¢ Force build all the scripts:

’pyarmor build -B

* Generate runtime files only, do not try to obfuscate any script:

’pyarmor build -r

» Obfuscate the scripts only, do not generate runtime files:

’pyarmor build -n

» Save the obfuscated scripts to other path, it doesn’t change the output path of project settings:

’pyarmor build -B -O /path/to/other

* Build project in Macos and run obfuscated scripts in Ubuntu:

’pyarmor build -B --platform linux.x86_64

6.9 info

Show project information.

SYNOPSIS:

6.9. info 61

PyArmor Documentation, Release 6.6.2

’pyarmor info [PATH]

DESCRIPTION

Run this command in project path:

’pyarmor info

Or specify the project path at the end:

’pyarmor info /path/to/project

6.10 check

Check consistency of project.

SYNOPSIS:

’pyarmor check [PATH]

DESCRIPTION

Run this command in project path:

’pyarmor check

Or specify the project path at the end:

’pyarmor check /path/to/project

6.11 banchmark

Check the performance of obfuscated scripts.

SYNOPSIS:

pyarmor benchmark <options>

OPTIONS:

-m, --obf-mod <0,1,2> Whether to obfuscate the whole module

-c, --obf-code <0,1,2> Whether to obfuscate each function

-w, --wrap-mode <0,1> Whether to obfuscate each function with wrap mode
-a, --advanced <0,1,2,3,4> Set advanced mode, super mode and vm mode

--debug Do not remove test path

DESCRIPTION

This command will generate a test script, obfuscate it and run it, then output the elapsed time to initialize, import

obfuscated module, run obfuscated functions etc.

EXAMPLES

62

Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

* Test performance with default mode:

’pyarmor benchmark

¢ Test performance with no wrap mode:

’pyarmor benchmark --wrap-mode 0

* Check the test scripts which saved in the path .benchtest:

’pyarmor benchmark --debug

6.12 register

Make registration keyfile effect, or show registration information.

SYNOPSIS:

pyarmor register [KEYFILE]

DESCRIPTION

This command is used to register the purchased key file or code file to take it effects:

pyarmor register /path/to/pyarmor-regfile-1.zip
pyarmor register /path/to/pyarmor-keycode-1.txt

Show registration information:

’pyarmor register

Purchase one registration code:

’pyarmor register —-buy

6.13 download

List and download platform-dependent dynamic libraries.

SYNOPSIS:

pyarmor download <options> NAME

OPTIONS:
--help-platform Display all available standard platform names
-L, --list FILTER List available dynamic libraries in different platforms
-0, --output PATH Save downloaded library to this path
--update Update all the downloaded dynamic libraries
DESCRIPTION

This command mainly used to download available dynamic libraries for cross platform.

6.12. register

63

PyArmor Documentation, Release 6.6.2

List all available standard platform names. For examples:

pyarmor download

pyarmor download —-help-platform

pyarmor download --help-platform windows
pyarmor download --help-platform linux.x86_64

Then download one from the list. For example:

pyarmor download linux.armv7
pyarmor download linux.x86_64

By default the download file will be saved in the path ~/ . pyarmor/plat forms with different platform names.

Option ——11 st could filter the platform by name, arch, features, and display the information in details. For examples:

pyarmor download —--1list

pyarmor download —--list windows
pyarmor download --list windows.x86_64
pyarmor download —--list JIT

pyarmor download —--list armv7

After pyarmor is upgraded, however these downloaded dynamic libraries won’t be upgraded. The option ——update
could be used to update all these downloaded files. For example:

’pyarmor download —-update

6.14 runtime

Geneate Runtime Package separately.

SYNOPSIS:

pyarmor runtime <options>

OPTIONS:
-0, --output PATH Output path, default is dist
-n, --no-package Generate runtime files without package
-i, --inside Generate bootstrap script which is used inside one package
-L, --with-license FILE Replace default license with this file, special value outer means no license
--platform NAME Generate runtime package for specified platform
--enable-suffix Generate the runtime package with unique name
--advanced <0,1,2,3,4> Generate advanced runtime package
DESCRIPTION
This command is used to generate the runtime package separately.

The Runtime Package could be shared if the scripts are obufscated by same Global Capsule. So generate it once, then
need not generate the runtime files when obfuscating the scripts later.

It also generates a bootstrap script pytransform_bootstrap.py in the output path. This script is obfuscated
from an empty script, and there is Bootstrap Code in it. It’s mainly used to run Bootstrap Code in the plain script. For
example, once it’s imported, all the other obfuscated modules could be imported in one plain script:

64 Chapter 6. Man Page

PyArmor Documentation, Release 6.6.2

import pytransform_ bootstrap
import obf_ foo

If option ——inside is specified, it will generate bootstrap package pytransform_bootstrap other than one
single script.

The option ——advanced is used to generate advanced runtime package, for example, Super Mode etc.
About option ——platformand —~—enable-suf fix, refer to command obfuscate

Since v6.2.0, it also generates protection script pytransform protection.py, which is used to patch entry
scripts. Refer to Customizing cross protection code

Since v6.3.7, the runtime package will remember the option —advanced, —platform, —enable-suffix, and save them to
cross protection script pytransform_protection.py as leading comment. The advantage is when obfuscating the scripts
with option ——runtime, it could get these settings automatically and use the same cross protection script. For
example:

pyarmor runtime —--platform linux.armv/7 —--enable-suffix --advanced 1 -O myruntime-1
pyarmor obfuscate —--runtime myruntime-1 foo.py

The second command is same as:

’pyarmor obfuscate —-platform linux.armv7 —--enable-suffix —--advanced 1 foo.py

With a leading @ in the runtime path, it will not copy any runtime file, but read the settings of runtime package. It’s
useful if there are multiple entry scripts need to be obufscated. For example:

’pyarmor obfuscate —--runtime @myruntime-1 --exact foo-2.py foo-3.py

For project, set option ——runt ime for command build. For example:

’pyarmor build —--runtime @myruntime-1

EXAMPLES

* Generate Runtime Package pytransform in the default path dist:

’pyarmor runtime

* Not generate a package, but four separate files Runtime Files:

’pyarmor runtime -n

* Generate bootstrap package dist/pytransform boostrap:

’pyarmor runtime -i

* Generate Runtime Package for platform armv7 with expired license:

pyarmor licenses —--expired 2020-01-01 code-001
pyarmor runtime --with-license licenses/code-001/license.lic ——-platform linux.
—armv’/

* Generate runtime module for super mode:

pyarmor runtime --advanced 2

* Generate runtime module for super mode but with outer license:

6.14. runtime 65

PyArmor Documentation, Release 6.6.2

pyarmor runtime --advanced 2 —--with-license outer

66

Chapter 6. Man Page

CHAPTER /

Understanding Obfuscated Scripts

7.1 Global Capsule

The .pyarmor_capsule.zip in the HOME path called Global Capsule. PyArmor will read data from Global
Capsule when obfuscating scripts or generating licenses for obfuscated scripts.

All the trial version of PyArmor shares one same .pyarmor_capsule.zip, which is created implicitly when
executing command pyarmor obfuscate. It uses 1024 bits RSA keys, called public capsule.

For purchased version, each user will receive one exclusive private capsule, which use 2048 bits RSA key.

The capsule can’t help restoring the obfuscated scripts at all. If your private capsuel got by someone else, the risk is
that he/she may generate new license for your obfuscated scripts.

Generally this capsule is only in the build machine, it’s not used by the obfuscated scripts, and should not be distributed
to the end users.

7.2 Obfuscated Scripts

After the scripts are obfuscated by PyArmor, in the dist folder you find all the required files to run obfuscated scripts:

dist/
myscript.py
mymodule.py

pytransform/
__init__.py
_pytransform.so/.dll/.dylib

Before v6.3, there are 2 extra files:

pytransform.key
license.lic

67

PyArmor Documentation, Release 6.6.2

The obfuscated scripts are normal Python scripts. The module dist/mymodule.py would be like this:

__pyarmor__ (__ name__, file_ , b'\x06\x0£...', 1)

The entry script dist/myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
_ _pyarmor__ (_ name__ , file_ , b'\x0a\x02...', 1)

7.2.1 Super Obfuscated Scripts

If the scripts are obfuscated by Super Mode, it’s totaly different. There is only one runtime file, that is extension
module pytransform. Only these files in the dist:

myscript.py
mymodule.py

pytransform.so or pytransform.dll

All the obfuscated scripts would be like this:

from pytransform import pyarmor
pyarmor (__name__, _ file_, b'\x0a\x02...'"', 1)

Or there is a suffix in extension name, for example:

from pytransform vax_ 000001 import pyarmor
pyarmor (_ name_ , _ file_, b'\x0a\x02...', 1)

7.2.2 Entry Script

In PyArmor, entry script is the first obfuscated script to be run or to be imported in a python interpreter process. For
example, __init__.py is entry script if only one single python package is obfuscated.

7.3 Bootstrap Code

The first 2 lines in the entry script called Bootstrap Code. It’s only in the entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

For the obfuscated package which entry script is __init__.py. The bootstrap code may make a relateive import by

[T

leading ““.”:

from .pytransform import pyarmor_runtime
pyarmor_runtime ()

And there is another form if the runtime path is specified as obfuscating scripts:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/runtime')

68 Chapter 7. Understanding Obfuscated Scripts

PyArmor Documentation, Release 6.6.2

Since v5.8.7, the runtime package may has a suffix. For example:

from pytransform vax 000001 import pyarmor_runtime
pyarmor_runtime (suffix='_vax_000001")

For Super Mode, not only the entry script, but also the other obfuscated scripts include one line Bootstrap Code:

’from pytransform import pyarmor

7.4 Runtime Package

The package pytransform which is in the same folder with obfuscated scripts called Runtime Packge. 1t’s required to
run the obfuscated script, and it’s the only dependency of obfuscated scripts.

Generally this package is in the same folder with obfuscated scripts, but it can be moved anywhere. Only this package
in any Python Path, the obfuscated scripts can be run as normal scripts. And all the scripts obfuscated by the same
Global Capsule could share this package.

There are 2 files in this package:

pytransform/
__init___.py A normal python module
_pytransform.so/.dl11l/.1lib A dynamic library implements core functions

Before v6.3.0, there are 2 extra files:

pytransform.key Data file
license.lic The license file for obfuscated scripts

Before v5.7.0, the runtime package has another form Runtime Files

For Super Mode, both runtime package and runtime files now refer to the extension module pytransform. In
different platforms or different Python version, it has different name, for example:

pytransform.pyd

pytransform.so
pytransform.cpython-38-darwin.so
pytransform.cpython-38-x86_64-1linux—gnu.so

7.4.1 Runtime Files

They’re not in one package, but as 2 separated files:

pytransform.py A normal python module
_pytransform.so/.dl1l/.1ib A dynamic library implements core functions

Before v6.3.0, there are 2 extra files:

pytransform.key Data file
license.lic The license file for obfuscated scripts

Obviously Runtime Package is more clear than Runtime Files.

Since v5.8.7, the runtime package (module) may has a suffix, for example:

7.4. Runtime Package 69

PyArmor Documentation, Release 6.6.2

pytransform_vax_000001/
__init__.py

pytransform_vax_000001.py

7.5 The License File for Obfuscated Script

There is a special runtime file license.lic, it’s required to run the obfuscated scripts. Since v6.3.0, it may be embedded
into the dynamic library.

When executing pyarmor obfuscate, a default one will be generated, which allows obfuscated scripts run in any
machine and never expired.

In order to bind obfuscated scripts to fix machine, or expire the obfuscated scripts, use command pyarmor
licenses to generate a new license.lic and overwrite the default one.

Note: In PyArmor, there is another license.lic, which locates in the source path of PyArmor. It’s required to run
pyarmor, and issued by me, :)

7.6 Key Points to Use Obfuscated Scripts

» The obfuscated scripts are normal python scripts, so they can be seamless to replace original scripts.

» There is only one thing changed, the bootstrap code must be executed before running or importing any obfus-
cated scripts.

e The runtime package must be in any Python Path, so that the bootstrap code can run correctly.
The following notes are only apply to non-super mode

e The bootstrap code will load dynamic library _pytransform.so/.dll/.dylib by ctypes. This file is dependent-
platform, all the prebuilt dynamic libraries list here Support Platfroms

e By default the bootstrap code searchs dynamic library _pytransform in the runtime package. Check pytrans-
form._load_library to find the details.

¢ If the dynamic library _pytransform isn’t within the runtime package, change the bootstrap code:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/runtime')

* When starts a fresh python interpreter process by multiprocssing. Process, os.exec, subprocess.Popen etc., make
sure the bootstrap code are called in new process before running any obfuscated script.

More information, refer to How to Obfuscate Python Scripts and How to Run Obfuscated Script

7.7 The Differences of Obfuscated Scripts

There are something changed after Python scripts are obfuscated:

70 Chapter 7. Understanding Obfuscated Scripts

PyArmor Documentation, Release 6.6.2

* The obfsucated scripts are bind to Python major/minor version. For example, if it’s obfuscated by Python 3.6, it
must run by Python 3.6. It doesn’t work for Python 3.5

* The obfuscated scripts are platform-dependent.
« If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it will crash to run obfuscated scripts.

e The callback function set by sys.settrace, sys.setprofile, threading.settrace and
threading.setprofile will be ignored by obfuscated scripts.

* Any module for example inspect may not work if it try to visit the byte code, or some attributes of code
objects in the obfuscated scripts.

« If the exception is raised, the line number in the traceback may be different from the original script, especially
this script has been patched by plugin script or cross protection code.

e The attribute __file__ of code object in the obfuscated scripts will be <frozen name> other than real
filename. So in the traceback, the filename is shown as <frozen name>.

Note that ___file__ of moudle is still filename. For example, obfuscate the script foo . py and run it:

def hello(msqg) :
print (msg)

The output will be 'foo.py'
print(_ _file)

The output will be '<frozen foo>'
print (hello. file)

* In super mode, builtin functions dirs(), vars() don’t work if no argument, call it by this way:

dirs () => sorted(locals() .keys())
vars () => locals()

Note that dirs(x), vars(x) still work if x is not None.

7.8 About Third-Party Interpreter

About third-party interperter, for example Jython, and any embeded Python C/C++ code, they should satisfy the
following conditions at least to run the obfuscated scripts:

* They must be load offical Python dynamic library, which should be built from the soure https://github.com/
python/cpython , and the core source code should not be modified.

e On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by dlopen, otherwise obfuscated scripts
couldn’t work.

Note: Boost::python does not load libpythonXY.so with RTLD_GLOBAL by default, so it will raise er-
ror “No PyCode_Type found” as running obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os.RTLD_GLOBAL) as initializing.

* The module ctypes must be exists and ctypes.pythonapi._handle must be set as the real handle of Python dynamic
library, PyArmor will query some Python C APIs by this handle.

7.8. About Third-Party Interpreter 71

https://github.com/python/cpython
https://github.com/python/cpython

PyArmor Documentation, Release 6.6.2

72

Chapter 7. Understanding Obfuscated Scripts

CHAPTER 8

How PyArmor Does It

Look at what happened after foo . py is obfuscated by PyArmor. Here are the files list in the output path dist:

foo.py

pytransform/
__init_ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

dist/foo.py is obfuscated script, the content is:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor___(__name__, file. , b'\x06\x0£f...")

There is an extra folder pytransform called Runtime Package, which are the only required to run or import obfuscated
scripts. So long as this package is in any Python Path, the obfuscated script dist/foo.py can be used as normal Python
script. That is to say:

The original python scripts can be replaced with obfuscated scripts seamlessly.

8.1 How to Obfuscate Python Scripts

How to obfuscate python scripts by PyArmor?

First compile python script to code object:

char xfilename = "foo.py";
char *source = read_file(filename);
PyCodeObject xco = Py_CompileString(source, "<frozen foo>", Py_file_input);

Then change code object as the following way

73

PyArmor Documentation, Release 6.6.2

* Wrap byte code co_code withinatry...finally block:

wrap header:

LOAD_GLOBALS N (__armor_enter_) N = length of co_consts
CALL_FUNCTION 0
POP_TOP

SETUP_FINALLY X (Jump to wrap footer) X = size of original byte code
changed original byte code:

Increase oparg of each absolute jump instruction by the size of wrap,
—header

Obfuscate original byte code

wrap footer:

LOAD_GLOBALS N + 1 (__armor_exit_)
CALL_FUNCTION 0
POP_TOP

END_FINALLY

* Append function names __armor_enter, _armor_exit__ toco_consts
¢ Increase co_stacksize by 2

Set CO_OBFUSCAED (0x80000000) flag in co_flags

» Change all code objects in the co_const s recursively

Next serializing reformed code object and obfuscate it to protect constants and literal strings:

char *string_code = marshal.dumps(co);
char xobfuscated_code = obfuscate_algorithm(string_code);

Finally generate obfuscated script:

sprintf(buf, "__pyarmor__(__name__, _ file , Db’ ')", obfuscated_code);
save_file("dist/foo.py", buf);

The obfuscated script is a normal Python script, it looks like this:

’__pyarmor__(;iraﬂegf, file. , b'\x01\x0a...')

8.2 How to Deal With Plugins

In PyArmor, the plugin is used to inject python code into the obfuscted script before the script is obfuscated, thus the
plugin code could be executed when the obfuscated script is running. For example, use a plugin to check internet time:

’pyarmor obfuscate —-plugin check_ntp_time foo.py

Why not insert the plugin code into the script directly? Because most of them must be called in the obufscated scripts.
For example, get the license information of the obfuscated scripts.

Each plugin is a normal Python script, PyArmor searches it by this way:

74 Chapter 8. How PyArmor Does It

PyArmor Documentation, Release 6.6.2

* If the plugin has absolute path, then find the corresponding .py file exactly.
« If it has relative path, search the .py file in:
— The current path
— SHOME/ .pyarmor/plugins
- {pyarmor_folder}/plugins
* Raise exception if not found
When there is plugin specified as obfuscating the script, each comment line will be scanned to find any plugin marker.
There are 3 types of plugin marker:
* Plugin Definition Marker
* Plugin Inline Marker
¢ Plugin Call Marker
The Plugin Definition Marker looks like this:

{PyArmor Plugins}

Generally there is only one in a script, all the plugins will be injected here. It must be one leading comment line, no
indentation. If there is no plugin definition marker, none of plugins will be injected.

The others are mainly used to call the function defined in the plugin scripts. There are 3 forms, any comment line with
this prefix will be as a plugin marker:

PyArmor Plugin:
pyarmor.
@pyarmor._

They could appear many times, in any indentation, generally should be behind plugin definition marker.

The first form called Plugin Inline Marker, PyArmor just removes this pattern and one following whitespace exactly,
and leave the rest part as it is. For example, these are inline markers in the script foo . py:

PyArmor Plugin: check_ntp_time ()

1

PyArmor Plugin: print ('This is plugin code')
PyArmor Plugin: 1f sys.flags.debug:

PyArmor Plugin: check_something() :

In the dist/foo.py, they’ll be replaced as:

check_ntp_time ()

print ('This is plugin code')

if sys.flags.debug:
check_something ()

So long as there is any plugin specified in the command line, these replacements will be taken place. If there is no
external plugin script, use special plugin name on in the command line. For example:

pyarmor obfuscate --plugin on foo.py

The second form called Plugin Call Marker, it’s only used to call function deinfed in the plugin script. Besides, if this
function name is not specified as plugin name, PyArmor doesn’t touch this marker. For example, obufscate the script
by this command:

8.2. How to Deal With Plugins 75

PyArmor Documentation, Release 6.6.2

pyarmor obfuscate --plugin check_ntp_time foo.py

In the foo. py, only the first marker will be handled, the second marker will be kept as it is, because there is no plugin
name specified in the command line as the function name check_multi_mac:

pyarmor_check_ntp_time ()
pyarmor_check_multi_mac ()

==>

check_ntp_time ()
pyarmor_check_multi_mac ()

The last form # @pyarmor_ is almost same as the second, but the comment prefix will be replaced with @, it’s
mainly used to inject a decorator. For example:

@pyarmor_assert_obfuscated (foo.connect)
def login (user, name):
foo.connect (user, name)

==>
@assert_obfuscated (foo.connect)

def login (user, name):
foo.connect (user, name)

If the plugin name have a leading @, it will be injected into the script only when it’s used in the script, otherwise it’s
ignored. For example:

’pyarmor obfuscate —--plugin @check ntp_ time foo.py

The script foo . py must call plugin function check_ntp_time by one of Plugin Call Marker. For example:

’# pyarmor._check_ntp_time ()

The Plugin Inline Marker doesn’t work. For example:

’# PyArmor Plugin: check_ntp_ time ()

Even this marker will be replaced with check_ntp_time (), but the plugin script will not be injected into the
obfuscated script. When it runs, it will complain of no function check_ntp_name found.

Note: If there is no option ——plugin in the command line, pyarmor DOES NOT search any plugin marker in the
comment. If there is no external plugin script, use special name on like this:

’pyarmor obfuscate —--plugin on foo.py

8.3 Special Handling of Entry Script

There are 2 extra changes for entry script:
» Before obfuscating, insert protection code to entry script.

» After obfuscated, insert bootstrap code to obfuscated script.

76 Chapter 8. How PyArmor Does It

PyArmor Documentation

, Release 6.6.2

Before obfuscating entry scipt, PyArmor will search the content line by line. If there is line like this:

’# {PyArmor Protection Code}

PyArmor will replace this line with protection code.

If there is line like this:

’# {No PyArmor Protection Code}

PyArmor will not patch this script.

If both of lines aren’t found, insert protection code before the line:

’if name == '_ _main_ '

Do nothing if no __main__ line found.

Here it’s the default template of protection code:

def protect_pytransform() :
import pytransform

def check_obfuscated_script () :

CO_SIZES = 49, 46, 38, 36

CO_NAMES = set (['pytransform', 'pyarmor_runtime', '__ pyarmor__ '

' name__ ', '__file_ '])
co = pytransform.sys._getframe (3) .f_code
if not ((set (co.co_names) <= CO_NAMES)
and (len(co.co_code) in CO_SIZES)):
raise RuntimeError ('Unexpected obfuscated script')

’

def check_mod_pytransform() :
def _check_co_key(co, Vv):

for k, (vl, v2, v3) in {keylist}:
co = getattr (pytransform, k). {code}
if not _check_co_key(co, vl):
raise RuntimeError ('unexpected pytransform.py')
if v2:
if not _check_co_key(co.co_consts[1l], v2):
raise RuntimeError ('unexpected pytransform.py')
if v3:
if not _check_co_key(co.{closure}[0].cell_contents.{code},
raise RuntimeError ('unexpected pytransform.py')

def check_lib_pytransform() :
filename = pytransform.os.path.join({rpath}, {filename})
size = {size}
n = size >> 2
with open(filename, 'rb') as f:
buf = f.read(size)
fmt = '"I' % n
checksum = sum(pytransform.struct.unpack (fmt, buf)) & OxFFFFFFFF
if not checksum == {checksum}:
raise RuntimeError ("Unexpected " % filename)
try:
check_obfuscated_script ()

return (len(co.co_names), len(co.co_consts), len(co.co_code)) ==

v3):

(continues on next page)

8.3. Special Handling of Entry Script

77

PyArmor Documentation, Release 6.6.2

(continued from previous page)

check_mod_pytransform()

check_1lib_pytransform()
except Exception as e:

print ("Protection Fault:

pytransform.sys.exit (1)

protect_pytransform()

All the string template {xxx} will be replaced with real value by PyArmor.

To prevent PyArmor from inserting this protection code, pass ——no-cross-protection as obfuscating the
scripts:

’pyarmor obfuscate —--no-cross-protection foo.py

After the entry script is obfuscated, the Bootstrap Code will be inserted at the beginning of the obfuscated script.

8.4 How to Run Obfuscated Script

How to run obfuscated script dist/foo.py by Python Interpreter?

The first 2 lines, which called Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

It will fulfil the following tasks
¢ Load dynamic library _pytransformby ctypes
e Check license. lic is valid or not
¢ Add 3 cfunctions to module builtins: _ _pyarmor_ ,__armor_enter_ ,_ armor_exit_

The next code line in dist/foo.py is:

__pyarmor__ (__name__, file_ , b'\x01\x0a...')

__pyarmor___is called, it will import original module from obfuscated code:

static PyObject =
__pyarmor__ (char sname, char xpathname, unsigned char *obfuscated_code)
{
char *string_code = restore_obfuscated_code(obfuscated_code);
PyCodeObject #*co = marshal.loads(string_code);
return PyImport_ExecCodeModuleEx (name, co, pathname);

After that, in the runtime of this python interpreter

e __armor_enter__ iscalled as soon as code object is executed, it will restore byte-code of this code object:

static PyObject =
__armor_enter__ (PyObject xself, PyObject =*args)
{

// Got code object

PyFrameObject +frame = PyEval_GetFrame ();

(continues on next page)

78 Chapter 8. How PyArmor Does It

PyArmor Documentation, Release 6.6.2

(continued from previous page)

PyCodeObject *f_code = frame->f_code;

// Increase refcalls of this code object

// Borrow co_names—->ob_refcnt as call counter

// Generally it will not increased by Python Interpreter
PyObject xrefcalls = f_code->co_names;
refcalls—>ob_refcnt ++;

// Restore byte code if it's obfuscated

if (IS_OBFUSCATED (f_code->co_flags)) {
restore_byte_code (f_code—>co_code) ;
clear_obfuscated_flag(f_code);

Py_RETURN_NONE;

e __armor_exit__ iscalled so long as code object completed execution, it will obfuscate byte-code again:

static PyObject =
__armor_exit__ (PyObject =xself, PyObject =xargs)
{
// Got code object
PyFrameObject *frame = PyEval_GetFrame();
PyCodeObject *f_code = frame->f_code;

// Decrease refcalls of this code object
PyObject xrefcalls = f_code->co_names;
refcalls—->ob_refcnt ——;

// Obfuscate byte code only if this code object isn't used by any function
// In multi-threads or recursive call, one code object may be referenced
// by many functions at the same time
if (refcalls->ob_refcnt == 1) {

obfuscate_byte_code (f_code->co_code) ;

set_obfuscated_flag(f_code);

// Clear f_locals in this frame
clear_frame_locals (frame);

Py_RETURN_NONE;

8.5 How To Pack Obfuscated Scripts

The obfuscated scripts generated by Py Armor can replace Python scripts seamlessly, but there is an issue when packing
them into one bundle by PylInstaller:

All the dependencies of obfuscated scripts CAN NOT be found at all
To solve this problem, the common solution is
1. Find all the dependencies by original scripts.

2. Add runtimes files required by obfuscated scripts to the bundle

8.5. How To Pack Obfuscated Scripts 79

PyArmor Documentation, Release 6.6.2

3. Replace original scripts with obfuscated in the bundle
4. Replace entry script with obfuscated one

PyArmor provides command pack to achieve this. But in some cases maybe it doesn’t work. This document describes
what the command pack does, and also could be as a guide to bundle the obfuscated scripts by yourself.

First install pyinstaller:

’pip install pyinstaller

Then obfuscate scripts to dist/obf:

’pyarmor obfuscate —-output dist/obf --package-runtime 0 hello.py

Next generate specfile, add runtime files required by obfuscated scripts:

pyi-makespec --add-data dist/obf/license.lic:. \
-—add-data dist/obf/pytransform.key:. \
——add-data dist/obf/_pytransform.x:. \
-p dist/obf --hidden-import pytransform \
hello.py

If the scripts are obfuscated by super mode:

’pyarmor obfuscate —--output dist/obf --advanced 2 --package-runtime 0 hello.py

Generate .spec file by this command:

’pyi—makespec -p dist/obf —--hidden-import pytransform hello.py

In windows, the : should be replace with ; in the command line.

And patch specfile hello. spec, insert the following lines after the Analysis object. The purpose is to replace all
the original scripts with obfuscated ones:

src = os.path.abspath('.")
obf_src = os.path.abspath('dist/obf")

for i in range(len(a.scripts)):
if a.scripts[i][1l].startswith(src):
X = a.scripts([i][1l].replace(src, obf_src)
if os.path.exists(x):
a.scripts[i] = a.scripts([i][0], x, a.scripts[i][2]

for i in range(len(a.pure)):
if a.pure[i][1l].startswith(src):
x = a.pure[i] [1l].replace(src, obf_src)
if os.path.exists (x):
if hasattr(a.pure, '_code_cache'):
with open(x) as f:
a.pure._code_cachela.pure[i] [0]] = compile(f.read(), a.pureli][1l],
— 'exec'")
a.pure[i] = a.pure[i] [0], x, a.purel[i][2]

Run patched specfile to build final distribution:

pyinstaller —--clean -y hello.spec

80 Chapter 8. How PyArmor Does It

PyArmor Documentation, Release 6.6.2

Note: Option ——clean is required, otherwise the obfuscated scripts will not be replaced because the cached .pyz
will be used.

Check obfuscated scripts work:

dist/hello/hello.exe

8.5. How To Pack Obfuscated Scripts 81

PyArmor Documentation, Release 6.6.2

82

Chapter 8. How PyArmor Does It

CHAPTER 9

Runtime Module pytransform

If you have realized that the obfuscated scripts are black box for end users, you can do more in your own Python
scripts.In these cases, pyt rans form would be useful.

The pytransform module is distributed with obfuscated scripts, and must be imported before running any obfus-
cated scripts. It also can be used in your python scripts.

9.1 Contents

exception PytransformError
It’s DEPRECATED.

This is raised when any pytransform api failed. The argument to the exception is a string indicating the cause of
the error.

It’s not available in super mode.

get_expired_days ()
Return how many days left for time limitation license.

>0: valid in these days

-1: never expired

Note: If the obfuscated script has been expired, it will raise exception and quit directly. All the code in the obfuscated
script will not run, so this function will never return 0.

get_license_info ()
Get license information of obfuscated scripts.

It returns a dict with keys:
¢ ISSUER: The issuer id
* EXPIRED: Expired date

83

PyArmor Documentation, Release 6.6.2

* IFMAC: mac address bind to this license
* HARDDISK: serial number of harddisk bind to this license
* IPV4: ipv4 address bind to this license
* DATA: extra data stored in this licese, used by extending license type
* CODE: registration code of this license
The value None means no this key in the license.

The key ISSUER is introduced from v6.2.5. It will be trial if the license.lic is generated by trial pyarmor.
For purchased pyarmor, it will be the purchased key like pyarmor-vax-NNNNNN. Note that if the license.lic is
generated by pyarmor before v6.0.1, it will be None.

Raise Exception if license is invalid, for example, it has been expired.

get_license_code ()
Return a string, which is last argument as generating the licenses for obfucated scripts.

Raise Exception if license is invalid.

get_user_data ()
Return a string in non-super mode or bytes object in super mode, which is specified by —x as generating the
licenses for obfucated scripts.

Return None if no specify —x.
Raise Exception if license is invalid.

get_hd_info (hdtype, name=None)
Get hardware information by hdtype, hdtype could one of

HT HARDDISK return the serial number of first harddisk
HT_IFMAC return mac address of first network card
HT_IPV4 return ipv4 address of first network card
HT_DOMAIN return domain name of target machine
Raise Exception if something is wrong.

In Linux, name is used to get named network card or named harddisk. For example:

get_hd_info (HT_IFMAC, name="eth2")
get_hd_info (HT_HARDDISK, name="/dev/vda2")

In Windows, name is used to get all network cards and harddisks. For example:

get_hd_info (HT_IFMAC, name="x")
get_hd_info (HT_HARDDISK, name="x")

get_hd_info (HT_HARDDISK, name="/0") # First disk
get_hd_info (HT_HARDDISK, name="/1") # Second disk

Note: Changed in v6.5.3
* Add new keyword parameter name

* Remove keyword parameter size

84 Chapter 9. Runtime Module pytransform

PyArmor Documentation, Release 6.6.2

HT_HARDDISK, HT_IFMAC, HT_IPV4, HT_ DOMAIN
Constant for hdtype when calling get_hd_info ()

assert_armored (*args)
A decorator function used to check each module/function/method list in the args is obfuscated.

It could check module, function or method, any other type, Class for example, doesn’t support. If the function
is decoratored by builtin decorator, for example @stat icmethod, it will be taken as no obfuscation.

Raise RuntimeError if anyone is not obfuscated.

For example:

from pytransform import assert_armored
@assert_armored (foo, foo.connect, foo.connect2)
def start_server () :

foo.connect ('root', 'root password')

Note: Since v6.6.2, checking module is supported, but only for super mode

check_armored (*args)
Return True if all the functions/methods/modules in the args are obfuscated.

Return False if any of them is not obfuscated.

It could check module, function or method, any other type, Class for example, doesn’t support. If the function is
decoratored by any builtin decorator, for example, @staticmethod, it will taken as not obfuscated and return
False.

For example:

from pytransform import check_armored
if not check_armored(foo, foo.connect, foo.connect2):
print ('My script is hacked')

Note: New in v6.6.2 only for super mode

9.2 Examples

Copy those example code to any script, for example foo.py, obfuscate it, then run the obfuscated script.

Show left days of license

from pytransform import get_license_info, get_expired_days
try:
code = get_license_info () ['CODE"']
left_days = get_expired_days()
if left_days == -1:
print ('This license for is never expired' % code)
else:
print ('This license for will be expired in days' % (code, left_days))
except Exception as e:
print (e)

9.2. Examples 85

PyArmor Documentation, Release 6.6.2

More usage refer to Using Plugin to Extend License Type and Using Plugin To Improve Security

Note: Though pytransform.py is not obfuscated when running the obfuscated script, it’s also protected by PyArmor.
If it’s changed, the obfuscated script will raise protection exception.

Refer to Special Handling of Entry Script

86 Chapter 9. Runtime Module pytransform

cHAaPTER 10

Support Platfroms

The core of PyArmor is written by C, the prebuilt dynamic libraries include the common platforms and some embeded
platforms.

Some of them are distributed with PyArmor source package. In these platforms, pyarmor could run without down-
loading anything:

windows.x86
windows.x86_64
linux.x86
linux.x86_64
darwin.x86_64

For the other platforms, when first run pyarmor, it will download the corresponding dynamic library from the remote
server automatically, and save it to ~/ .pyarmor/platforms/SYSTEM/ARCH/N/, SYSTEM.ARCH is one of
Standard Platform Names. N is features number, which explained below. Here list all the other supported platforms:

darwin.aarch64
ios.aarcho64
linux.arm
linux.armvé
linux.armv?7
linux.aarch32
linux.aarch64
linux.ppc64
android.aarché64
android.armv?7
android.x86
android.x86_64
uclibc.armv7
centos6.x86_64
freebsd.x86_64
musl.x86_64
musl.arm
musl.mips32
poky.x86

87

PyArmor Documentation, Release 6.6.2

For Linux platforms, the first identifier stands for libc used in this platform. 1inux stands for glibc, centos6 for
glibc < 2.14, android for static libc, mus1 and uclibc as it is. Note that Docker based on Alpine Linux, its
identifier is mus1, not 1inux.

Super Mode uses the extension module pytransform directly, and it will be saved in the path ~/.pyarmor/
platforms/SYSTEM/ARCH/N/pyXY. For example, 1inux/x86_64/11/py38.

Table 1: Table-3. The Prebuilt Extensions For Super Mode

Name Arch Fea- Python Ver- | Remark
ture sions

darwin x86_64 11 217,37, 38, 39

darwin aarch64 11 38, 39 Apple Silicon

ios aarch64 11 38, 39

linux x86, x86_64, aarch64, aarch32, | 11 217,37, 38, 39

armv’7
centos6 x86_64 11 27 Linux with glibc < 2.14 and
UCS2
win- x86, x86_64 11,25 27,37, 38, 39
dows

For all the latest platforms, refer to pyarmor-core/platforms/index.json

In some platforms, pyarmor doesn’t know its standard name, just download the right one and save it in the path ~/ .
pyarmor/platforms/SYSTEM/ARCH/N/. Run the command pyarmor -d download in this platform, and
check the output log, it can help you find where to save the download file.

If you’re not sure this dynamic library is right for this platform, check it by 1dd to print the dependent system libraries.
For example:

ldd /path/to/_pytransform.so

If there is no anyone available and you’d like to run pyarmor in this platform, click here submit a feature request for
new platform

10.1 Features

There may be serveral dynamic libraries with different features in each platform. The platform name with feature
number combines an unique name.

Each feature has its own bit
e 1: Anti-Debug
e 2. JIT
¢ 4: ADV, advanced mode
» 8: SUPER, super mode
* 16: VM, vm protection mode

For example, windows .x86_64 .7 means anti-debug(1), JIT(2) and advanced mode(4) supported, its feature num-
beris7=1+2+4. windows.x86_64 .0 means no any feature, so highest speed.

For Super Mode, there is an extra part to mark Python version. For example, windows.x86.11.py37, feature
number 11 =1+2+38

88 Chapter 10. Support Platfroms

https://github.com/dashingsoft/pyarmor-core/blob/master/platforms/index.json
https://github.com/dashingsoft/pyarmor/issues
https://github.com/dashingsoft/pyarmor/issues

PyArmor Documentation, Release 6.6.2

Note that zero feature dynamic library isn’t compatible with any featured library. For security reason, the zero feature
library uses different alogrithm to obfuscate the scripts. So the platform windows.x86_64.7 can not share the

same obfuscated scripts with platform 1inux.armv7.0.

10.2 Standard Platform Names

These names are used in the command obfuscate, build, runtime, download to specify platform.

windows.x86
windows.x86_64
linux.x86
linux.x86_64
darwin.x86_64
vs2015.x86
vs2015.x86_64
linux.arm
linux.armv6
linux.armv7
linux.aarch32
linux.aarch64
android.aarch64
android.armv7
android.x86
android.x86_64
uclibc.armv7
linux.ppc64
darwin.arm64
freebsd.x86_64
musl.x86_64
musl.arm
musl.mips32
linux.mips64
linux.mips64el

poky.x86

: New platforms in differnt versions

v5.9.3: android.armv7

v5.9.4: uclibc.armv7

10.2.

Standard Platform Names

89

PyArmor Documentation, Release 6.6.2

e v6.3.1: musl.x86_64, musl.arm, musl.mips32, linux.mips64, linux.mips64el

* v6.6.1: android.x86, android.x86_64

10.3 Downloading Dynamic Library By Manual

If the machine is not connected to internet, download the corresponding dynamic library in other machine, then copy
it in the right location.

First make sure there is platform index file plat forms/index. json. If not, run any pyarmor command in target
machine, it raises exception. For example:

pyarmor.py o ——advanced 2 foo.py

INFO PyArmor Version 6.4.2

INFO Target platforms: Native

INFO Getting remote file: https://github.com/dashingsoft/pyarmor-core/raw/r34.8/
—platforms/index. json

INFO Could not get file from https://github.com/dashingsoft/pyarmor-core/raw/r34.
—8/platforms: <urlopen error timed out>

INFO Getting remote file: https://pyarmor.dashingsoft.com/downloads/r34.8/index.
—Jjson

INFO Could not get file from https://pyarmor.dashingsoft.com/downloads/r34.8:
—<urlopen error timed out>

ERROR No platform list file /data/user/.pyarmor/platforms/index.json found

There are 2 available urls in the log message, download one of them from other machine, for example:
https://pyarmor.dashingsoft.com/downloads/r34.8/index.json

And copy it to the prompt path in target machine:

/data/user/.pyarmor/platforms/index. json

Next run pyarmor command in target machine again, this time it will prompt the download file and target path. For
example:

pyarmor o ——advanced 2 foo.py

INFO Use capsule: /root/.pyarmor/.pyarmor_capsule.zip

INFO Output path is: /root/supervisor/dist

INFO Taget platforms: []

INFO Update target platforms to: [u'linux.x86_64.11.py27"]

INFO Generating super runtime library to dist

INFO Search library for platform: linux.x86_64.11.py27

INFO Found available libraries: [u'linux.x86_64.11.py27"]

INFO Target path for linux.x86_64.11.py27: /home/jondy/.pyarmor/platforms/linux/x86_
—64/11/py27

INFO Downloading library file for linux.x86_64.11.py27

INFO Getting remote file: https://github.com/dashingsoft/pyarmor—core/raw/r34.8/
—platforms/linux.x86_64.11.py27/pytransform.so

INFO Could not get file from https://github.com/dashingsoft/pyarmor-core/raw/r34.8/
—platforms: <urlopen error [Errno 111] Connection refused>

INFO Getting remote file: https://pyarmor.dashingsoft.com/downloads/r34.8/1linux.x86_
—64.11.py27/pytransform.so

(continues on next page)

90 Chapter 10. Support Platfroms

https://pyarmor.dashingsoft.com/downloads/r34.8/index.json

PyArmor Documentation, Release 6.6.2

(continued from previous page)

INFO Could not get file from https://pyarmor.dashingsoft.com/downloads/r34.8:
—<urlopen error [Errno 111] Connection refused>
ERROR Download library file failed

Download it as before, for example
https://github.com/dashingsoft/pyarmor-core/raw/r34.8/platforms/linux.x86_64.11.py27/pytransform.so

And copy it to the path in the line INFO Target path. Hereitis:

/home/jondy/.pyarmor/platforms/linux/x86_64/11/py27

Before PyArmor 6.5.5, no target path line. Save itto ~/ .pyarmor/platforms/ plus platform path. For example,
the target path of platform 1inux.x86_64.11.py27 is ~/.pyarmor/platforms/linux/x86_64/11/

ry27.
All the available dynamic libraries are stored in the repos pyarmor-core
https://github.com/dashingsoft/pyarmor-core

Each pyarmor version has the corresponding tag, for example, PyArmor 6.4.2 -> tag “r34.8”. Switch this tag and
download fiels from plat forms.

10.3. Downloading Dynamic Library By Manual 91

https://github.com/dashingsoft/pyarmor-core/raw/r34.8/platforms/linux.x86_64.11.py27/pytransform.so
https://github.com/dashingsoft/pyarmor-core

PyArmor Documentation, Release 6.6.2

92

Chapter 10. Support Platfroms

cHAPTER 11

The Modes of Obfuscated Scripts

PyArmor could obfuscate the scripts in many modes in order to balance the security and performance. In most of
cases, the default mode works fine. But if the performace is to be bottle-block or in some special cases, maybe you
need understand what the differents of these modes and obfuscate the scripts in different mode so that they could work
as desired.

11.1 Super Mode

This feature Super Mode is introduced from PyArmor 6.2.0. In this mode the structure of PyCode_Type is changed,
and byte code or word code is mapped, it’s the highest security level in PyArmor. There is only one runtime file
required, that is extension pytransform, and the form of obfuscated scripts is unique, no so called Bootstrap Code
which may make some users confused. All the obfuscated scripts would be like this:

from pytransform import pyarmor
pyarmor (. name__, file_ , b'\x0a\x02...', 1)

It’s recommended to enable this mode in suitable cases. Now only the latest Python versions are supported:
e Python 2.7
e Python 3.7
e Python 3.8
e Python 3.9

In order to enable it, set option ——advanced 2 to obfuscate:

pyarmor obfuscate ——advanced 2 foo.py

More usage refer to Using Super Mode

Note: It doesn’t work to mix super mode obfuscated scripts and non-super mode ones.

93

PyArmor Documentation, Release 6.6.2

11.2 Advanced Mode

This feature Advanced Mode is introduced from PyArmor 5.5.0. In this mode the structure of PyCode_Type is
changed a little to improve the security. And a hook also is injected into Python interpreter so that the modified code
objects could run normally. Besides if some core Python C APIs are changed unexpectedly, the obfuscated scripts in
advanced mode won’t work. Because this feature is highly depended on the machine instruction set, it’s only available
for x86/x64 arch now. And pyarmor maybe makes mistake if Python interpreter is compiled by old gcc or some other
C compiles. It’s welcome to report the issue if Python interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to enable it, pass option ——advanced to
command obfuscate:

pyarmor obfuscate ——advanced 1 foo.py

Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to be sure it works in advanced mode.
Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

Note: In trial version the module could not be obfuscated by advanced mdoe if there are more than about 30 functions
in this module, (It still could be obfuscated by non-advanced mode).

Important: For Python3.9 advanced mode isn’t supported. It’s recommended to use super mode for any Python
version which works with super mode.

11.3 VM Mode

VM mode is introduced since 6.3.3. VM mode is based on code virtualization, it uses a strong vm tool to protect the
core algorithm of dynamic library. This mode is an enhancement of advanced mode and super mode.

Enable vm mode with advanced mode by this way:

’pyarmor obfuscate —-advanced 3 foo.py

Enable vm mode with super mdoe by this way:

’pyarmor obfuscate ——advanced 4 foo.py

Though vm mode improves the security remarkably, but the size of dynamic library is increased, and the performance
is reduced. The original size is about 600K~800K, but in vim mode the size is about 4M. About the performances,
refer to The Performance of Obfuscated Scripts to test it.

11.4 Obfuscating Code Mode

In a python module file, generally there are many functions, each function has its code object.

e obf code ==

94 Chapter 11. The Modes of Obfuscated Scripts

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

PyArmor Documentation, Release 6.6.2

The code object of each function will keep it as it is.
¢ obf_code == 1 (Default)

In this case, the code object of each function will be obfuscated in different ways depending on wrap mode.
¢ obf _code ==

Almost same as obf_mode 1, but obfuscating bytecode by more complex algorithm, and so slower than the former.

11.5 Wrap Mode

Note: For super mode, wrap mode is always enabled, it can’t be disabled in super mode.

e wrap_mode ==0

When wrap mode is off, the code object of each function will be obfuscated as this form:

0 JUMP_ABSOLUTE n = 3 + len(bytecode)

Here it's obfuscated bytecode of original function

n LOAD_GLOBAL ? (__armor__)
n+3 CALL_FUNCTION 0

n+6 POP_TOP

n+7 JUMP_ABSOLUTE 0

When this code object is called first time
1. First op is JUMP_ABSOLUTE, it will jump to offset n

2. At offset n, the instruction is to call PyCFunction __armor__. This function will restore those obfuscated
bytecode between offset 3 and n, and move the original bytecode at offset O

3. After function call, the last instruction is to jump to offset 0. The really bytecode now is executed.
After the first call, this function is same as the original one.
e wrap_mode == 1 (Default)

When wrap mode is on, the code object of each function will be wrapped with try. . . finally block:

LOAD_GLOBALS N (__armor_enter_) N = length of co_consts
CALL_FUNCTION 0
POP_TOP

SETUP_FINALLY X (Jjump to wrap footer) X = size of original byte code

Here it's obfuscated bytecode of original function

LOAD_GLOBALS N + 1 (__armor_exit_)
CALL_FUNCTION 0
POP_TOP

END_FINALLY

When this code object is called each time

1. __armor_enter__ will restore the obfuscated bytecode

11.5. Wrap Mode 95

PyArmor Documentation, Release 6.6.2

2. Execute the real function code

3. In the final block, __armor_exit__ will obfuscate bytecode again.

11.6 Obfuscating module Mode

e obf_mod ==

The final obfuscated scripts would like this:

_ _pyarmor__ (_ name__ , file_ , b'\x02\x0a...', 1)

The third parameter is serialized code object of the Python script. It’s generated by this way:

PyObject xco = Py_CompileString(source, filename, Py_file_input);
obfuscate_each_function_in_module(co, obf_mode);

char xoriginal_code = marshal.dumps(co);

char xobfuscated_code = obfuscate_whole_module(original_code);

sprintf (buffer, " _pyarmor__(__name__, _ file , Db’ ', 1)", obfuscated_code);

¢ obf_mod == 2 (Default)
Use different cipher algorithm, more security and faster, new since v6.3.0
¢ obf mod ==

In this mode, the last statement would be like this to keep the serialized module as it is:

sprintf (buffer, "_ pyarmor__ (__name__, _ file , Db’ ', 0)", original_code);

And the final obfuscated scripts would be:

__pyarmor__ (__name__, file_ , b'\x02\x0a...', 0)

All of these modes only could be changed in the project for now, refer to Obfuscating Scripts With Different Modes

11.7 Restrict Mode

Each obfuscated script has its own restrict mode used to limit the usage of this script. When importing an obfuscated
module and using any function or attribute, the restrict mode will be checked at frist, raises protection exception if the
restrict mode is violated.

There are 5 restrict mode, mode 2 and 3 are only for standalone scripts, mode 4 is mainly for obfuscated packages,
mode 5 for both.

e Mode 1

In this mode, the obfuscated scripts can’t be changed at all. For example, append one print statement at the end of the
obfuscated script foo.py:

__pyarmor__ (__name__, _ file , b'...", 1)
print ('This is obfuscated module')

This script will raise restrict exception when it’s imported.

e Mode 2

96 Chapter 11. The Modes of Obfuscated Scripts

PyArmor Documentation, Release 6.6.2

In this mode, the obfuscated scripts can’t be imported from plain script, and the main script must be obfuscated as Entry
Script. Tt could be run by Python interpreter directly, or imported by other obfuscated scripts. When it’s imported, it
will check the caller and the main script, and make sure both of them are obfuscated.

For example, foo2.py is obfuscated by mode 2. It can be run like this:

’python foo2.py

But try to import it from any plain script. For example:

’python —c'import foo2'

It will raise protection exception.
* Mode 3

It’s an enhancement of mode 2, it also protects module attributes. When visiting any module attribute or calling any
module function, the caller will be checked and raise protection exception if the caller is not obfuscated.

e Mode 4

It’s almost same as mode 3, the only difference is that it doesn’t check the main script is obfuscated or not when it’s
imported.

It’s mainly used to obfuscate the Python package. The common way is that the __init__.py is obfuscated by restrict
mode 1, all the other modules in this package are obfuscated by restrict mode 4.

For example, there is package mypkg:

mypkg/
__init___.py
private_a.py
private_b.py

Inthe __init__ .py, define public functions and attributes which are used by plain scripts:

from . import private_a as ma
from . import private_b as mb

public_data = 'welcome'
def proxy_hello():
print ('Call private hello')

ma.hello ()

def public_hello():
print ('This is public hello')

In the private_a.py, define private functions and attributes:

import sys

password = 'xxxxxx'
def hello():
print ('password is: ' % password)

Then obfuscate __init__ .py by mode 1 and others by mode 4 in the dist:

11.7. Restrict Mode 97

PyArmor Documentation, Release 6.6.2

dist/
__init_ .py
private_a.py
private_b.py

Now do some tests from Python interpreter:

import dist as mypkg

It works
mypkg.public_hello ()
mypkg.proxy_hello ()
print (mypkg.public_data)
print (mypkg.ma)

It doesn't work
mypkg.ma.hello ()
print (mypkg.ma.password)

¢ Mode 5 (New in v6.4.0)

Mode 5 is an enhancement of mode 4, it also protects the globals in the frame. When running any function in the mode
5, the outer plain script could get nothing from the globals of this function. It’s highest security, works for both of
standalone scripts and packages. But it will check each global variable in runtime, this may reduce the performance.

Important: The protection of module attributes for mode 3 and 4 is introduced in v6.3.7. Before that, only function
calling is protected.

Do not import any function or class from private module in the public__init__ .py, because only module attributes
are protected:

Right, import module only
from . import private_a as ma

Wrong, function “hello’ 1is opened for plain script
from .private_a import hello

Note: Mode 2 and 3 could not be used to obfuscate the Python package, because the main script must be obfuscated
either, otherwise it can’t not be imported.

Note: Restrict mode is applied to one single script, different scripts could be obfuscated by different restrict mode.

Note: If the scripts are obfuscated by ——obf-code=0, it will be taken as plain script.
Let’s say there’re three scripts in a package

1. __init_ .py: [restrict_mode : 1, obf-code 2]

2. foo.py : [restrict_mode : 4, obf-code 2]

3. bar.py : [restrict_mode : 1, obf-code 0]

Here bar . py would appear as plain script at runtime due to obf-code=0.

98 Chapter 11. The Modes of Obfuscated Scripts

PyArmor Documentation, Release 6.6.2

So foo.py cannot be imported inside bar . py since it would appear like a plain script and hence cannot import
foo.py. But foo.py can be imported inside __init___.py since it has obf-code=2 and hence would work.

From PyArmor 5.2, Restrict Mode 1 is default.

Obfuscating the scripts by other restrict mode:

pyarmor obfuscate —-restrict=2 foo.py
pyarmor obfuscate --restrict=4 foo.py

For project
pyarmor config —-restrict=2
pyarmor build -B

All the above restricts could be disabled by this way if required:

pyarmor obfuscate —-restrict=0 foo.py

For project
pyarmor config —--restrict=0
pyarmor build -B

For more examples, refer to Improving The Security By Restrict Mode

From PyArmor 5.7.0, there is another implicit restrict for obfuscate scripts: the Bootstrap Code must be in the ob-
fuscated scripts and must be specified as entry script. For example, there are 2 scripts foo.py and fest.py in the same
folder, obfuscated by this command:

’pyarmor obfuscate foo.py

Inserting the bootstrap code into obfuscated script dist/test.py by manual doesn’t work, because it’s not specified as
entry script. It must be run this command to insert the Bootstrap Code:

’pyarmor obfuscate —-—no-runtime --exact test.py

If you need insert the Bootstrap Code into plain script, first obfuscate an empty script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate —--no-runtime —--exact pytransform _bootstrap.py

Then import pytransform_bootstrap in the plain script.

11.7. Restrict Mode 99

PyArmor Documentation, Release 6.6.2

100 Chapter 11. The Modes of Obfuscated Scripts

cHAPTER 12

The Performance of Obfuscated Scripts

Run command banchmark to check the performance of obfuscated scripts:

pyarmor benchmark

Here it’s sample output:

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

PyArmor Trial Version 6.3.0
Python version: 3.7

Start benchmark test
Obfuscate module mode: 1
Obfuscate code mode: 1
Obfuscate wrap mode: 1
Obfuscate advanced mode: 0
Benchmark bootstrap
Benchmark bootstrap OK.

Run benchmark test

Test script: bfoo.py
Obfuscated script: obfoo.py

import_first_no_obfuscated_module
import_first_obfuscated_module

re_import_no_obfuscated_module
re_import_obfuscated_module

——— Import 10 modules -———
import_many_no_obfuscated_modules
import_many_obfuscated_modules

run_empty_no_obfuscated_code_object
run_empty_obfuscated_code_object

6.177000
15.107000

0.004000

0.005000

58.882000

50.592000

0.004000
0.003000

ms
ms

ms

ms

ms

ms

ms
ms

(continues on next page)

101

PyArmor Documentation, Release 6.6.2

(continued from previous page)

run_no_obfuscated_lk_bytecode : 0.010000 ms
run_obfuscated_1lk_bytecode : 0.027000 ms
run_no_obfuscated_10k_bytecode : 0.053000 ms
run_obfuscated_10k_bytecode : 0.119000 ms
call_1000_no_obfuscated_lk_bytecode : 2.411000 ms
call 1000_obfuscated_lk_bytecode : 3.735000 ms
call_1000_no_obfuscated_10k_bytecode : 32.067000 ms
call 1000_obfuscated_10k_bytecode : 42.164000 ms
call_10000_no_obfuscated_1k_bytecode : 22.387000 ms
call _10000_obfuscated_lk_bytecode : 36.666000 ms
call_10000_no_obfuscated_10k_bytecode : 307.478000 ms
call 10000_obfuscated_10k_bytecode : 407.585000 ms
INFO Remove test path: ./.benchtest

INFO Finish benchmark test.

It uses a simple script bfoo.py which include 2 functions
* one_thousand: the size of byte code is about 1k
* ten_thousand: the size of byte code is about 10k

The elapse time of import_first_obfuscated_module includes the initializing time of dynamic library, the license check-
ing time etc., so it spends more time than normal script. However import_many_obfuscated_modules which simplely
copy the script to about 10 new files and import them by new names, it’s sooner than the normal script, because the
obfuscated one has been compiled, the compile time is saved.

The rest of tests, for example, call_1000_no_obfuscated_lk_bytecode which stands for calling the function
one_thousand 1000 times. Comparing the result of call_1000_obfuscated_I1k_bytecode to know about the perfor-
mance of the obfuscated scripts. Note that the result depends on the test scripts, Python version, obfuscated mode etc.
even in the same machine run the same command the result may be different.

List all available options:

’pyarmor benchmark -h

Specify other options to check the performance in different mode. For example:

’pyarmor benchmark —--wrap-mode 0 —-obf-code 2

Look at the scripts used to run benchmark test:

’pyarmor benchmark —-debug

All the used files are saved in the folder .benchtest

12.1 The performance in different modes

For obf-mod, 2 is more security and faster, so it’s default value since introduced in v6.3.0

For obf-code, 2 is more security than 7, and slightly slower than /

102 Chapter 12. The Performance of Obfuscated Scripts

PyArmor Documentation, Release 6.6.2

For wrap-mode, 0 means that each function is restored once, however / means as many as it called. So the latter is
slower than the former, especially most of the functions are called many times.

The Advanced Mode and Super Mode are almost same in performace. But VM Mode will reduce the performance,
because the core functions are virtualized.

12.2 Run cProfile with obfuscated scritps

The obfuscated scripts could work with cProfile or profile, for example:

pyarmor obfuscate foo.py

python -m cProfile dist/foo.py

A few obfuscated scripts may raise exception under cProfile or profile, please patch the source scripts cProfile.py or
profile.py to make it work.

Note: Old versions of pyarmor may not work with cProfile or profile, in this case, try to upgrade pyarmor and
obfuscate the scripts again.

12.3 Performance of Big Script

Here it’s an example to test big script in MacOS 10.14 with 8G Ram, Python 3.7

The size of test script big.py is about 81M, it defines many same functions with different name

def fib0(n): # return Fibonacci series up to n
result = []
a, b =20, 1
while a < n:
result.append(a)
a, b =Db, atb
return result

def fibl(n): # return Fibonacci series up to n
result = []
a, b=20, 1
while a < n:
result.append(a)
a, b =Db, atb
return result

def fib2 (n): # return Fibonacci series up to n
result = []
a, b=20, 1
while a < n:
result.append(a)
a, b =Db, atb
return result

12.2. Run cProfile with obfuscated scritps 103

PyArmor Documentation, Release 6.6.2

The main script main.py

import sys
import time

def metricmethod (func) :
if not hasattr(time, 'process_time'):

time.process_time = time.clock

def wrap (xargs, +**kwargs):

tl = time.process_time ()

result = func(xargs, =*xkwargs)

t2 = time.process_time ()

print (' : ms' % (func._ name_ , (t2 - tl) = 1000))

return result
return wrap

@metricmethod
def import_big_module (name) :
return ___import__ (name)
@metricmethod
def call _module_function (m) :
m.fib2 (20)
name = sys.argv[l] if len(sys.argv) > 1 else 'big'

call_module_function (import_big_module (name))

Now run python3 main.py in different cases

No __pycache__, no obfuscation:

import_big_module : 52905.399000 ms
call_module_function : 0.020000 ms

If there is __pycache__, it’s very quick:

import_big_module : 2065.303000 ms
call_module_function : 0.011000 ms

Next obfuscate the big script:

pyarmor obfuscate big.py

And the test result:

import_big_module : 8690.256000 ms
call_module_function : 0.015000 ms

104 Chapter 12. The Performance of Obfuscated Scripts

cHAPTER 13

The Security of PyArmor

PyArmor will obfuscate python module in two levels. First obfucate each function in module, then obfuscate the whole
module file. For example, there is a file foo.py:

def hello():
print ('Hello world!")

def sum(a, b):
return a + b

if _ name == '_ _main__ ':
hello ()
print ('l + 1 = "% sum(1l, 1))

PyArmor first obfuscates the function hello and sum, then obfuscates the whole moudle foo. In the runtime, only
current called function is restored and it will be obfuscated as soon as code object completed execution. So even trace
code in any c debugger, only a piece of code object could be got one time.

13.1 Cross Protection for _pytransform

The core functions of PyArmor are written by ¢ in the dynamic library _pytransform. _pytransform protects itself
by JIT technical, and the obfuscated scripts is protected by _pytransform. On the other hand, the dynamic library
_pytransform is checked in the obfuscated script to be sure it’s not changed. This is called Cross Protection.

The dynamic library _pytransform.so uses JIT technical to achieve two tasks:
» Keep the des key used to encrypt python scripts from tracing by any ¢ debugger

* The code segment can’t be changed any more. For example, change instruction JZ to JNZ, so that _pytrans-
form.so can execute even if checking license failed

How JIT works?
First PyArmor defines an instruction set based on GNU lightning.

Then write some core functions by this instruction set in c file, maybe like this:

105

PyArmor Documentation, Release 6.6.2

t_instruction protect_set_key_iv = {
// function 1

0x80001,

0x50020,

// function 2
0x80001,
0xAQF80,

t_instruction protect_decrypt_buffer = {
// function 1
0x80021,
0x52029,

// function 2
0x80001,
0xC0901,

Build _pytransform.so, calculate the codesum of code segment of _pytransform.so

Replace the related instructions with real codesum got before, and obfuscate all the instructions except “function 1” in
c file. The updated file maybe likes this:

t_instruction protect_set_key_ iv = {
// plain function 1
0x80001,
0x50020,

// obfuscated function 2
0XXXXXX,
0xXXXXXX,

t_instruction protect_decrypt_buffer = {
// plain function 1
0x80021,
0x52029,

// obfuscated function 2
0XXXKXX,
0xXXXXXX,

Finally build _pytransform.so with this changed c file.

When running obfuscated script, _pytransform.so loaded. Once a protected function is called, it will

1. Generate code from function 1

106 Chapter 13. The Security of PyArmor

PyArmor Documentation, Release 6.6.2

2. Run function I:
* check codesum of code segment, if not expected, quit
* check tickcount, if too long, quit
* check there is any debugger, if found, quit
¢ clear hardware breakpoints if possible
* restore next function function 2

3. Generate code from function 2

4. Run function 2, do same thing as function 1

After repeat some times, the real code is called. All of that is to be sure there is no breakpoint in protection code.

In order to protect _pytransform in Python script, some extra code will be inserted into the entry script, refer to Special
Handling of Entry Script

13.2 The security of different feature number

There may be several dynamic libraries with different features in each platform. The platform name with feature
number suffix combines an unique name. For example, linux.x86_64.21 has feature 21, and windows.x86.0 has feature
0. The security of each feature is different.

The library with feature 27 and 25 has been protected by strong vm tool and many anti-debug technicals, it’s safe.
Feature 0 means no any protection, so it’s better to protect it by any third tool.

For all the other features, they’re protected by a simple vm and some anti-debug technicals, it’s not strong enough, it’s
also recommend to protect them by any third tool.

13.3 Changing core algorithm from time to time

PyArmor may change the core algorithm from time to time, so the obfuscated scripts are obfuscated by new version
may be totaly different from the prior ones.

13.2. The security of different feature number 107

PyArmor Documentation, Release 6.6.2

108 Chapter 13. The Security of PyArmor

cHAPTER 14

When Things Go Wrong

Some necessary knowledges and technicals are required to used pyarmor. Check this list, make sure you know them,
and your question is not related to them.

14.1 Necessary Knowledges

14.1.1 Shell

pyarmor is a command line tool, it must be run in the shell or terminal. If you know nothing about shell command,
use pyarmor-webui instead.

When command pyarmor complains of argument error, unknown option etc. Please use option —h to list all the
available options, and fix command syntax error by these hints. For example:

pyarmor obfuscate -h

14.1.2 Python

How to run Python https://docs.python.org/3.8/tutorial/interpreter.html#using- the-python-interpreter

14.1.3 Source Code Encoding

If the obfuscated scripts print unexpected output, you need learn this
https://docs.python.org/3.8/tutorial/interpreter.html#source-code-encoding

Then set the right source code encoding in the scripts, first run the plain script to make sure everything is fine, then
obfuscate the scripts again.

109

https://pypi.python.org/pypi/pyarmor-webui/
https://docs.python.org/3.8/tutorial/interpreter.html#using-the-python-interpreter
https://docs.python.org/3.8/tutorial/interpreter.html#source-code-encoding

PyArmor Documentation, Release 6.6.2

14.1.4 Python Import System

The obfuscated scripts need an extra Runtime Package to run, it’s a common Python package, which could be imported
as normal Python module or package. If it can’t be imported correctly, for example, not distributed with the obfuscated
scripts or stored in the wrong place, the obfuscated scripts may raise exceptions like this:

ModuleNotFoundError: No module named 'app.pytransform'

This is not PyArmor’s error, just Python can not find it. In this case, you need know Python how to import module,
package, what’s absolute import and relative import, you must know what’s sys.path

https://docs.python.org/3.8/library/sys.html#sys.path

The obfuscated script is a very simple Python script, the first line is an import statement, the second line is a function
call. For any import or no module found error, for example:

ImportError: No module named model.NukepediaDB

Just think it as a common python script, check whether the module, package or extension file locates in the right place
according to Python Import System. If not, move the module, package or extension file to right path.

Refer to the following official document or by search engineer to understand Python Import System

https://docs.python.org/3.8/reference/simple_stmts.html#the-import-statement

14.1.5 Pyinstaller

If you’d like to pack the obfuscated scripts to one executable, and your project structure is complex, you must know
Pylnstaller and could pack your project by PylInstaller directly.

https://pyinstaller.readthedocs.io/en/stable/usage.html

14.2 Common Solutions

I have receive a lot of issues, most of them aren’t pyarmor’s defect, but use pyarmor in wrong way. So when you’re in
trouble with pyarmor, spending a few hours to understand pyarmor may solve the problem quickly. Self-help is better
than help from others, it also could save time for both of us.

First make sure you have read the basic guide Using PyArmor.

Look through Understanding Obfuscated Scripts, especially the section The Differences of Obfuscated Scripts
If you don’t know how to use pyarmor in a special case, have a glance at the toc of Advanced Topics.

Here are several common solutions

» Upgrade pyarmor to latest stable version, please check Change Logs before upgrading. If pyarmor works fine
before, but now doesn’t work, also make a clean uninstallation, re-install pyarmor, and start everything from
refresh state.

* As obfuscating the script by pyarmor, check not only the last error message, but also each log carefully to
understand what pyarmor is doing, it’s very helpful to find the problem. And try to get more information by
common option —d. For example:

pyarmor -d obfuscate —--recursive foo.py

110 Chapter 14. When Things Go Wrong

https://docs.python.org/3.8/library/sys.html#sys.path
https://docs.python.org/3.8/reference/simple_stmts.html#the-import-statement
https://www.pyinstaller.org/
https://www.pyinstaller.org/
https://pyinstaller.readthedocs.io/en/stable/usage.html

PyArmor Documentation, Release 6.6.2

* As running the obfuscated scripts, turn on Python debug option by —d to print more information. If there is line
number and script name in the traceback, check the source script around this line. Make sure it doesn’t use any
feature changed by obfuscated scripts. For example:

python —-d obf_foo.py

* If you distribute the obfuscated scripts in different platform or docker, make sure the related cross platform
options are set. Because the obfuscated scripts include binary library, it’s platform dependent, and Python
version in target must be same as the version to obfuscate the scripts.

* If you are using command pack, make sure Pylnstaller could pack the plain scripts directly and the final bundle
works.

* If you are using the scripts obfuscated by Restrict Mode 3 or more, try to use the default restrict mode. If low
restrict mode works, check the scripts make sure they don’t violate the restrict mode.

* Understanding pyarmor by doing a test in a few minutes if something you’re not sure.

The default option of pyarmor works for common cases, but for complex cases, you need understand the different
options for each command. First list all available options of obfuscate by option —h:

pyarmor obfuscate -h

You may find the desired option by its short description. If you’re not sure, go to Man Page to read the details of each
option.

Maybe the simplest way to understand an option is, do a test in one minute. For example, the option ——bootstrap
is used to control how to generate the bootstrap code for obfuscated scripts, do tests in a fresh path like this:

cd /path/to/test
mkdir case-1
cd case-1

echo "print ('Hello'")" > foo.py
pyarmor obfuscate —--bootstrap 2 foo.py
1s dist/

cat dist/foo.py

cd /path/to/test
mkdir case-2
cd case-2

echo "print ('Hello'")" > foo.py
pyarmor obfuscate —-bootstrap 3 foo.py
1s dist/

cat dist/foo.py

You can combine different options to do similar tests, it could help you understand pyarmor quickly.

Note: There are a lot of reporeted issues, search here first try to find same issue.

14.3 Segment fault

In the following cases, obfuscated scripts may crash
* Running obfuscated script by debug version Python

* Obfuscating scripts by Python X.Y but running the obfuscated scripts by different Python version M.N

14.3. Segment fault 111

https://github.com/dashingsoft/pyarmor/issues/

PyArmor Documentation, Release 6.6.2

* Running the scripts in different platform but obfuscate them without option ——platform
— Docker, it’s Alpine Linux, in PyArmor, the platform name is musl.x86_64, not linux.x86_64
— In Windows, 32-bit Windows is different from 64-bit Windows
— In 64-bit Windows, 32-bit Python is different from 64-bit Python

* Read co_code or other attributes of the obfuscated code object by any way, some third packages may analysis
the byte code to do something.

* Importing the scripts obfuscated by restrict mode 3 and more in non-obfuscated script may crash. It also may
crash if it’s obfuscated by obf-code=0

» Mixing the scripts obfuscated by different option ——advanced

e In MacOS, the core library of pyarmor is linked to standard system Python, for others, use
install_name_tool to change rpath to adapt this machine.

For PyArmor 5.5.0 ~ 6.6.0, some machines may be crashed because of advanced mode. A quick workaround is to
disable advanced mode by editing the file pytransform.py which locates in the installed path of pyarmor , in
the function _load_library, uncomment about line 202. The final code looks like this:

Disable advanced mode 1if required
m.set_option (5, c_char_p (1))

14.4 Bootstrap Problem

14.4.1 Could not find _pytransform
Generally, the dynamic library _pytransform is in the Runtime Package, before v5.7.0, it’s in the same path of obfus-
cated scripts. It may be:

e _pytransform.so in Linux

e _pytransform.dll in Windows

» _pytransform.dylib in MacOS
First check whether the file exists. If it exists:

* Check the permissions of dynamic library

If there is no execute permissions in Windows, it will complain: [Error 5] Access is denied

* Check whether ctypes could load _pytransform:

from pytransform import _load_library
m = _load_library(path='/path/to/dist")

Try to set the runtime path in the Bootstrap Code of entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/dist")

Still doesn’t work, report an issue_

112 Chapter 14. When Things Go Wrong

PyArmor Documentation, Release 6.6.2

14.4.2 ERROR: Unsupport platform linux.xxx

Please refer to Support Platfroms

14.4.3 /lib64/libc.s0.6: version ‘GLIBC 2.14’ not found

In some machines there is no GLIBC_2.14, it will raise this exception.
One solution is patching _pytransform.so by the following way.

First check version information:

readelf -V /path/to/_pytransform.so

Version needs section '.gnu.version_r' contains 2 entries:
Addr: 0x00000000000056e8 Offset: 0x0056e8 Link: 4 (.dynstr)
000000: Version: 1 File: libdl.so.2 Cnt: 1

0x0010: Name: GLIBC_2.2.5 Flags: none Version: 7
0x0020: Version: 1 File: libc.so.6 Cnt: 6

0x0030: Name: GLIBC_2.7 Flags: none Version: 8
0x0040: Name: GLIBC_2.14 Flags: none Version: 6
0x0050: Name: GLIBC_2.4 Flags: none Version: 5
0x0060: Name: GLIBC_2.3.4 Flags: none Version: 4
0x0070: Name: GLIBC_2.2.5 Flags: none Version: 3
0x0080: Name: GLIBC_2.3 Flags: none Version: 2

Then replace the entry of GLIBC_2.14 with GLIBC_2.2.5:
¢ Copy 4 bytes at 0x56e8+0x10=0x56f8 to 0x56e8+0x40=0x5728
* Copy 4 bytes at 0x56e8+0x18=0x5700 to 0x56e8+0x48=0x5730

Here are sample commands:

xxd -s 0x56f8 -1 4 _pytransform.so | sed "s/56£f8/5728/" | xxd -r - _pytransform.so
xxd -s 0x5700 -1 4 _pytransform.so | sed "s/5700/5730/" | xxd -r - _pytransform.so

Note: From v5.7.9, this patch is not required. In cross-platform all you need to do is specify the platform to
centos6.x86_64 to fix this issue. For example:

pyarmor obfuscate --platform centos6.x86_64 foo.py

14.4.4 ‘pyarmor’ is not recognized issue
If pyarmor is installed by pip, please search “pyarmor” in the computer, then run full path pyarmor, or add path of
pyarmor to environment variable PATH.

If not by pip, the equivalent of the pyarmor command is running Python script “pyarmor.py” found in the distribution
folder.

14.4. Bootstrap Problem 113

PyArmor Documentation, Release 6.6.2

14.4.5 __ snprintf_chk: symbol not found

When run pyarmor in some dockers, it may raise this exception. Because these dockers are built with musl-libc, but
the default _pytransform. so is built with glibc, __snprintf_chk is missed in the musl-libc.

In this case, try to download the corresponding dynamic library

For x86/64 http://pyarmor.dashingsoft.com/downloads/latest/alpine/_pytransform.so

For ARM http://pyarmor.dashingsoft.com/downloads/latest/alpine.arm/_pytransform.so

And overwrite the old one which filename could be found in the traceback.

14.5 Obfuscating Scripts Problem

14.5.1 Warning: code object xxxx isn’t wrapped

It means this function isn’t been obfuscated, because it includes some special instructions.

For example, there is 2-bytes instruction JMP 255, after the code object is obfuscated, the operand is increased to 267,
and the instructions will be changed to:

EXTEND 1
JMP 11

In this case, it’s complex to obfuscate the code object with wrap mode. So the code object is obfuscated with non wrap
mode, but all the other code objects still are obfuscated with wrap mode.

In current version add some unused code in this function so that the operand isn’t the critical value may avoid this
warning.

Note: Before v5.5.0, in this case the code object is left as it is.

14.5.2 Code object could not be obufscated with advanced mode 2

Because this function includes some jump instructions that couldn’t be handled. In this case, just refine this function,
make sure the first statement will not generate jump instruction. For example, assignment, function call or any simple
statement. However, the compound statements, for examples, try, for, if, with, while etc. will generate the jump
instructions. If there is no anyway to refactor the function, insert the following statement at the beginning of this
function:

[None, None]

It will generate some instructions but doesn’t change anything.

14.5.3 Error: Try to run unauthorized function

If there is any file license.lic or pytransform.key in the current path, pyarmor maybe reports this error. One solution is
to remove all of that files, the other solution to upgrade PyArmor to v5.4.5 later.

114 Chapter 14. When Things Go Wrong

http://pyarmor.dashingsoft.com/downloads/latest/alpine/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/alpine.arm/_pytransform.so

PyArmor Documentation, Release 6.6.2

14.5.4 ‘XXX’ codec can’t decode byte 0xXX

Add the exact source encode at the begin of the script. For example:

—#+— coding: utf-8 —#-—

Refer to https://docs.python.org/2.7/tutorial/interpreter.html#source-code-encoding

If the source encode has been added into main script, it still raises this issue. Please check the output log to find the
exact script name, it may not the main script.

14.5.5 Why plugin doesn’t work

If the plugin script doesn’t work as expected, first check the plugin script could be injected into the entry script by set
Python debug flag:

In linux

export PYTHONDEBUG=y
In Windows

set PYTHONDEBUG=y

pyarmor obfuscate --exact —--plugin check_ntp_time foo.py

It will generate patched file foo.py.pyarmor-patched, make sure the content of plugin script has been inserted
into the right place, and the verify function will be executed.

14.6 Running Obfuscated Scripts Problem

14.6.1 The license.lic generated doesn’t work

The key is that the capsule used to obfuscate scripts must be same as the capsule used to generate licenses.

The Global Capsule will be changed if the trial license file of PyArmor is replaced with normal one, or it’s deleted
occasionally (which will be generated implicitly as running command pyarmor obfuscate next time).

In any cases, generating new license file with the different capsule will not work for the obfuscated scripts before. If
the old capsule is gone, one solution is to obfuscate these scripts by the new capsule again.

14.6.2 NameError: name ‘°__pyarmor__’ is not defined

No Bootstrap Code are executed before importing obfuscated scripts.

* When creating new process by Popen or Process in mod subprocess or multiprocessing, to be sure that Bootstrap
Code will be called before importing any obfuscated code in sub-process. Otherwise it will raise this exception.

* If pytransform.py or pytransform/__init__.py raises this exception. Make sure it is not obfuscated, it must be
plain script.

* Also check system module os, ctypes, make sure they’re not obfuscated, try to use option ——exclude to
exclude the whole Python system library path.

14.6. Running Obfuscated Scripts Problem 115

https://docs.python.org/2.7/tutorial/interpreter.html#source-code-encoding

PyArmor Documentation, Release 6.6.2

14.6.3 Marshal loads failed when running xxx.py
1. Check whether the version of Python to run obfuscated scripts is same as the version of Python to obfuscate
script
2. Run obfuscated script by python -d to show more error message.

3. Be sure the capsule used to generated the license file is same as the capsule used to obfuscate the scripts. The
filename of the capsule will be shown in the console when the command is running.

4. For cross platform obfuscation, make sure the dynamic library feature is set correctly, refer to Obfuscating
scripts with different features

14.6.4 _pytransform can not be loaded twice

When the function pyarmor_runtime is called twice, it will complaint _pytransform can not be loaded twice

For example, if an obfuscated module includes the following lines:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ (....)

When importing this module from entry script, it will report this error. The first 2 lines should be in the entry script
only, not in the other module.

This limitation is introduced from v5.1, to disable this check, just edit pytransform.py and comment these lines in
function pyarmor_runtime:

if _pytransform is not None:
raise PytransformError ('_pytransform can not be loaded twice')

Note: This limitation has been removed from v5.3.5.

14.6.5 Check restrict mode failed

Use obfuscated scripts in wrong way, by default all the obfuscated scripts can’t be changed any more.

Besides packing the obfuscated scripts will report this error either. Do not pack the obfuscated scripts, but pack the
plain scripts directly.

For more information, refer to Restrict Mode

14.6.6 Protection Fault: unexpected xxx
Use obfuscated scripts in wrong way, by default, all the runtime files can’t be changed any more. Do not touch the
following files

¢ pytransform.py

* _pytransform.so/.dll/.dylib

If the entry script is obfuscated by new version, but the runtime files are still old, it may raise this exception. Using
option ——no-cross-protection to disable this protection, or using option ——runtime to specify the same
runtime files when obfuscating the scrpits, could fix this issue.

116 Chapter 14. When Things Go Wrong

PyArmor Documentation, Release 6.6.2

For more information, refer to Special Handling of Entry Script

14.6.7 Run obfuscated scripts reports: Invalid input packet

If the scripts are obfuscated in different platform, check the notes in Distributing Obfuscated Scripts To Other Platform

Before v5.7.0, check if there is any of license.lic or pytransform.key in the current path. Make sure they’re generated
for the obfuscated scripts. If not, rename them or move them to other path.

Because the obfuscated scripts will first search the current path, then search the path of runtime module pytransform.py
to find the file license.lic and pytransform.key. If they’re not generated for the obfuscated script, this error will be
reported.

14.6.8 OpenCV fails because of NEON - NOT AVAILABLE

In some Raspberry Pi platform, run the obfuscated scripts to import OpenCV fails:

hkhkhkhkhkhkhkhkhhhhAhhhkhAhhdhhkhhkhhhrhkkhkhkhhkhhkrhkhkdkhrhhkdhhhkkhkhhhkhhdx *,hkrhkhhhhkhkhrhkhkxx
* FATAL ERROR: =«

x This OpenCV build doesn't support current CPU / HW configuration =
* x

+* Use OPENCV_DUMP_CONFIG = 1 environment variable for details =

R I I b b b b b b b I 2 b b b 2 2 b b b I b b b b 2 b b b I b b b 2 b b b 2 2 b b b 2 b b b S S S b b I b b b b b b b b i b

Required baseline features:
NEON - NOT AVAILABLE
terminate called after throwing an instance of 'cv :: Exception’
what (): OpenCV (3.4.6) /home/pi/opencv-python/opencv/modules/core/src/system.
—~Cpp:538: error:
(-215: Assertion failed) Missing support for required CPU baseline features. Check,,
—OpenCV build
configuration and required CPU / HW setup. in function 'initialize'

One solution is to specify optioin ——plat form to linux.armv7.0:

pyarmor obfuscate —--platform linux.armv7.0 foo.py
pyarmor build --platform linux.armv7.0
pyarmor runtime --platform linux.armv7.0

The other solution is to set environment variable PYARMOR_PLATFORM to linux.armv7.0. For examples:

PYARMOR_PLATFORM=linux.armv7.0 pyarmor obfuscate foo.py
PYARMOR_PLATFORM=linux.armv7.0 pyarmor build

Or,
export PYARMOR_PLATFORM=linux.armv7.0

pyarmor obfuscate foo.py
pyarmor build

14.6.9 How to customize error message

I have started to play around with pyarmor. When using a license file that expires you get the message “License is
expired”. Is there a way to change this message?

14.6. Running Obfuscated Scripts Problem 117

PyArmor Documentation, Release 6.6.2

At this time, you need patch the source script pytransform.py in the pyarmor package. There is a function
pyarmor_runtime

def pyarmor_runtime (path=None, suffix='"', advanced=0):

try:
pyarmor_init (path, is_runtime=1, suffix=suffix, advanced=advanced)
init_runtime ()

except Exception as e:
if sys.flags.debug or hasattr(sys, '_catch pyarmor'):

raise

sys.stderr.write("%s\n" % str(e))
sys.exit (1)

Change the hanler of the exception as you desired.

If the scripts are obfuscated by super mode, this solution doesn’t work. You may create a script to catch exceptions
raised by obfuscated script foo.py. For example

try:
import foo
except Exception as e:
print ('something is wrong')

By this way not only the exceptions of pyarmor but also of normal scripts are catched. In order to handle the exceptions
of pyarmor only, first create runtime package by runtime, and obfuscate the scripts with it:

pyarmor runtime —--advanced 2 -0 dist
pyarmor obfuscate --advanced 2 —-runtime @dist foo.py

Then create a boot script dist/foo_boot . py like this

try:

import pytransform bootstrap
except Exception as e:

print ('something is wrong')
else:

import foo

The script dist/pytransform_bootstrap.py is created by runtime, it’s obfuscated from an empty script, so
only pyarmor bootstrap exceptions are raised by it.

14.6.10 undefined symbol: PyUnicodeUCS4_AsUTF8String

If Python interpreter is built with UCS2, it may raises this issue when running super mode obufscated scripts. In this
case, try to obfuscate script with platform centos6.x86_64, it’s built with UCS2. For example:

pyarmor obfuscate —--advanced 2 --platform centos6.x86_64 foo.py

14.6.11 NameError: name °__armor_wrap__’ is not defined

If Restrict Mode is set to 4 or 5, it may report this issue. In this case try to set restrict mode to 2.

118 Chapter 14. When Things Go Wrong

PyArmor Documentation, Release 6.6.2

14.7 Packing Obfuscated Scripts Problem

14.7.1 The final bundle does not work

First make sure the scripts could pack by Pylnstaller directly and the final bundle works.
Then make sure the obfuscated scripts could work without packing.

If both of them OK, remove the output path dist and PylInstaller cached path build, then pack the script with ——debug:

’pyarmor pack ——-debug foo.py ‘

The build files will be kept, the patched foo-patched.spec could be used by pyinstaller to pack the obfuscated scripts
directly, for example:

’pyinstaller -y ——clean foo-patched.spec

Check this patched .spec and change options in this .spec file, make sure the final bundle could work.

Also refer to Repack PylInstaller bundle with obfuscated scripts, make sure it works by this way.

14.7.2 No module name pytransform

If report this error as running command pyarmor pack:
* Make sure the script specified in the command line is not obfuscated

* Run pack with extra option ——clean to remove cached myscript.spec:

pyarmor pack —--clean foo.py

14.7.3 NameError: name °__pyarmor__’ is not defined

Check the traceback to find which script raises this exception, it’s helpful to find the problem:

o If pytransform.py or pytransform/__init__.py raises this exception. Make sure it is not obfuscated, it must be
plain script.

* Also check system module os, ctypes, make sure they’re not obfuscated. In this case, try to exclude the Python
system library path, refer to pack

* Try to only copy your own scripts to an empty path, then pack it in this path.

« If it works in trial version, but fails after pyarmor is registered, try to make a clean uninstallation

14.8 PyArmor Registration Problem

14.8.1 Purchased pyarmor is not private

Even obfuscated with purchased version, license from trial version works:
* Make sure command pyarmor register shows correct registration information
¢ Make a clean uninstallation, and register again

* Make sure the current user is same as the one to register pyarmor

14.7. Packing Obfuscated Scripts Problem 119

PyArmor Documentation, Release 6.6.2

¢ Make sure environment variable PYARMOR_HOME is not set

* Try to reboot system.

14.8.2 Could not query registration information

I tried to register in pyarmor with using the command and log:

~ % pyarmor register pyarmor-regfile-1.zip

INFO PyArmor Version 6.5.2

INFO Start to register keyfile: pyarmor-regfile-1.zip
INFO Save registration data to: /Users/Jondy/.pyarmor
INFO Extracting license.lic

INFO Extracting .pyarmor_capsule.zip

INFO This keyfile has been registered successfully.

Watching whether I am registered, I got this output:

o

~ % pyarmor register

INFO PyArmor Version 6.5.2

PyArmor Version 6.5.2

Registration Code: pyarmor-vax-000383

Because of internet exception, could not query registration information.

Ping domain api.dashingsoft.com, make sure ip address is resolved like this:

~ % ping api.dashingsoft.com

PING api.dashingsoft.com (119.23.58.77): 56 data bytes
Request timeout for icmp_seq 0

Request timeout for icmp_seq 1

If not, add one line in the /etc/hosts:

’119.23.58.77 pyarmor.dashingsoft.com

14.9 Known Issues

14.9.1 Obfuscate scripts in cross platform

From v5.6.0 to v5.7.0, there is a bug for cross platform. The scripts obfuscated in linux64/windows64/darwin64 don’t
work after copied to one of this target platform:

’armv5, android.aarch64, ppc64dle, ios.arm64, freebsd, alpine, alpine.arm, poky-i586

14.10 Misc. Questions

14.10.1 How easy is to recover obfuscated code

If someone tries to break the obfuscation, he first must be an expert in the field of reverse engineer, and be an expert
of Python, who should understand the structure of code object of python, how python interpreter each instruction. If

120 Chapter 14. When Things Go Wrong

PyArmor Documentation, Release 6.6.2

someone of them start to reverse, he/she must step by step thousands of machine instruction, and research the algorithm
by machine codes. So it’s not an easy thing to reverse pyarmor.

14.10.2 How to get receipt or invoice

MyCommerce handles all the sales of pyarmor
Please get help from this page for order/recipt/invoice issue
https://www.mycommerce.com/shopper-support/

Or contact “ClientSupport@MyCommerce.com” directly

14.10. Misc. Questions 121

https://www.mycommerce.com/shopper-support/
mailto:ClientSupport@MyCommerce.com

PyArmor Documentation, Release 6.6.2

122 Chapter 14. When Things Go Wrong

cHAPTER 15

License

The software is distributed as Free To Use But Restricted. Free trial version never expires, the limitations are
* The maximum size of code object is 32756 bytes in trial version

» The scripts obfuscated by trial version are not private. It means anyone could generate the license file which
works for these obfuscated scripts.

¢ In trial version if obfuscating the Python scripts in advanced modes, the limitation is no more than about 32
functions (code objects) in one module.

* Without permission the trial version may not be used for the Python scripts of any commercial product.
About the license file of obfuscated scripts, refer to The License File for Obfuscated Script
A registration code is required to obfuscate big code object or generate private obfuscated scripts.
There are 2 basic types of licenses issued for the software. These are:

* A personal license for home users. The user purchases one license to use the software on his own computer.

Home users may use their personal license to obfuscate all the python scripts which are property of the license
owner, to generate private license files for the obfuscated scripts and distribute them and all the required files to
any other machine or device.

Home users could NOT obfuscate any python script which is NOT property of the license owner.

* A enterprise license for business users. The user purchases one license to use the software for one product serials
of an organization.

One product serials include the current version and any other latter versions of the same product.

Business users may use their enterprise license on all computers and embedded devices to obfuscate all the
python scripts of this product serials, to generate private license files for these obfuscated scripts and distribute
them and all the required files to any other machine and device.

Without permission of the software owner the license purchased for one product serials should not be used for
other product serials. Business users should purchase new license for different product serials.

In any case, the software is only used to obfuscate the Python scripts owned by the authorized person or en-
terprise. For example, if PyCharm purchases one license, it’s no problem to obufscate any Python script of

123

PyArmor Documentation, Release 6.6.2

PyCharm self, but it’s not allowed to apply this license to the Python scripts just written in the PyCharm by
someone else.

15.1 Purchase

To buy a license, please run command
pyarmor register —buy
Or open the following url in any web browser
https://order.shareit.com/cart/add ?vendorid=200089125&PRODUCT{[}300871197{]}=1

A registration file generally named “pyarmor-regcode-1.txt” will be sent by email immediately after payment is com-
pleted successfully.

Save it to disk, then run the following command to register PyArmor
pyarmor register /path/to/pyarmor-regcode-1.txt

Check the registration information:
pyarmor register

After registration successfully, remove all the obfuscated scripts by trial version, then obfuscate them again.

Note: If the version of PyArmor < 6.5.2, please open the registration file “pyarmor-regcode-1.txt” by any text editor,
following the guide in it to register PyArmor

Important: The registration code is valid forever, it can be used permanently, but it may not work with new versions.

15.2 Upgrade Notes

The license purchased before 2017-10-10 don’t support to upgrade the latest version. A new license is required to use
the latest version.

15.3 Technical Support

If there is any question, first check these questions and solutions, it may help you solve the problem quickly.

If there is no solution, for technical issue, click here to report an issue according to the issue template, for business
and security issue send email to jondy.zhao @gmail.com

There are 3 kinds of issues:
1. The limitation of obfuscated scripts, or called known issues.
2. PyArmor defect.
3. Wrong usage.

124 Chapter 15. License

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT{[}300871197{]}=1
https://pyarmor.readthedocs.io/en/latest/questions.html
https://github.com/dashingsoft/pyarmor/issues
mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 6.6.2

For the first catalog, it can’t be fixed. For example, use inspect to visit co_code of code object, use pdb to trace
obfuscated scripts. All of these don’t work, they’re known issues. Here list all the known issues The Differences of
Obfuscated Scripts.

For the second catalog, it’s my due to fix it.

For the rests, it’s your due to read the documentation and fix it. I’ll give you hints and maybe examples, but I will not
hand by hand tell you which comand and options should be used to obfuscate your scripts.

Suppose you purchase Microsoft Excel, and want to make a complex chart. You must learn the advanced features of
Excel, then make this chart by yourself. You can not ask Microsoft to make the complex chart for you.

Similarly pyarmor provides a lot of features and well document, but you need learn them by yourself. For example,
the restrict mode is advanced feature of PyArmor, my due is to implement it as described in the document, you need
learn this advanced feature and refine you code to adapt it. It’s not my due to read your scripts and adapt your scripts
to restrict mode.

If you plan to obfuscate or use any third-party package, I also can’t obfuscate this package for you and make sure it’s
compatible with pyarmor. Here is a list about all of The Differences of Obfuscated Scripts. If the package uses these
features changed by obfuscated scripts, it will not work with pyarmor.

There are countless big packages in Python world, many packages I never use and even don’t know at all. It’s also not
easy for me to research a complex package to find which line conflicts with pyarmor, and it’s difficult for me to run all
of these complex packages in my local machine.

Generally in this case users provide the simple snapshot code around exception, or some running information, I
analysis them to find where it may confilct with pyarmor and try to find the solution.

154 Q& A

1. Single PyArmor license purchased can be used on various machines for obfuscation? or its valid only on one
machine? Do we need to install license on single machine and distribute obfuscate code?

It can be used on various machines, but one license only for one product.

2. Single license can be used to obfuscate Python code that will run various platforms like windows, various Linux
flavors?

For all the features of current version, it’s yes. But in future versions,
I’m not sure one license could be used in all of platforms supported by
PyArmor.

3. How long the purchased license is valid for? is it life long?

It’s life long. But I can’t promise it will work for the future version of PyArmor.

4. Can we use the single license to obfuscate various versions of Python package/modules?

15.4. Q& A 125

PyArmor Documentation, Release 6.6.2

Yes, only if they’re belong to one product.

5. Is there support provided in case of issues encountered?

Report issue in github or send email to me.

6. Does Pyarmor works on various Python versions?

Most of features work on Python27, and Python30~Python38, a few features
may only work for Python27, Python35 later.

7. Are there plans to maintain Py Armor to support future released Python versions?

Yes. The goal of PyArmor is let Python could be widely used in the
commercial softwares.

8. What is the mechanism in PyArmor to identify whether modules belong to same product? how it identifies
product?

PyArmor could not identify it by itself, but I can check the obfuscated
scripts to find which registerred user distributes them. So I can find two
products are distributed by one same license.

9. If product undergoes revision ie. version changes, can same license be used or need new license?

Same license is OK.

10. What means a product serials under PyArmor EULA?

A product serial means a sale unit and its upgraded versions. For
example, AutoCAD 2003, 2010 could be taken as a product serials.

126 Chapter 15. License

cHAPTER 16

Change Logs

16.1 Incompatible issues

* Incompatible of the 1icense.lic
v6.0.1

The license file generated by this version doesn’t work with the old obfuscated scripts. There are 2
solutions for this case, still generating the license file with old version pyarmor, or obfuscating the
scrips again by new version pyarmor.

However 1icense. lic generated by old version still works. That is to say, even all the scripts are
obfuscated by new version, you need not issue new license file to customers, because the previous
license file still works.

* Incompatible of the obfuscated scripts

Generally obfuscate part of scripts by new version, then overwrite the old scripts obfuscated by other
version, it still works.

Except the following versions:
v6.3.0

The scripts are obfuscated by this version and later, can not mixed with the ones obfuscated by ealier
version. All the scripts must be obfuscated again and replace the old runtime files with new ones.

16.2 dev version

The dev version could be installed by this command:

’pip install https://pyarmor.dashingsoft.com/downloads/temp/pyarmor—6.6.3.zip

It may be changed from time to time to fix new bugs, please update it once it doesn’t work. If the new version has
been released in PyPi, please remove the dev version, install the latest pyarmor from PyPi.

127

PyArmor Documentation, Release 6.6.2

16.3 6.6.2

» Improve the security of restrict mode and assert_armored for super mode

e Add new api pytransform.check_armored for super mode, it could be used to check module/function/method
https://pyarmor.readthedocs.io/en/latest/pytransform.html#check_armored

* Build super mode core libraries with rpath dependent in MacOS
* Fix Python3.9 pack issue for MacOS: check_lib_pytransform failed
* Fix Apple Silicon platform issue: the binary libraries doesn’t work

* Fix issue (#471): in super mode get_license_info can’t get the updated license information.

16.4 6.6.1

* Fix issue (#429): the new license doesn’t work if replace the old license with it in enable-period-mode
* Fix extension filenames conflict for multiple platforms in super mode
* Fix issue (#442): the target platforms in the runtime settings is read as a list

* Fix issue (#452): when enable suffix for super mode in Linux, the obfuscated scripts raise ImportError: dynamic
module does not define module export function

* Fix issue (#460): the obfuscated scripts crash if they’re obfucated by —advanced 2 and —obf-code 0
¢ Add new platforms: android.x86, android.x86_64

16.5 6.6.0

e Add helper script buildext.py to build obfuscated scripts to extension modules, refer to https://pyarmor.
readthedocs.io/en/latest/advanced.html#build-obfuscated-scripts-to-extensions

* Add super mode libraries for platform musl.x86_64

* Fix python3.8/3.9 crash issues

16.6 6.5.6

* Rename option ——runtime-path to —~rpath in command config

* Fix issue (#403): the obfuscated scripts raise unexpected exception in Python 2.7 (non-super mode)

* Add new platform centos6.x86_64.11.py27 for Python 2.7 built with UCS2 and platform glibc < 2.14
* Add new command help to open online documentation in the web browser

* Fix issue (#408): undefined symbol PyUnicodeUCS2_AsUTF8String in arm platforms for Python 2.7
* Rename platform name darwin.arm64 to darwin.aarch64

* Add new platform darwin.aarch64.3, darwin.aarch64.11.py38 and darwin.aarch64.11.py39 to support Apple
Silicon

* In project copy non .py files to output directly if they’re specified in the project manifest

128 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/pytransform.html#check_armored
https://pyarmor.readthedocs.io/en/latest/advanced.html#build-obfuscated-scripts-to-extensions
https://pyarmor.readthedocs.io/en/latest/advanced.html#build-obfuscated-scripts-to-extensions

PyArmor Documentation, Release 6.6.2

* Fix issue (#414): repack doesn’t patch the final bundle in some platforms

* Fix issue (#415): when repacking an executable where the embedded PKG archive contains subdirectories, the
repack script fails

16.7 6.5.5

e Add helper script repack.py, refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#
repack-pyinstaller-bundle- with-obfuscated-scripts

* Add more log message when downloading dynamic library failed
» Fix bug: it raises ‘str’ object has no attribute ‘starswith’ when obfuscating scripts with some platforms

* Fix pyarmor_runtime reentrant issue

16.8 6.5.3

* Refine output message when checking registration information by command pyarmor register

* Runtime function get_hd_info accepts keyword parameters name to get hardware information of named device
* Command /hdinfo accepts optional parameter name

* Command /icenses could bind obfuscated scripts to named hard disk

e Print pretty error message if checking license or loading core dynamic library fails when running non-super
mode obfuscated scripts

* Fix issue (#387): exception Function does not end with “):” is raised when obfuscating the scripts

16.9 6.5.2

* The command register also could register any text file only if it includes registration code in one single line

¢ Add new option —buy for command register, which used to open shopping cart of PyArmor: pyarmor register
—buy

16.10 6.5.1

* Fix issue: it raises exception to register a code by Python 2.7

16.11 6.5.0

* Support super mode for Python3.9

» Show deprecation warning for —advanced 1 and —advanced 3 if super mode is available, use —advanced 2 and
—advanced 4 instead

* Both registration code and file are supported by the command register

16.7. 6.5.5 129

https://pyarmor.readthedocs.io/en/latest/advanced.html#repack-pyinstaller-bundle-with-obfuscated-scripts
https://pyarmor.readthedocs.io/en/latest/advanced.html#repack-pyinstaller-bundle-with-obfuscated-scripts

PyArmor Documentation, Release 6.6.2

16.12 6.4.4

* Fix issue (#355): the obfuscated script raises DeprecationWarning when getting user data from license file in
super mode with Python3.8

* Fix issue (#357): Python3.9 doesn’t work, the obfuscated scripts raise unknow opcode 53/88 and segmentation
fault

16.13 6.4.3

* Fix issue(#337): project can’t be configured with outer license

* Fix issue(#342): in Windows command pack doesn’t work if the project isn’t in the same drive of entry script

16.14 6.4.2

 Support binding multiple mac addresses in one machine by format <Macl,Mac2,Mac3...> in Windows and
Linux

* For platform linux.x86_64 and linux.x86, the core libraries of super mode for Python2.7 are linked to usc4, the
old ones are linked to ucs2

* Fix pack command issue: outer license may not work in some cases

* The platform linux.armv6 supports super mode

16.15 6.4.1

* Fix bug: for big endian platform, it raises RuntimeError: Invalid extension, no data found when obfuscating
scripts (#323)

 Fix bug: when obfuscating some special scripts in super mode, it raises RuntimeError: Patch function “xxx”
failed (#326)

* Fix serial number of hard disk issue in Windows: the last character is missed in some special cases

16.16 6.4.0

* Command obfuscate accepts multiple arguments as entry scripts

¢ Fix restrict mode crash issue for Python3.5~3.8 in 32-bit Windows

 Fix super mode issue: attempted relative import beyond top-level package

 Improve security of restrict mode

¢ For restrict mode 2, do not protect module attributes for performance

* Add restrict mode 5 to protect globals in functions

 Refine the documentation of restrict mode: https://pyarmor.readthedocs.io/en/latest/mode.html#restrict-mode

* Fix platform centos6.x86_64 not found issue (#312)

130 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/mode.html#restrict-mode

PyArmor Documentation, Release 6.6.2

* On Linux for command licenses the option —bind-mac supports new format: I[fName/MacAddress, for example,
eth0/00:28:54:af:28

16.17 6.3.7

* A big improvement for restrict mode: the plain script couldn’t visit any module attribute if this module is
obfuscated by restrict mode 2, 3 or 4

* Add option —runtime for command obfuscate, build
* In command runtime, deprecate option —super-mode and —vm-mode, use —advanced instead.
* Fix encoding issue: couldn’t get the right encoding if source encoding is in the second line

* Refine example scripts

16.18 6.3.6

* Fix pack issue: if pyi-makespec could not be found, it will complain of OSError: [WinError 2] The system
cannot find the file specified.

Fix PYTHONOPTIMIZE=2 doesn’t work issue

* Fix super mode issue: auto patch failed if there are multiple lines in function header

 Fix command register issue: it could not show registration information even if register successfully. It’s intro-
duced in v6.3.5.

16.19 6.3.5

* Fix pack project issue: not all the scripts in the project are re-obfuscated when packing the project again.

* Clean license.lic in the pyarmor package if option —home isn’t used

16.20 6.3.4

* Fix option —home issue: the file license.lic in this path doesn’t work

 Improve the security of core dynamic libraries

16.21 6.3.3

* Fix sub-package could not import pytransform when it’s obfuscated by —bootstrap 3 in super mode

* For Windows platform, add new modes —advanced 3 and —advanced 4 to enable vm protection. Refer to https:
/Ipyarmor.readthedocs.io/en/latest/mode.html#vm-mode

* The default value of option obf-mod is set to 2
¢ Add new platform linux.mips64 and linux.mips64el

* Fix super mode crash issue for linux.armv7 and linux.aarch32

16.17. 6.3.7 131

https://pyarmor.readthedocs.io/en/latest/mode.html#vm-mode
https://pyarmor.readthedocs.io/en/latest/mode.html#vm-mode

PyArmor Documentation, Release 6.6.2

16.22 6.3.2

* Fix super mode crash issue for Python37/38 in Windows

 Fix command pack issue: the obfuscation option —enable-suffix doesn’t work

16.23 6.3.1

* Fix super mode crash issue for Coroutine functions
* Fix super mode exception issue
* Fix restrict mode 3/4 doesn’t work in some cases

* Fix super mode will complain of insert one redundant line ‘[None, None]’ issue

16.24 6.3.0

From this version, only 2 runtime files are required for non-super mode:
* pytranform.py
* _pytransform.so/dll/dylib
Most of the algorithm are refined to improve the security.
* Refine the algorithm to improve security and performance
* Refine default cross protection code
* Refine runtime files, remove license.lic and pytransform.key
* Refine pack command
* Refine the obfuscating process for cross platforms

* Refine benchmark command, and new option —advanced Refer to https://pyarmor.readthedocs.io/en/latest/
performance.html

* Add platform musl.mips32 for MIPS32 with musl-libc
¢ Add common options —boot for special cross platform obfuscating
* Rename platform names alpine. * to musl. *

Upgrade notes

The scripts are obfuscated by old version could not work with this version, they must be obfuscated again.

16.25 6.2.9

¢

* Fix cross platform bug: in Windows it may raise exception can’t open file
such file or directory

... Scriptspyarmor’: [Errno 2] No

* Fix super mode bug: in some cases super mode will raise exception unknown opcode

132 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/performance.html
https://pyarmor.readthedocs.io/en/latest/performance.html

PyArmor Documentation, Release 6.6.2

16.26 6.2.8

* Fix arch ppc64le could not work issue

¢ In pack command, clean build cache automatically before packing the obfuscated scripts

16.27 6.2.7

¢ Fix a crash issue in Darwin platform
* Fix super mode issue in Darwin: the obfuscated scripts report “image not found” (#256)

* Document experiment feature: how to protect data file

16.28 6.2.6

* Fix get_license_info issue: the value of CODE is blank

16.29 6.2.5

¢ Add option —with-license in the command build
* Fix pack issue: the option —with-license doesn’t work in super mode

* If the code object couldn’t be obfuscated in advanced 2 (super mode), fix it automatically by inserting one
redundant line [None, None] at the beginning of this code object

¢ Ignore case when checking mac address if the license is bind to network card

Add key ISSUER in the return value of get_license_info

16.30 6.2.4

¢ Fix pack issue for Mac in super mode: RuntimeError: unexpected pytransform.so

* Fix pack issue for windows 32-bit system: the default license doesn’t work in other machines, it complains of
License is not for this machine

16.31 6.2.3

¢ Add common option ——home, so PYARMOR_HOME can be set in the command line

* Fix pack issue: pack command may not work with super mode

16.26. 6.2.8 133

https://pyarmor.readthedocs.io/en/latest/advanced.html#how-to-protect-data-files

PyArmor Documentation, Release 6.6.2

16.32 6.2.2

* Fix advanced mode issue: advanced mode 1 doesn’t work in pyenv and some platforms

* Fix issue(#244): when obfuscating the scripts for cross platform and only one platform specified, the obfuscated
scripts raise unexpected protection error.

16.33 6.2.1

* Fix issue(#244): when specify only one platform the obfuscated scripts raise exception:

’[Errno 2] No such file or directory: 'xxx/_ pytransform.so'

¢ Super mode supports windows.x86, linux.x86, linux.aarch64, linux.aarch32, linux.armv7

16.34 6.2.0

In this version, super mode is introduced to improve the security. In this mode the structure of PyCode_Type is
changed, and byte code or word code is mapped, it’s the highest security level in PyArmor. There is only one runtime
file required, that is extension module pytransform, and the form of obfuscated scripts is unique, no so called
Bootstrap Code which may make some users confused. All the obfuscated scripts would be like this

from pytransform import pyarmor
pyarmor (_ name_ , _ file b'\x0a\x02..."', 1)

—

It’s recommended to enable this mode in suitable cases. Now only the latest Python versions are supported:
e Python 2.7
e Python 3.7
* Python 3.8
It may support Python 3.5, 3.6 later, but Python 3.0~3.4 is out of plan.
* Add new option —obf-mode, —obf-code, —wrap-mode to command obfuscate
* Add new value 2 for option —advanced to enable super mode, refer to Using Super Mode
* Fix multiprocessing issue: ValueError: __mp_main__.__spec__ is None (#232)
* The command runtime will generate default protection script pytransform_protection.py
* Add new option —cross-protection to command obfuscate to specify customized protection script

* The default cross protection code will not be injected the entry script if —no-runtime is specified as obfuscating
the scripts. In this case, use option —cross-protection to specify one protection script

* Change the default capsule location from ~/.pyarmor_capsule.zip to ~/.pyarmor/.pyarmor_capsule.zip
* Add new functions get_user_data, assert_armored in runtime module pytransform
* Document how to store runtime file license.lic to any location

* Remove the trailing dot from harddisk serial number, it may impact the license verified.

134 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#storing-runtime-file-license-lic-to-any-location

PyArmor Documentation, Release 6.6.2

16.35 6.1.0

Add external plugin script assert_armored.py
Enhance the command licenses:

— The final argument could be empty, for example, pyarmor licenses will generate a default license to
licenses/pyarmor/license.lic

— If the output is end with license.lic, it will not append any other path, just save it as it is. For example,
pyarmor licenses -0 dist/license.lic will save the final output to dist/license.lic

— Add new option —fixed, and document how to use this option to improve the security

In command pack, the default license will be generated with —fixed to improve the security

16.36 6.0.2

Refine the obfuscated code object to improve security

Refine plugin code to make it clear https:/pyarmor.readthedocs.io/en/latest/how-to-do.html#
how-to-deal-with-plugins

Add internal plugin assert_armored and document basic usage https://pyarmor.readthedocs.io/en/latest/
advanced.html#checking-imported-function-is-obfuscated

16.37 6.0.1

Fix restrict mode 3 bug: the obfuscated script crashes or complains of this error: This function could not be
called from the plain script (#219)

Fix bug: the obfuscated script raises unknown opcode error when the script is obfuscated by obf_code=2 if there
is recursive function call

Fix command init and config bug: the entry script is set to . other than empty when passing ——entry=""
Fix bug: the traceback will print very long line if the obfuscated script raises exception

Fix bug: in some special cases the obfuscated scripts which are obfuscated with ——enable-suffix still
conflict with other obfuscated packages

Refine the error message as violating restrict mode

The obfuscated script will raise exception RuntimeError other than quit directly when something is wrong Now
it will print a pretty traceback to find where is the problem

When generating license.lic for the obfuscated scripts, the license version information will be embedded into
the license file implicitly

Do not transfer exception type to PytransformError as pyarmor initializes failed

Upgrade notes:

The license file generated by this version doesn’t work with the old obfuscated scripts. There are 2 solutions for this

case:

Still generating the license file with old version pyarmor

Or obfuscating the scrips again by new version pyarmor

16.35. 6.1.0 135

https://pyarmor.readthedocs.io/en/latest/advanced.html#binding-obfuscated-scripts-to-python-interpreter
https://pyarmor.readthedocs.io/en/latest/how-to-do.html#how-to-deal-with-plugins
https://pyarmor.readthedocs.io/en/latest/how-to-do.html#how-to-deal-with-plugins
https://pyarmor.readthedocs.io/en/latest/advanced.html#checking-imported-function-is-obfuscated
https://pyarmor.readthedocs.io/en/latest/advanced.html#checking-imported-function-is-obfuscated

PyArmor Documentation, Release 6.6.2

16.38 5.9.8

* Fix restrict mode 3 bug: the obfuscated function failed if it’s called from generator function even in the obfus-
cated script.

* In pack command it will try to use the encoding coding: xxx in the first comment line of .spec file

16.39 5.9.7

* Fix pack issue: it will raise UnicodeDecodeError when the source path includes non-ascii characters(#217)

» Fix obfuscate issue for Python2: it will raise UnicodeDecodeError when the source path includes non-ascii
characters

* Refine pack command: it will print the output of PylInstaller to the console either

16.40 5.9.6

e Refine pack command. Now it’s easy to pack the obfuscated scripts with an exists .spec
file, just specify it by -s, refer to https:/pyarmor.readthedocs.io/en/latest/advanced.html#
bundle-obfuscated-scripts-with-customized-spec-file

16.41 5.9.5

* Change the plugin search policy, do not support enviorment variable PYARMOR_PLUGIN, but search folder
plugins in the pyarmor package path.

* Add a new path plugins in the package source, there are several common plugins. So it’s easy to check internet
time by this way:

pyarmor obfuscate —-plugin check_ntp_time foo.py

Before that both of these lines should be inserted into foo.py:

{PyArmor Plugins}
PyArmor Plugin: check_ntp_time ()

* Fix pack bug: pyi-makespec: error: unrecognized arguments: -y if extra options are passed

* Document command pack in details: https://pyarmor.readthedocs.io/en/latest/man.html#pack

16.42 5.9.4

* Fix pack issue: pyi-makespec doesn’t work
e Add new platform: uclibc-armv7
* Fix issue: guess encoding failed if there are non-ascii characters in the second line

¢ Document how to work with Nuitka, https://pyarmor.readthedocs.io/en/latest/advanced.html#work-with-nuitka

136 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-with-customized-spec-file
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-with-customized-spec-file
https://pyarmor.readthedocs.io/en/latest/man.html#pack
https://pyarmor.readthedocs.io/en/latest/advanced.html#work-with-nuitka

PyArmor Documentation, Release 6.6.2

16.43 5.9.3

* Add new option ——enable-period-mode in the command licenses

e When running the obfuscated scripts it will check license periodly (per hour) if the option
—-—enable-period-mode is set in the license file

16.44 5.9.2

* Fix bug: the command pyarmor runtime —platform alpine.x86_64 raises error (#201)

* Fix bug: the platform linux.armv6 doesn’t work in Raspberry PI Zero W, rebuild the dynamic library with
-march=armv6 -mfloat-abi=hard -marm

16.45 5.9.1

¢ Python debugger and profile tool could work with the plain python scripts even if the obfuscated packages are
imported. Note that the obfuscated scripts still couldn’t be traced.

* Refine pack command, use pyi-makespec to generate .spec file
* Fix advanced mode fails in some linux platforms
* Support platform linux.armv6

* Fix python38 issue: in the wrap mode the footer block isn’t executed

16.46 5.9.0

pyarmor-webui is published as a separated package, it has been removed from source package of pyarmor. Now it’s a
full feature webui, and could be installed by pip install pyarmor-webui.

* Support environment variable PYARMOR_HOME as one extra path to find the license.lic of pyarmor. Now the
search order is:

— In the package path of pyarmor
— 8PYARMOR_HOME/.pyarmor/license.lic
— SHOME/.pyarmor/license.lic
— $USERPROFILE/.pyarmor/license.lic (Only for Windows)
* In command licenses if option output is set, do not append extra path licenses in the final output path
* In command obfuscate with option —exact, all the scripts list in the command line will be taken as entry script.
* The last argument in command pack could be a project path or .json file
* Add new option ——name in the command pack
* Add new project attribute license_file, bootstrap_code
* Add new option ——with-license, -—bootstrap in the command config

e Add new option ——boot strap in the command obfuscate

16.43. 5.9.3 137

PyArmor Documentation, Release 6.6.2

* The options ——package—-runtime doesn’t support 2 and 3, use ——bootstrap=2 or ——bootstrap=3
instead

* For command licenses the generated license could be printed to stdout by setting the option ——output to
stdout

16.47 5.8.9

¢ Fix cross platform issue for vs2015.x86 and vs2015.x86_64

* In command config add option ——advanced as alias of ——advanced-mode

16.48 5.8.8

* Fix issue: the obfuscated scripts will crash when importing the packages obfuscated with advanced mode by
other registered pyarmor

16.49 5.8.7

In this version, the scripts could be obfuscated with option ——enable-suffix, then the name of the runtime
package and builtin functions will be unique. By this way the scripts obfuscated by different capsule could run in the
same Python interpreter.

For example, the bootstrap code may like this with suffix _vax_000001:

from pytransform vax_ 000001 import pyarmor_runtime
pyarmor_runtime (suffix="_wvax_000001")

Refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#obfuscating-package-no-conflict-with-others
¢ Add option ——enable-suffix in the commands obfuscate, config and runtime
e Add option ——with-1icense in the command pack

 Fix issue: the executable file made by pack raises protection fault exception on MacOSX

16.50 5.8.6

* Raise exception other than sys.exit(/) when pyarmor_runtime fails
* Refine cross protection code to improve the security

* Fix issue: advanced mode fails in some MacOSX machines with python2.7

16.51 5.8.5

* Add platform data file index.json to source package

* Refine core library for platform MacOSX

138 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#obfuscating-package-no-conflict-with-others

PyArmor Documentation, Release 6.6.2

16.52 5.8.4

¢ Fix issue: advanced mode doesn’t work in some MacOSX machines.

* Fix issue: can’t get the serial number of SSD harddisk in MacOSX platform

16.53 5.8.3

 Fix issue: the _pytransform.dll for windows.x86_64 is not latest

16.54 5.8.2

* Fix issue: the option ——exclude in command obfuscate could not exclude .py files

* Refine command pack

16.55 5.8.1

* Fix issue: check license failed if there is no environment variable HOME in linux platform

* Add new value 3 for option —~—package-runt ime, the bootstrap code will always use relative import with
an extra leading dot

* The command runtime also generates bootstrap script pytransform_bootstrap.py
* Add option ——inside in command runtime to generate bootstrap package pytransform_bootstrap

e Document how to run unittest of obfuscated scripts, refer to https://pyarmor.readthedocs.io/en/latest/advanced.
html#run-unittest-of-obfuscated-scripts

16.56 5.8.0

* Move the license file of pyarmor from the install path of pyarmor package to user home path ~/.pyarmor
* Refine error messages so that the users could solve most of problems by the hints.
* Refine command pack, use hook hook-pytransform.py to add the runtime files.

e The command pack supports customized spec file, refer to https://pyarmor.readthedocs.io/en/latest/advanced.
html#bundle-obfuscated-scripts-with-customized-spec-file

¢ In runtime module pytransform, the functions may raise Exception instead of PytransformError in some cases.
* In command register, add option ——1egency to store license.lic in the traditional way

¢ Fix platform name issue: in some linux platforms the platform name may not be right

16.57 5.7.10

* Fix new linux platform centos6.x86_64 issue: raise TypeError when run pyarmor twice.

16.52. 5.8.4 139

https://pyarmor.readthedocs.io/en/latest/advanced.html#run-unittest-of-obfuscated-scripts
https://pyarmor.readthedocs.io/en/latest/advanced.html#run-unittest-of-obfuscated-scripts
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-with-customized-spec-file
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-with-customized-spec-file

PyArmor Documentation, Release 6.6.2

16.58 5.7.9

* Support new linux platform centos6.x86_64, arch is x86_64, glibc < 2.14

* Do not print traceback if no option ——debug specified as running pyarmor

16.59 5.7.8

* When the obfuscated scripts raise exception, eliminate the very long line from traceback to make it clear

16.60 5.7.7

* Fix issue: pyarmor load _pytransform.dll faild by 32-bit Python in 64-bit Windows.

16.61 5.7.6

e Add option ——update for command download to update all the downloaded dynamic libraries automatically

* Fix issue: the obfuscated script raises unexpected exception when the license is expired

16.62 5.7.5

e Standardize platform names, refer to https:/pyarmor.readthedocs.io/en/v5.7.5/platforms.html#
standard-platform-names

* Run obfuscated scripts in multiple platforms, refer to https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#
running-obfuscated-scripts-in-multiple-platforms

* Downloaded dynamic library files by command command will be saved in the ~/.pyarmor/platforms other than
the installed path of pyarmor package.

* Refine platforms folder structure according to new standard platform name

* In command obfuscate, build, runtime, specify the option ——plat form multiple times, so that the obfuscated
scripts could run in these platforms

16.63 5.7.4

* Fix issue: command obfuscate fails if the option ——szrc is specifed

16.64 5.7.3

* Refine pyt ransform to handle error message of core library
* Refine command online help message

* Sort the scripts being to obfuscated to fix some random errors (#143)

140 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/v5.7.5/platforms.html#standard-platform-names
https://pyarmor.readthedocs.io/en/v5.7.5/platforms.html#standard-platform-names
https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#running-obfuscated-scripts-in-multiple-platforms
https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#running-obfuscated-scripts-in-multiple-platforms

PyArmor Documentation, Release 6.6.2

 Raise exception other than call sys.exit if pyarmor is called from another Python script directly
¢ In the function get_license_info of module pytransform
— Change the value to None if there is no corresponding information

— Change the key name expired to upper case EXPIRED

16.65 5.7.2

* Fix plugin codec issue (#138): ‘gbk’ codec can’t decode byte 0x82 in position 590: illegal multibyte sequence
* Project src may be relative path base on project path

* Refine plugin and document it in details: https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#
how-to-deal-with-plugins

* Add common option ——debug for pyarmor to show more information in the console

* Project commands, for examples build, cofig, the last argument supports any valid project configuration file

16.66 5.7.1

* Add command runtime to generate runtime package separately
¢ Add the first character as alias for command obfuscate, licenses, pack, init, config, build

* Fix cross platform obfuscating scripts don’t work issue (#136). This bug should be exists from v5.6.0 to v5.7.0
Related target platforms armv5, android.aarch64, ppc64le, ios.arm64, freebsd, alpine, alpine.arm, poky-i586

16.67 5.7.0

There are 2 major changes in this version:

1. The runtime files are saved in the separated folder pytransform as package:

dist/
obf_foo.py

pytransform/
__init__ .py
license.lic
pytransform.key

Upgrade notes:
* If you have generated new runtime file “license.lic”, it should be copied to dist/pytransform other than dist/

* If you’d like to save the runtime files in the same folder with obfuscated scripts as before, obfuscating the scripts
with option package-runtime like this:

pyarmor obfuscate —--package-runtime=0 foo.py
pyarmor build —-package-runtime=0

2. The bootstrap code must be in the obfuscated scripts, and it must be entry script as obfuscating.

16.65. 5.7.2 141

https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#how-to-deal-with-plugins
https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#how-to-deal-with-plugins

PyArmor Documentation, Release 6.6.2

Upgrade notes:

* If you have inserted bootstrap code into the obfuscated script dist/foo.py which is obfuscated but not as entry

script manually. Do it by this command after v5.7.0:

pyarmor obfuscate —--no-runtime —--exact foo.py

* If you need insert bootstrap code into plain script, first obfuscate an empty script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate —--no-runtime --exact pytransform bootstrap.py

Then import pytransform_bootstrap in the plain script.
Other changes:
* Change default value of project attribute package_runtime from 0 to 1
¢ Change default value of option ——package—runtime from O to 1 in command obfuscate
* Add option ——no-runt ime for command obfuscate

* Add optioin ——disable-restrict-mode for command licenses

16.68 5.6.8

* Add option ——package—-runt ime in command obfuscate, config and build
e Add attribute package_runtime for project

* Refine default cross protection code

* Remove deprecated flag for option ——src in command obfuscate

* Fix help message errors in command obfuscate

16.69 5.6.7

* Fix issue (#129): “Invalid input packet” on raspberry pi (armv7)

¢ Add new obfuscation mode: obf _code ==2

16.70 5.6.6

* Remove unused exported symbols from core libraries

16.71 5.6.5

* Fix win32 issue: verify license failed in some cases

* Refine core library to improve security

142 Chapter 16

. Change Logs

PyArmor Documentation, Release 6.6.2

16.72 5.6.4

* Fix segmentation fault issue for Python 3.8

16.73 5.6.3

* Add option -x in command licenses to save extra data in the license file. It’s mainly used to extend license type.

16.74 5.6.2

* Fix pyarmor-webui start issue in some cases: can’t import name ‘_project’

16.75 5.6.1

¢ The command download will check the version of dynamic library to be sure it works with the current PyArmor.

16.76 5.6.0

In this version, new private capsule, which use 2048 bits RSA key to improve security for obfucated scripts, is
introduced for purchased users. All the trial versions still use one same public capsule which use 1024 bits RSA keys.
After purchasing PyArmor, a keyfile which includes license key and private capsule will be sent to customer by email.

For the previous purchased user, the old private capsules which are generated implicitly by PyArmor after registered
PyArmor still work, but maybe not supported later. Contact jondy.zhao@gmail.com if you’d like to use new private
capsule.

The other changes:
» Command register are refined according to new private capsule
Upgrade Note for Previous Users
There are 2 solutions:
1. Still use old license code.

It’s recommanded that you have generated some customized “license.lic” for the obfuscated scrips and these “li-
cense.lic” files have been issued to your customers. If use new key file, all the previous “license.lic” does not work,
you need generate new one and resend to your customers.

Actually the command pip install —upgrade pyarmor does not overwrite the purchased license code, you need not run
command pyarmor register again. It should still work, you can check it by run pyarmor -v.

Or in any machine in which old version pyarmor is running, compress the following 2 files to one archive “pyarmor-
regfile.zip”:

* license.lic, which locates in the installed path of pyarmor
* .pyarmor_capsule.zip, which locates in the user HOME path
Then register this keyfile in the new version of pyarmor

pyarmor register pyarmor-regfile.zip

16.72. 5.6.4 143

mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 6.6.2

2. Use new key file.
It’s recommanded that you have not yet issued any customized “license.lic” to your customers.

Forward the purchased email received from MyCommerce to jondy.zhao@gmail.com, and the new key file will be
sent to the registration email. If pyarmor license is purchased after 2017-10-10, no fee for this upgrading. Before
2017-10-10, please purchase a new license for latest pyarmor.

16.77 5.5.7

* Fix webui bug: raise “name ‘output’ is not defined” as running packer

16.78 5.5.6

* Add new restrict mode 2, 3 and 4 to improve security of the obfuscated scripts, refer to Restrict Mode
* In command obfuscate, option ——restrict supports new value 2, 3 and 4

* In command config, option ——disable-restrict-mode is deprecrated

* In command config, add new option ——restrict

* In command obfuscate the last argument could be a directory

16.79 5.5.5

* Win32 issue: the obfuscated scripts will print extra message.

16.80 5.5.4

* Fix issue: the output path isn’t correct when building a package with multiple entries

« Fix issue: the obfuscated scripts raise SystemError “unknown opcode” if advanced mode is enabled in some
MacOS machines

16.81 5.5.3

* Fix issue: it will raise error “Invalid input packet” to import 2 independent obfuscated packages in 64-bit
Windows.

16.82 5.5.2

* Fix bug of command pack: the obfuscated modules aren’t packed into the bundle if there is an attribute
_code_cache in the a.pure

144 Chapter 16. Change Logs

mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 6.6.2

16.83 5.5.1

* Fix bug: it could not obfuscate more than 32 functions in advanced mode even pyarmor isn’t trial version.

e In command licenses, the output path of generated license file is truncated if the registration code is too long,
and all the invalid characters for path are removed.

16.84 5.5.0

* Fix issue: Warning: code object xxxx isn’t wrapped (#59)

* Refine command download, fix some users could not download library file from pyarmor.dashingsoft.com
¢ Introduce advanced mode for x86/x64 arch, it has some limitations in trial version

¢ Add option ——advanced for command obfuscate

* Add new property advanced_mode for project

A new feature Advanced Mode is introduced in this version. In this mode the structure of PyCode_Type is changed a
little to improve the security. And a hook also is injected into Python interpreter so that the modified code objects could
run normally. Besides if some core Python C APIs are changed unexpectedly, the obfuscated scripts in advanced mode
won’t work. Because this feature is highly depended on the machine instruction set, it’s only available for x86/x64
arch now. And pyarmor maybe makes mistake if Python interpreter is compiled by old gcc or some other C compiles.
It’s welcome to report the issue if Python interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to enable it, pass option ——advanced to
command obfuscate. But in next minor version, this mode may be enable by default.

Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to be sure it works in advanced mode.
Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

16.85 5.4.6

* Add option ——without-1icense for command pack. Sample usage refer to https://pyarmor.readthedocs.io/
en/latest/advanced.html#bundle-obfuscated- scripts-to-one-executable-file

¢ Add option ——debug for command pack. If this option isn’t set, all the build files will be removed after
packing.

16.86 5.4.5

* Enhancement: In Linux support to get the serial number of NVME harddisk

* Fix issue: After run command register, pyarmor could not generate capsule if there is license.lic in the current
path

16.83. 5.5.1 145

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-to-one-executable-file
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-to-one-executable-file

PyArmor Documentation, Release 6.6.2

16.87 5.4.4

* Fix issue: In Linux could not get the serial number of SCSI harddisk

* Fix issuse: In Windows the serial number is not right if the leading character is alpha number

16.88 5.4.3

* Add function get_license_code in runtime module pytransform, which mainly used in plugin to extend license
type. Refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

* Fix issue: the command download always shows trial version

16.89 5.4.2

* Option ——exclude can use multiple times in command obfuscate

* Exclude build path automatically in command pack

16.90 5.4.1

¢ New feature: do not obfuscate functions which name starts with lambda_

 Fix issue: it will raise Protection Fault as packing obfuscated scripts to one file

16.91 5.4.0

* Do not obfuscate lambda functions by default

* Fix issue: local variable platname referenced before assignment

16.92 5.3.13

* Add option ——url for command download

16.93 5.3.12

¢ Add integrity checks for the downloaded binaries (#85)

16.94 5.3.11

* Fix issue: get wrong harddisk’s serial number for some special cases in Windows

146 Chapter 16

. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

PyArmor Documentation, Release 6.6.2

16.95 5.3.10

* Query harddisk’s serial number without administrator in Windows

16.96 5.3.9

* Remove the leading and trailing whitespace of harddisk’s serial number

16.97 5.3.8

* Fix non-ascii path issue in Windows

16.98 5.3.7

 Fix bug: the bootstrap code isn’t inserted correctly if the path of entry script is absolute path.

16.99 5.3.6

* Fix bug: protection code can’t find the correct dynamic library if distributing obfuscated scripts to other plat-
forms.

e Document how to distribute obfuscated scripts to other platforms https://pyarmor.readthedocs.io/en/latest/
advanced.html#distributing-obfuscated-scripts-to-other-platform

16.100 5.3.5

* The bootstrap code could run many times in same Python interpreter.

e Remove extra . from the bootstrap code of __init__.py as building project without runtime files.

16.101 5.3.4

¢ Add command download used to download platform-dependent dynamic libraries
» Keep shell line for obfuscated entry scripts if there is first line starts with #/

* Fix issue: if entry script is not in the src path, bootstrap code will not be inserted.

16.102 5.3.3

* Refine benchmark command
* Document the performance of obfuscated scripts https://pyarmor.readthedocs.io/en/latest/performance.html

* Add command register to take registration code effects

16.95. 5.3.10 147

https://pyarmor.readthedocs.io/en/latest/advanced.html#distributing-obfuscated-scripts-to-other-platform
https://pyarmor.readthedocs.io/en/latest/advanced.html#distributing-obfuscated-scripts-to-other-platform
https://pyarmor.readthedocs.io/en/latest/performance.html

PyArmor Documentation, Release 6.6.2

¢ Rename trial license file license.lic to license.tri

16.103 5.3.2

» Fix bug: if there is only one comment line in the script it will raise IndexError as obfuscating this script.

16.104 5.3.1

* Refine pack command, and make output clear.

* Document plugin usage to extend license type for obufscated scripts. Refer to https://pyarmor.readthedocs.io/
en/latest/advanced.html#using-plugin-to-extend-license-type

16.105 5.3.0

¢ In the trial version of PyArmor, it will raise error as obfuscating the code object which size is greater than 32768
bytes.

* Add option ——plugin in command obfuscate
* Add property plugins for Project, and add option ——plugin in command config

* Change default build path for command pack, and do not remove it after command finished.

16.106 5.2.9

* Fix segmentation fault issue for python3.5 and before: run too big obfuscated code object (>65536 bytes) will
crash (#67)

* Fix issue: missing bootstrap code for command pack (#68)

* Fix issue: the output script is same as original script if obfuscating scripts with option ——exact

16.107 5.2.8

* Fix issue: pyarmor -v complains not enough arguments for format string

16.108 5.2.7

e In command obfuscate add new options --exclude, ——exact, —--no-bootstrap,
—--no-cross—-protection.

* In command obfuscate deprecate the options —-src, ——entry, ——cross—-protection.

* In command licenses deprecate the option ——bind-file.

148 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type
https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

PyArmor Documentation, Release 6.6.2

16.109 5.2.6

» Fix issue: raise codec exception as obfuscating the script of utf-8 with BOM
¢ Change the default path to user home for command capsule
* Disable restrict mode by default as obfuscating special script __init__.py

* Refine log message

16.110 5.2.5

* Fix issue: raise IndexError if output path is ‘.’ as building project
¢ For Python3 convert error message from bytes to string as checking license failed

¢ Refine version information

16.111 5.2.4

 Fix arm64 issue: verify rsa key failed when running the obufscated scripts(#63)

* Support ios (arm64) and ppc64le for linux

16.112 5.2.3

* Refine error message when checking license failed

* Fix issue: protection code raises ImportError in the package file __init.py__

16.113 5.2.2

 Improve the security of dynamic library.

16.114 5.2.1

* Fix issue: in restrict mode the bootstrap code in __init__.py will raise exception.

* Add option ——cross-protection in command obfuscate

16.115 5.2.0

» Use global capsule as default capsule for project, other than creating new one for each project
¢ Add option ——obf-code, ——obf-mod, ——wrap-mode, ——cross—-protection in command config
* Add new attributes for project: obf_code, obf_mod, wrap_mode, cross_protection

» Deprecrated project attributes obf_code_mode, obf_module_mode, use obf_code, obf_mod, wrap_mode instead

16.109. 5.2.6 149

PyArmor Documentation, Release 6.6.2

e Change the behaviours of restrict mode, refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#
restrict-mode

» Change option ——restrict in command obfuscate and licenses
* Remove option ——no-restrict in command obfuscate

* Remove option ——clone in command init

16.116 5.1.2

* Improve the security of PyArmor self

16.117 5.1.1

* Refine the procedure of encrypt script

* Reform module pytransform.py

* Fix issue: it will raise exception if no entry script when obfuscating scripts

* Fix issue: ‘gbk’ codec can’t decode byte Oxal in position 28 (#51)

* Add option ——upgrade for command capsule

¢ Merge runtime files pyshield.key, pyshield.lic and product.key into pytransform.key
Upgrade notes

The capsule created in this version will include a new file pytransform.key which is a replacement for 3 old runtime
files: pyshield.key, pyshield.lic and product.key.

The old capsule which created in the earlier version still works, it stills use the old runtime files. But it’s recommended
to upgrade the old capsule to new version. Just run this command:

pyarmor capsule —-upgrade

All the license files generated for obfuscated scripts by old capsule still work, but all the scripts need to be obfuscated
again to take new capsule effects.

16.118 5.1.0

* Add extra code to protect dynamic library _pytransform when obfuscating entry script

* Fix compling error when obfuscating scripts in windows for Python 26/30/31 (newline issue)

16.119 5.0.5

* Refine protect_pytransform to improve security, refer to https://pyarmor.readthedocs.io/en/latest/security.html

150 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#restrict-mode
https://pyarmor.readthedocs.io/en/latest/advanced.html#restrict-mode
https://pyarmor.readthedocs.io/en/latest/security.html

PyArmor Documentation, Release 6.6.2

16.120 5.0.4

* Fix get_expired_days issue, remove decorator dllmethod

* Refine output message of pyarmor -v

16.121 5.0.3

e Add option -g, ——s1ilent, suppress all normal output when running any PyArmor command
* Refine runtime error message, make it clear and more helpful

* Add new function get_hd_info in module pytransform to get hardware information

¢ Remove function get_hd_sn from module pytransform, use get_hd_info instead

* Remove useless function version_info, get_trial_days from module pytransform

* Remove attribute lib_filename from module pytransform, use _pytransform._name instead

* Add document https://pyarmor.readthedocs.io/en/latest/pytransform.html

¢ Refine document https://pyarmor.readthedocs.io/en/latest/security.html

16.122 5.0.2

» Export lib_filename in the module pytransform in order to protect dynamic library _pytransform. Refer to

https://pyarmor.readthedocs.io/en/latest/security.html

16.123 5.0.1

Thanks to GNU lightning, from this version, the core routines are protected by JIT technicals. That is to say, there is
no binary code in static file for core routines, they’re generated in runtime.

Besides, the pre-built dynamic library for linux arm32/64 are packed into the source package.
Fixed issues:
* The module multiprocessing starts new process failed in obfuscated script:

AttributeError: ‘__main__’ object has no attribute ‘f’

16.124 4.6.3

* Fix backslash issue when running pack command with Pylnstaller

e When PyArmor fails, if sys.flags.debug is not set, only print error message, no traceback printed

16.120. 5.0.4 151

https://pyarmor.readthedocs.io/en/latest/pytransform.html
https://pyarmor.readthedocs.io/en/latest/security.html
https://pyarmor.readthedocs.io/en/latest/security.html

PyArmor Documentation, Release 6.6.2

16.125 4.6.2

* Add option ——options for command pack

* For Python 3, there is no new line in the output when pack command fails

16.126 4.6.1

* Fix license issue in 64-bit embedded platform

16.127 4.6.0

* Fix crash issue for special code object in Python 3.6

16.128 4.5.5

¢ Fix stack overflow issue

16.129 4.5.4

* Refine platform name to search dynamic library _pytransform

16.130 4.5.3

* Print the exact message when checking license failed to run obfuscated scripts.

16.131 4.5.2

* Add documentation https://pyarmor.readthedocs.io/en/latest/

» Exclude dist, build folder when executing pyarmor obfuscate —recursive

16.132 4.5.1

¢ Fix #41: can not find dynamic library _pytransform

16.133 4.5.0

* Add anti-debug code for dynamic library _pytransform

152 Chapter 16

. Change Logs

https://pyarmor.readthedocs.io/en/latest/

PyArmor Documentation, Release 6.6.2

16.134 4.4.2

» Change default capsule to user home other than the source path of pyarmor

16.135 4.4.2

This patch mainly changes webui, make it simple more:
* WebUI : remove source field in tab Obfuscate, and remove ipv4 field in tab Licenses

* WebUI Packer: remove setup script, add output path, only support PyInstaller

16.136 4.4.1

* Support Py2Installer by a simple way
» For command obfuscate, get default src and entry from first argument, ——src is not required.

* Set no restrict mode as default for new project and command obfuscate, licenses

16.137 4.4.0

* Pack obfuscated scripts by command pack

In this version, introduces a new command pack used to pack obfuscated scripts with py2exe and cx_Freeze. Once
the setup script of py2exe or cx_Freeze can bundle clear python scripts, pack could pack obfuscated scripts by single
command: pyarmor pack —type cx_Freeze /path/to/src/main.py

 Pack obfuscated scripts by WebUI packer
WebUI is well reformed, simple and easy to use.

http://pyarmor.dashingsoft.com/demo/index.html

16.138 4.3.4

* Fix start pyarmor issue for pip install in Python 2

16.139 4.3.3

* Fix issue: missing file in wheel

16.140 4.3.2

¢ Fix pip install issue in MacOS

* Refine sample scripts to make workaround for py2exe/cx_Freeze simple

16.134. 4.4.2 153

http://pyarmor.dashingsoft.com/demo/index.html

PyArmor Documentation, Release 6.6.2

16.141 4.3.1

* Fix typos in examples

* Fix bugs in sample scripts

16.142 4.3.0

In this version, there are three significant changes:

[Simplified WebUI](http://pyarmor.dashingsoft.com/demo/index.html) [Clear Exam-
ples](src/exampless/README.md), quickly wunderstand the most features of Pyarmor [Sample Shell
Scripts](src/examples), template scripts to obfuscate python source files

» Simply webui, easy to use, only input one filed to obfuscate python scripts
* The runtime files will be always saved in the same path with obfuscated scripts

* Add shell scripts obfuscate-app, obfuscate-pkg, build-with-project, build-for-2exe in src/examples, so that users
can quickly obfuscate their python scripts by these template scripts.

o If entry script is __init__.py, change the first line of bootstrap code from pytransform import pyarmor runtime
to from .pytransform import pyarmor runtime

* Rewrite examples’/README.md, make it clear and easy to understand
* Do not generate entry scripts if only runtime files are generated

* Remove choice package for option ——type in command init, only pkg reserved.

16.143 4.2.3

* Fix pyarmor-webui can not start issue
* Fix runtime-path issue in webui

¢ Rename platform name macosx_intel to macosx_x86_64 (#36)

16.144 4.2.2

* Fix webui import error.

16.145 4.2.1

¢ Add option ——recursive for command obfuscate

16.146 4.1.4

* Rewrite project long description.

154 Chapter 16. Change Logs

http://pyarmor.dashingsoft.com/demo/index.html

PyArmor Documentation, Release 6.6.2

16.147 4.1.3

* Fix Python3 issue for get_license_info

16.148 4.1.2

* Add function get_license_info in pytransform.py to show license information

16.149 4.1.1

* Fix import main from pyarmor issue

16.150 4.0.3

¢ Add command capsule
* Find default capsule in the current path other than ——src in command obfuscate

* Fix pip install issue #30

16.151 4.0.2

* Rename pyarmor.py to pyarmor-depreted.py
* Rename pyarmor2.py to pyarmor.py

* Add option ——capsule, -disable-restrict-mode and ——output for command licenses

16.152 4.0.1

* Add option ——capsule for command init, config and obfuscate
* Deprecate option ——clone for command init, use ——capsule instead

¢ Fix sys.settrace and sys.setprofile issues for auto-wrap mode

16.153 3.9.9

* Fix segmentation fault issues for asyncio, typing modules

16.154 3.9.8

* Add documentation for examples (examples’/README.md)

16.147. 4.1.3

155

PyArmor Documentation, Release 6.6.2

16.155 3.9.7

* Fix windows 10 issue: access violation reading 0x000001ED00000000

16.156 3.9.6

* Fix the generated license bind to fixed machine in webui is not correct

* Fix extra output path issue in webui

16.157 3.9.5

» Show registration code when printing version information

16.158 3.9.4

» Rewrite long description of package in pypi

16.159 3.9.3

* Fix issue: __file__is not really path in main code of module when import obfuscated module

16.160 3.9.2

* Replace option ——disable-restrict-mode with ——no-restrict in command obfuscate
* Add option ——title in command config
» Change the output path of entry scripts when entry scripts belong to package

* Refine document user-guide.md and mechanism.md

16.161 3.9.1

* Add option —-type for command init

* Refine document user-guide.md and mechanism.md

16.162 3.9.0

This version introduces a new way aufo-wrap to protect python code when it’s imported by outer scripts.
Refer to [Mechanism Without Restrict Mode](src/mechanism.md#mechanism-without-restrict-mode)

* Add new mode wrap for ——obf-code-mode

156 Chapter 16. Change Logs

PyArmor Documentation, Release 6.6.2

e Remove func.__refcalls__in __wraparmor__

* Add new project attribute is_package

* Add option —-is-package in command config

e Add option —-disable-restrict-mode in command obfuscate
* Reset build_time when project configuration is changed

* Change output path when is_package is set in command build

¢ Change default value of project when find __init__.py in comand init

* Project attribute entry supports absolute path

16.163 3.8.10

* Fix shared code object issue in __wraparmor__

16.164 3.8.9

* Clear frame as long as tb is not Py_None when call __wraparmor__

* Generator will not be obfucated in __wraparmor__

16.165 3.8.8

» Fix bug: the frame.f locals still can be accessed in callback function

16.166 3.8.7

e The frame.f locals of wrapper and wrapped function will return an empty dictionary once __wraparmor__ is
called.

16.167 3.8.6

* The frame.f_locals of wrapper and wrapped function return an empty dictionary, all the other frames still return
original value.

16.168 3.8.5

* The frame.f _locals of all frames will always return an empty dictionary to protect runtime data.

* Add extra argument tb when call __wraparmor__ in decorator wraparmor, pass None if no exception.

16.163. 3.8.10 157

PyArmor Documentation, Release 6.6.2

16.169 3.8.4

* Do not touch frame.f _locals when raise exception, let decorator wraparmor to control everything.

16.170 3.8.3

* Fix issue: option ——disable-restrict-mode doesn’t work in command licenses

* Remove freevar func from frame.f_locals when raise exception in decorator wraparmor

16.171 3.8.2

¢ Change module filename to <frozen modname> in traceback, set attribute __file__to real filename when running
obfuscated scripts.

16.172 3.8.1

* Try to access original func_code out of decorator wraparmor is forbidden.

16.173 3.8.0

e Add option ——output for command build, it will override the value in project configuration file.
* Fix issue: defalut project output path isn’t relative to project path.

* Remove extra file “product.key” after obfuscating scripts.

16.174 3.7.5

* Remove dotted name from filename in traceback, if it’s not a package.

16.175 3.7.4

 Strip __init__ from filename in traceback, replace it with package name.

16.176 3.7.3

* Remove brackets from filename in traceback, and add dotted prefix.

16.177 3.7.2

» Change filename in traceback to <frozen [modname]>, other than original filename

158 Chapter 16. Change Logs

PyArmor Documentation, Release 6.6.2

16.178 3.7.1

* Fix issue #12: module attribute __file__is filename in build machine other than filename in target machine.

* Builtins function __wraparmor__ only can be used in the decorator wraparmor

16.179 3.7.0

* Fix issue #11: use decorator “wraparmor” to obfuscate func_code as soon as function returns.

¢ Document usage of decorator “wraparmor”, refer to src/user-guide.md#use-decorator-to-protect-code-
objects-when-disable-restrict-mode

16.180 3.6.2

* Fix issue #8 (Linux): option —manifest broken in shell script

16.181 3.6.1

* Add option “Restrict Mode” in web ui

* Document restrict mode in details (user-guide.md)

16.182 3.6.0

* Introduce restrict mode to avoid obfuscated scripts observed from no obfuscated scripts

* Add option —disable-restrict-mode for command “config”

16.183 3.5.1

* Support pip install pyarmor

16.184 3.5.0

Fix Python3.6 issue: can not run obfuscated scripts, because it uses a 16-bit wordcode instead of bytecode

Fix Python3.7 issue: it adds a flag in pyc header
* Fix option —obf-module-mode=none failed
* Add option —clone for command “init”

* Generate runtime files to separate path “runtimes” when project runtime-path is set

Add advanced usages in user-guide

16.178. 3.7.1 159

PyArmor Documentation, Release 6.6.2

16.185 3.4.3

* Fix issue: raise exception when project entry isn’t obfuscated

16.186 3.4.2

* Add webui to manage project

16.187 3.4.1

¢ Fix README .rst format error.
* Add title attribute to project

* Print new command help when option is -h, —help

16.188 3.4.0

Pyarmor v3.4 introduces a group new commands. For a simple package, use command obfuscate to obfuscate scripts
directly. For complicated package, use Project to manage obfuscated scripts.

Project includes 2 files, one configure file and one project capsule. Use manifest template string, same as MANI-
FEST.in of Python Distutils, to specify the files to be obfuscated.

To create a project, use command init, use command info to show project information. config to update project
settings, and build to obfuscate the scripts in the project.

Other commands, benchmark to metric performance, hdinfo to show hardware information, so that command licenses
can generate license bind to fixed machine.

All the old commands capsule, encrypt, license are deprecated, and will be removed from v4.

A new document src/user-guide.md is written for this new version.

16.189 3.3.1

* Remove unused files in distribute package

16.190 3.3.0

In this version, new obfuscate mode 7 and 8 are introduced. The main difference is that obfuscated script now is a
normal python file (.py) other than compiled script (.pyc), so it can be used as common way.

Refer to https://github.com/dashingsoft/pyarmor/blob/v3.3.0/src/mechanism.md
* Introduce new mode: 7, 8
* Change default mode from 3 to 8

* Change benchmark.py to test new mode

160 Chapter 16. Change Logs

https://github.com/dashingsoft/pyarmor/blob/v3.3.0/src/mechanism.md

PyArmor Documentation, Release 6.6.2

» Update webapp and tutorial
e Update usage
* Fix issue of py2exe, now py2exe can work with python scripts obfuscated by pyarmor

* Fix issue of odoo, now odoo can load python modules obfuscated by pyarmor

16.191 3.2.1

* Fix issue: the traceback of an exception contains the name “<pytransform>" instead of the correct module name

¢ Fix issue: All the constant, co_names include function name, variable name etc still are in clear text. Refer to
https://github.com/dashingsoft/pyarmor/issues/5

16.192 3.2.0

From this version, a new obfuscation mode is introduced. By this way, no import hooker, no setprofile, no settrace
required. The performance of running or importing obfuscation python scripts has been remarkably improved. It’s
significant for Pyarmor.

» Use this new mode as default way to obfuscate python scripts.
* Add new script “benchmark.py” to check performance in target machine: python benchmark.py

» Change option “~bind-disk” in command “license”, now it must be have a value

16.193 3.1.7

* Add option “~bind-mac”, “~bind-ip”, “~bind-domain” for command “license”’
¢ Command “hdinfo” show more information(serial number of hdd, mac address, ip address, domain name)

¢ Fix the issue of dev name of hdd for Banana Pi

16.194 3.1.6

¢ Fix serial number of harddisk doesn’t work in mac osx.

16.195 3.1.5

* Support MACOS

16.196 3.1.4

* Fix issue: load _pytransfrom failed in linux x86_64 by subprocess.Popen

* Fix typo in error messge when load _pytransfrom failed.

16.191. 3.2.1 161

https://github.com/dashingsoft/pyarmor/issues/5

PyArmor Documentation, Release 6.6.2

16.197 3.1.3

A web gui interface is introduced as Pyarmor WebApp and support MANIFEST.in
¢ In encrypt command, save encrypted scripts with same file structure of source.
* Add a web gui interface for pyarmor.
* Support MANIFEST.in to list files for command encrypt
* Add option —manifest, file list will be written here
e DO NOT support absolute path in file list for command encrypt
* Option —main support format “NAME:ALIAS.py”

16.198 3.1.2

* Refine decrypted mechanism to improve performance
* Fix unknown opcode problem in recursion call
* Fix wrapper scripts generated by -m in command ‘encrypt’ doesn’t work

* Raise ImportError other than PytransformError when import encrypted module failed

16.199 3.1.1

In this version, introduce 2 extra encrypt modes to improve performance of encrypted scripts.
* Fix issue when import encrypted package
¢ Add encrypted mode 2 and 3 to improve performance

 Refine module pyimcore to improve performance

16.200 3.0.1

It’s a milestone for Pyarmor, from this version, use ctypes import dynamic library of core functions, other than by
python extensions which need to be built with every python version.
Besides, in this version, a big change which make Pyarmor could avoid soure script got by ¢ debugger.

 Use ctypes load core library other than python extentions which need built for each python version.

e “__main__" block not running in encrypted script.

* Avoid source code got by ¢ debugger.

¢ Change default outoupt path to “build” in command “encrypt”
* Change option “-~bind” to “~bind-disk” in command “license”’

* Document usages in details

162 Chapter 16. Change Logs

PyArmor Documentation, Release 6.6.2

16.201 2.6.1

* Fix encrypted scripts don’t work in multi-thread framework (Django).

16.202 2.5.5

* Add option ‘-1’ for command ‘encrypt’ so that the encrypted scripts will be saved in the original path.

16.203 2.5.4

* Verbose tracelog when checking license in trace mode.
* In license command, change default output filename to “license.lic.txt”.

* Read bind file when generate license in binary mode other than text mode.

16.204 2.5.3

* Fix problem when script has line “from __future__ import with_statement”
* Fix error when running pyarmor by 32bit python on the 64bits Windows.

 (Experimental)Support darwin_15-x86_64 platform by adding extensions/pytransform-
2.3.3.darwin_15.x86_64-py2.7.s0

16.205 2.5.2

* License file can mix expire-date with fix file or fix key.

* Fix log error: not enough arguments for format string

16.206 2.5.1

¢ License file can bind to ssh private key file or any other fixed file.

16.207 2.4.1

* Change default extension “.pyx” to “.pye”, because it confilcted with CPython.
* Custom the extension of encrypted scripts by os environment variable: PYARMOR_EXTRA_CHAR

* Block the hole by which to get bytescode of functions.

16.201. 2.6.1 163

PyArmor Documentation, Release 6.6.2

16.208 2.3.4

e The trial license will never be expired (But in trial version, the key used to encrypt scripts is fixed).

16.209 2.3.3

¢ Refine the document

16.210 2.3.2

* Fix error data in examples of wizard

16.211 2.3.1

* Implement Run function in the GUI wizard

¢ Make license works in trial version

16.212 2.2.1

¢ Add a GUI wizard

* Add examples to show how to use pyarmor

16.213 2.1.2

* Fix syntax-error when run/import encrypted scripts in linux x86_64

16.214 2.1.1

* Support armv6

16.215 2.0.1

* Add option ‘—path’ for command ‘encrypt’
* Support script list in the file for command ‘encrypt’

* Fix issue to encrypt an empty file result in pytransform crash

164 Chapter 16. Change Logs

PyArmor Documentation, Release 6.6.2

16.216 1.7.7

* Add option ‘—expired-date’ for command ‘license’
¢ Fix undefined ‘tfm_desc’ for arm-linux

» Enhance security level of scripts

16.217 1.7.6

* Print exactaly message when pyarmor couldn’t load extension “pytransform”
* Fix problem “version ‘GLIBC_2.14" not found”

¢ Generate “license.lic” which could be bind to fixed machine.

16.218 1.7.5

* Add missing extensions for linux x86_64.

16.219 1.7.4

* Add command “licene” to generate more “license.lic” by project capsule.

16.220 1.7.3

* Add information for using registration code

16.221 1.7.2

* Add option —with-extension to support cross-platform publish.
* Implement command “capsule” and add option —with-capsule so that we can encrypt scripts with same capsule.

* Remove command “convert” and option “-K/-key”

16.222 1.7.1

 Encrypt pyshield.lic when distributing source code.

16.216. 1.7.7 165

PyArmor Documentation, Release 6.6.2

16.223 1.7.0

* Enhance encrypt algorithm to protect source code.

* Developer can use custom key/iv to encrypt source code

» Compiled scripts (.pyc, .pyo) could be encrypted by pyshield

» Extension modules (.dll, .so, .pyd) could be encrypted by pyshield

166 Chapter 16. Change Logs

cHAPTER 17

Indices and tables

* genindex
* modindex

e search

167

PyArmor Documentation, Release 6.6.2

168 Chapter 17. Indices and tables

Index

A

assert_armored () (built-in function), 85

C

check_armored () (built-in function), 85

G

get_expired_days () (built-in function), 83
get_hd_info () (built-in function), 84
get_license_code () (built-in function), 84
get_license_info () (built-in function), 83
get_user_data () (built-in function), 84

P

PytransformError, 83

169

	Installation and Uninstallation
	Verifying the installation
	Installed commands
	Clean uninstallation

	Using PyArmor
	Obfuscating Python Scripts
	Distributing Obfuscated Scripts
	Generating License For Obfuscated Scripts
	Extending License Type
	Obfuscating Single Module
	Obfuscating Whole Package
	Packing Obfuscated Scripts
	Improving Security Further

	Advanced Topics
	Using Super Mode
	How to use outer license file
	Obfuscating Many Packages
	Solve Conflicts With Other Obfuscated Libraries
	Distributing Obfuscated Packages
	Distributing Obfuscated Scripts To Other Platform
	Obfuscating Scripts By Other Python Version
	Run bootstrap code in plain scripts
	Let Python Interpreter Recognize Obfuscated Scripts Automatically
	Obfuscating Python Scripts In Different Modes
	Using Plugin to Extend License Type
	Bundle Obfuscated Scripts To One Executable File
	Bundle obfuscated scripts with customized spec file
	Improving The Security By Restrict Mode
	Using Plugin To Improve Security
	Call pyarmor From Python Script
	Check license periodly when the obfuscated script is running
	Work with Nuitka
	Work with Cython
	Work with PyUpdater
	Binding obfuscated scripts to Python interpreter
	Customizing cross protection code
	Storing runtime file license.lic to any location
	Register multiple pyarmor in same machine
	How to get license information of one obfuscated package
	How to protect data files
	How to remove docstrings
	Using restrict mode with threading and multiprocessing
	Repack PyInstaller bundle with obfuscated scripts
	Build obfuscated scripts to extensions
	Distributing Obfuscated Package With pip

	Examples
	Obfuscating and Packing PyQt Application
	Running obfuscated Django site with Apache and mod_wsgi

	Using Project
	Managing Obfuscated Scripts With Project
	Obfuscating Scripts With Different Modes
	Obfuscating Some Special Scripts With Child Project
	Project Configuration File

	Man Page
	Common Options
	obfuscate
	licenses
	pack
	hdinfo
	init
	config
	build
	info
	check
	banchmark
	register
	download
	runtime

	Understanding Obfuscated Scripts
	Global Capsule
	Obfuscated Scripts
	Bootstrap Code
	Runtime Package
	The License File for Obfuscated Script
	Key Points to Use Obfuscated Scripts
	The Differences of Obfuscated Scripts
	About Third-Party Interpreter

	How PyArmor Does It
	How to Obfuscate Python Scripts
	How to Deal With Plugins
	Special Handling of Entry Script
	How to Run Obfuscated Script
	How To Pack Obfuscated Scripts

	Runtime Module pytransform
	Contents
	Examples

	Support Platfroms
	Features
	Standard Platform Names
	Downloading Dynamic Library By Manual

	The Modes of Obfuscated Scripts
	Super Mode
	Advanced Mode
	VM Mode
	Obfuscating Code Mode
	Wrap Mode
	Obfuscating module Mode
	Restrict Mode

	The Performance of Obfuscated Scripts
	The performance in different modes
	Run cProfile with obfuscated scritps
	Performance of Big Script

	The Security of PyArmor
	Cross Protection for _pytransform
	The security of different feature number
	Changing core algorithm from time to time

	When Things Go Wrong
	Necessary Knowledges
	Common Solutions
	Segment fault
	Bootstrap Problem
	Obfuscating Scripts Problem
	Running Obfuscated Scripts Problem
	Packing Obfuscated Scripts Problem
	PyArmor Registration Problem
	Known Issues
	Misc. Questions

	License
	Purchase
	Upgrade Notes
	Technical Support
	Q & A

	Change Logs
	Incompatible issues
	dev version
	6.6.2
	6.6.1
	6.6.0
	6.5.6
	6.5.5
	6.5.3
	6.5.2
	6.5.1
	6.5.0
	6.4.4
	6.4.3
	6.4.2
	6.4.1
	6.4.0
	6.3.7
	6.3.6
	6.3.5
	6.3.4
	6.3.3
	6.3.2
	6.3.1
	6.3.0
	6.2.9
	6.2.8
	6.2.7
	6.2.6
	6.2.5
	6.2.4
	6.2.3
	6.2.2
	6.2.1
	6.2.0
	6.1.0
	6.0.2
	6.0.1
	5.9.8
	5.9.7
	5.9.6
	5.9.5
	5.9.4
	5.9.3
	5.9.2
	5.9.1
	5.9.0
	5.8.9
	5.8.8
	5.8.7
	5.8.6
	5.8.5
	5.8.4
	5.8.3
	5.8.2
	5.8.1
	5.8.0
	5.7.10
	5.7.9
	5.7.8
	5.7.7
	5.7.6
	5.7.5
	5.7.4
	5.7.3
	5.7.2
	5.7.1
	5.7.0
	5.6.8
	5.6.7
	5.6.6
	5.6.5
	5.6.4
	5.6.3
	5.6.2
	5.6.1
	5.6.0
	5.5.7
	5.5.6
	5.5.5
	5.5.4
	5.5.3
	5.5.2
	5.5.1
	5.5.0
	5.4.6
	5.4.5
	5.4.4
	5.4.3
	5.4.2
	5.4.1
	5.4.0
	5.3.13
	5.3.12
	5.3.11
	5.3.10
	5.3.9
	5.3.8
	5.3.7
	5.3.6
	5.3.5
	5.3.4
	5.3.3
	5.3.2
	5.3.1
	5.3.0
	5.2.9
	5.2.8
	5.2.7
	5.2.6
	5.2.5
	5.2.4
	5.2.3
	5.2.2
	5.2.1
	5.2.0
	5.1.2
	5.1.1
	5.1.0
	5.0.5
	5.0.4
	5.0.3
	5.0.2
	5.0.1
	4.6.3
	4.6.2
	4.6.1
	4.6.0
	4.5.5
	4.5.4
	4.5.3
	4.5.2
	4.5.1
	4.5.0
	4.4.2
	4.4.2
	4.4.1
	4.4.0
	4.3.4
	4.3.3
	4.3.2
	4.3.1
	4.3.0
	4.2.3
	4.2.2
	4.2.1
	4.1.4
	4.1.3
	4.1.2
	4.1.1
	4.0.3
	4.0.2
	4.0.1
	3.9.9
	3.9.8
	3.9.7
	3.9.6
	3.9.5
	3.9.4
	3.9.3
	3.9.2
	3.9.1
	3.9.0
	3.8.10
	3.8.9
	3.8.8
	3.8.7
	3.8.6
	3.8.5
	3.8.4
	3.8.3
	3.8.2
	3.8.1
	3.8.0
	3.7.5
	3.7.4
	3.7.3
	3.7.2
	3.7.1
	3.7.0
	3.6.2
	3.6.1
	3.6.0
	3.5.1
	3.5.0
	3.4.3
	3.4.2
	3.4.1
	3.4.0
	3.3.1
	3.3.0
	3.2.1
	3.2.0
	3.1.7
	3.1.6
	3.1.5
	3.1.4
	3.1.3
	3.1.2
	3.1.1
	3.0.1
	2.6.1
	2.5.5
	2.5.4
	2.5.3
	2.5.2
	2.5.1
	2.4.1
	2.3.4
	2.3.3
	2.3.2
	2.3.1
	2.2.1
	2.1.2
	2.1.1
	2.0.1
	1.7.7
	1.7.6
	1.7.5
	1.7.4
	1.7.3
	1.7.2
	1.7.1
	1.7.0

	Indices and tables
	Index

