

PyArmor’s Documentation

	Version

	PyArmor 6.2

	Homepage

	http://pyarmor.dashingsoft.com/index-zh.html

	Contact

	jondy.zhao@gmail.com

	Authors

	Jondy Zhao

	Copyright

	This document has been placed in the public domain.

PyArmor is a command line tool used to obfuscate python scripts,
bind obfuscated scripts to fixed machine or expire obfuscated
scripts. It protects Python scripts by the following ways:

	Obfuscate code object to protect constants and literal strings.

	Obfuscate co_code of each function (code object) in runtime.

	Clear f_locals of frame as soon as code object completed execution.

	Verify the license file of obfuscated scripts while running it.

PyArmor supports Python 2.6, 2.7 and Python 3.

PyArmor is tested against Windows, Mac OS X, and Linux.

PyArmor has been used successfully with FreeBSD and embedded
platform such as Raspberry Pi, Banana Pi, Orange Pi, TS-4600 / TS-7600 etc.
but is not fullly tested against them.

Contents:

	Installation
	Verifying the installation

	Installed commands

	Clean uninstallation

	Using PyArmor
	Obfuscating Python Scripts

	Distributing Obfuscated Scripts

	Generating License For Obfuscated Scripts

	Extending License Type

	Obfuscating Single Module

	Obfuscating Whole Package

	Packing Obfuscated Scripts

	Improving Security Further

	Advanced Topics
	Using Super Mode

	Obfuscating Many Packages

	Solve Conflicts With Other Obfuscated Libraries

	Distributing Obfuscated Scripts To Other Platform

	Obfuscating Scripts By Other Python Version

	Run bootstrap code in plain scripts

	Let Python Interpreter Recognize Obfuscated Scripts Automatically

	Obfuscating Python Scripts In Different Modes

	Using Plugin to Extend License Type

	Bundle Obfuscated Scripts To One Executable File

	Bundle obfuscated scripts with customized spec file

	Improving The Security By Restrict Mode

	Using Plugin To Improve Security

	Call pyarmor From Python Script

	Check license periodly when the obfuscated script is running

	Work with Nuitka

	Work with Cython

	Work with PyUpdater

	Binding obfuscated scripts to Python interpreter

	Customizing cross protection code

	Storing runtime file license.lic to any location

	Register multiple pyarmor in same machine

	Examples
	Obfuscating and Packing PyQt Application

	Running obfuscated Django site with Apache and mod_wsgi

	Using Project
	Managing Obfuscated Scripts With Project

	Obfuscating Scripts With Different Modes

	Obfuscating Some Special Scripts With Child Project

	Project Configuration File

	Man Page
	obfuscate

	licenses

	pack

	hdinfo

	init

	config

	build

	info

	check

	banchmark

	register

	download

	runtime

	Understanding Obfuscated Scripts
	Global Capsule

	Obfuscated Scripts

	Bootstrap Code

	Runtime Package

	The License File for Obfuscated Script

	Key Points to Use Obfuscated Scripts

	The Differences of Obfuscated Scripts

	About Third-Party Interpreter

	How PyArmor Does It
	How to Obfuscate Python Scripts

	How to Deal With Plugins

	Special Handling of Entry Script

	How to Run Obfuscated Script

	How To Pack Obfuscated Scripts

	Runtime Module pytransform
	Contents

	Examples

	Support Platfroms
	Standard Platform Names

	Platform Tables

	The Modes of Obfuscated Scripts
	Super Mode

	Advanced Mode

	Obfuscating Code Mode

	Wrap Mode

	Obfuscating module Mode

	Restrict Mode

	The Performance of Obfuscated Scripts

	The Security of PyArmor
	Cross Protection for _pytransform

	When Things Go Wrong
	Segment fault

	Bootstrap Problem

	Obfuscating Scripts Problem

	Running Obfuscated Scripts Problem

	Packing Obfuscated Scripts Problem

	PyArmor Registration Problem

	Known Issues

	Misc. Questions

	License
	Purchase

	Q & A

	Change Logs
	6.2.1

	6.2.0

	6.1.0

	6.0.2

	6.0.1

	5.9.8

	5.9.7

	5.9.6

	5.9.5

	5.9.4

	5.9.3

	5.9.2

	5.9.1

	5.9.0

	5.8.9

	5.8.8

	5.8.7

	5.8.6

	5.8.5

	5.8.4

	5.8.3

	5.8.2

	5.8.1

	5.8.0

	5.7.10

	5.7.9

	5.7.8

	5.7.7

	5.7.6

	5.7.5

	5.7.4

	5.7.3

	5.7.2

	5.7.1

	5.7.0

	5.6.8

	5.6.7

	5.6.6

	5.6.5

	5.6.4

	5.6.3

	5.6.2

	5.6.1

	5.6.0

	5.5.7

	5.5.6

	5.5.5

	5.5.4

	5.5.3

	5.5.2

	5.5.1

	5.5.0

	5.4.6

	5.4.5

	5.4.4

	5.4.3

	5.4.2

	5.4.1

	5.4.0

	5.3.13

	5.3.12

	5.3.11

	5.3.10

	5.3.9

	5.3.8

	5.3.7

	5.3.6

	5.3.5

	5.3.4

	5.3.3

	5.3.2

	5.3.1

	5.3.0

	5.2.9

	5.2.8

	5.2.7

	5.2.6

	5.2.5

	5.2.4

	5.2.3

	5.2.2

	5.2.1

	5.2.0

	5.1.2

	5.1.1

	5.1.0

	5.0.5

	5.0.4

	5.0.3

	5.0.2

	5.0.1

	4.6.3

	4.6.2

	4.6.1

	4.6.0

	4.5.5

	4.5.4

	4.5.3

	4.5.2

	4.5.1

	4.5.0

	4.4.2

	4.4.2

	4.4.1

	4.4.0

	4.3.4

	4.3.3

	4.3.2

	4.3.1

	4.3.0

	4.2.3

	4.2.2

	4.2.1

	4.1.4

	4.1.3

	4.1.2

	4.1.1

	4.0.3

	4.0.2

	4.0.1

	3.9.9

	3.9.8

	3.9.7

	3.9.6

	3.9.5

	3.9.4

	3.9.3

	3.9.2

	3.9.1

	3.9.0

	3.8.10

	3.8.9

	3.8.8

	3.8.7

	3.8.6

	3.8.5

	3.8.4

	3.8.3

	3.8.2

	3.8.1

	3.8.0

	3.7.5

	3.7.4

	3.7.3

	3.7.2

	3.7.1

	3.7.0

	3.6.2

	3.6.1

	3.6.0

	3.5.1

	3.5.0

	3.4.3

	3.4.2

	3.4.1

	3.4.0

	3.3.1

	3.3.0

	3.2.1

	3.2.0

	3.1.7

	3.1.6

	3.1.5

	3.1.4

	3.1.3

	3.1.2

	3.1.1

	3.0.1

	2.6.1

	2.5.5

	2.5.4

	2.5.3

	2.5.2

	2.5.1

	2.4.1

	2.3.4

	2.3.3

	2.3.2

	2.3.1

	2.2.1

	2.1.2

	2.1.1

	2.0.1

	1.7.7

	1.7.6

	1.7.5

	1.7.4

	1.7.3

	1.7.2

	1.7.1

	1.7.0

Indices and tables

	Index

	Module Index

	Search Page

Installation

PyArmor is a normal Python package. You can download the archive from PyPi [https://pypi.python.org/pypi/pyarmor/],
but it is easier to install using pip [http://www.pip-installer.org/] where is available, for example:

pip install pyarmor

or upgrade to a newer version:

pip install --upgrade pyarmor

There is also web ui for pyarmor, install it by this command:

pip install pyarmor-webui

Verifying the installation

On all platforms, the command pyarmor should now exist on the
execution path. To verify this, enter the command:

pyarmor --version

The result should show PyArmor Version X.Y.Z or PyArmor Trial Version X.Y.Z.

If the command is not found, make sure the execution path includes the
proper directory.

Installed commands

The complete installation places these commands on the execution path:

	pyarmor is the main command. See Using PyArmor.

	pyarmor-webui is used to open web ui of PyArmor.

If you do not perform a complete installation (installing via
pip), these commands will not be installed as commands. However,
you can still execute all the functions documented below by running
Python scripts found in the distribution folder. The equivalent of
the pyarmor command is pyarmor-folder/pyarmor.py.

pyarmor-webui is pyarmor-folder/webui/server.py.

Clean uninstallation

The following files are created by pyarmor after it has been installed:

~/.pyarmor/.pyarmor_capsule.zip (since v6.2.0)
~/.pyarmor/license.lic (since v5.8.0)
~/.pyarmor/platforms/

{pyarmor-folder}/license.lic (before v5.8.0)
~/.pyarmor_capsule.zip (before v6.2.0)

Run the following commands to make a clean uninstallation:

pip uninstall pyarmor

rm -rf ~/.pyarmor
rm -rf {pyarmor-folder} (before v5.8.0)
rm -rf ~/.pyarmor_capsule.zip (before v6.2.0)

Using PyArmor

The syntax of the pyarmor command is:

pyarmor [command] [options]

Obfuscating Python Scripts

Use command obfuscate to obfuscate python scripts. In the most simple
case, set the current directory to the location of your program myscript.py
and execute:

pyarmor obfuscate myscript.py

PyArmor obfuscates myscript.py and all the *.py in the same folder:

	Create .pyarmor_capsule.zip in the HOME folder if it doesn’t exists.

	Creates a folder dist in the same folder as the script if it does not exist.

	Writes the obfuscated myscript.py in the dist folder.

	Writes all the obfuscated *.py in the same folder as the script in the dist folder.

	Copy runtime files used to run obfuscated scripts to the dist folder.

In the dist folder the obfuscated scripts and all the required files are
generated:

dist/
 myscript.py

 pytransform/
 __init__.py
 _pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
 pytransform.key
 license.lic

The extra folder pytransform called Runtime Package, it’s required to
run the obfuscated script.

Normally you name one script on the command line. It’s entry script. The content
of myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'\x06\x0f...')

The first 2 lines called Bootstrap Code, are only in the entry
script. They must be run before using any obfuscated file. For all the other
obfuscated *.py, there is only last line:

__pyarmor__(__name__, __file__, b'\x0a\x02...')

Run the obfuscated script:

cd dist
python myscript.py

By default, only the *.py in the same path as the entry script are
obfuscated. To obfuscate all the *.py in the sub-folder recursively,
execute this command:

pyarmor obfuscate --recursive myscript.py

Distributing Obfuscated Scripts

Just copy all the files in the output path dist to end users. Note that except
the obfuscated scripts, the Runtime Package need to be distributed to end
users too.

The Runtime Package may not with the obfuscated scripts, it could be
moved to any Python path, only if import pytransform works.

About the security of obfuscated scripts, refer to The Security of PyArmor

Note

PyArmor need NOT be installed in the runtime machine

Generating License For Obfuscated Scripts

Use command licenses to generate new license.lic for obfuscated
scripts.

By default there is dist/pytransform/license.lic generated by command
obfuscate. It allows obfuscated scripts run in any machine and never
expired.

Generate an expired license for obfuscated script:

pyarmor licenses --expired 2019-01-01 product-001

PyArmor generates new license file:

	Read data from .pyarmor_capsule.zip in the HOME folder

	Create license.lic in the licenses/product-001 folder

	Create license.lic.txt in the licenses/product-001 folder

Overwrite default license with new one:

cp licenses/code-001/license.lic dist/pytransform/

Run obfuscated script with new license, It will report error after Jan. 1,
2019:

cd dist
python myscript.py

Generate license to bind obfuscated scripts to fixed machine, first get hardware
information:

pyarmor hdinfo

Then generate new license bind to harddisk serial number and mac address:

pyarmor licenses --bind-disk "100304PBN2081SF3NJ5T" --bind-mac "20:c1:d2:2f:a0:96" code-002

Run obfuscated script with new license:

cp licenses/code-002/license.lic dist/pytransform/

cd dist/
python myscript.py

Note

Before v5.7.0, the default license.lic locates in the path dist other than dist/pytransform

Extending License Type

It’s easy to extend any other licese type for obfuscated scripts: just add
authentication code in the entry script. The script can’t be changed any more
after it is obfuscated, so do whatever you want in your script. In this case the
Runtime Module pytransform would be useful.

The prefer way is Using Plugin to Extend License Type. The advantage is
that your scripts needn’t be changed at all. Just write authentication code in a
separated script, and inject it in the obfuscated scripts as obfuscating. For
more information, refer to How to Deal With Plugins

Here are some plugin examples

https://github.com/dashingsoft/pyarmor/tree/master/plugins

Obfuscating Single Module

To obfuscate one module exactly, use option --exact:

pyarmor obfuscate --exact foo.py

Only foo.py is obfuscated, now import this obfuscated module:

cd dist
python -c "import foo"

Obfuscating Whole Package

Run the following command to obfuscate a package:

pyarmor obfuscate --recursive --output dist/mypkg mykpg/__init__.py

To import the obfuscated package:

cd dist
python -c "import mypkg"

Packing Obfuscated Scripts

Use command pack to pack obfuscated scripts into the bundle.

First install PyInstaller:

pip install pyinstaller

Set the current directory to the location of your program
myscript.py and execute:

pyarmor pack myscript.py

PyArmor packs myscript.py:

	Execute pyarmor obfuscate to obfuscate myscript.py

	Execute pyinstaller myscipt.py to create myscript.spec

	Update myscript.spec, replace original scripts with obfuscated ones

	Execute pyinstaller myscript.spec to bundle the obfuscated scripts

In the dist/myscript folder you find the bundled app you
distribute to your users.

Run the final executeable file:

dist/myscript/myscript

Check the scripts have been obfuscated. It should return error:

rm dist/myscript/license.lic
dist/myscript/myscript

Generate an expired license for the bundle:

pyarmor licenses --expired 2019-01-01 code-003
cp licenses/code-003/license.lic dist/myscript

dist/myscript/myscript

For complicated cases, refer to command pack and How To Pack Obfuscated Scripts.

Improving Security Further

These PyArmor [http://pyarmor.dashingsoft.com/index-zh.html] features could import security further:

	Using Super Mode to obufscate scripts if possible, otherwise enable
Advanced Mode if the platform is supported

	Try to Binding obfuscated scripts to Python interpreter. Generally
it’s not required for Super Mode.

	Make sure the entry script is patched by cross protection code [https://pyarmor.readthedocs.io/en/latest/how-to-do.html#special-handling-of-entry-script],
and try to Customizing cross protection code

	Use the corresponding Restrict Mode

	Use the high security code obfuscation –obf-code=2

	Using Plugin To Improve Security by injecting your private checkpoints
in the obfuscated scripts

About the security of obfuscated scripts, refer to The Security of PyArmor

Advanced Topics

Using Super Mode

The Super Mode is introduced since v6.2.0, there is only one extension
module required to run the obfuscated scripts, and the Bootstrap Code
which may confused some users before is gone now, all the obfuscated scripts are
same. It improves the security remarkably, and makes the usage simple. The only
problem is that only the latest Python versions 2.7, 3.7 and 3.8 are supported.

Enable super mode by option --advanced 2, for example:

pyarmor obfuscate --advanced 2 foo.py

When distributing the obfuscated scripts to any other machine, so long as
extension module pytransform in any Python path, the obfuscated scrips
could work well.

In order to restirct the obfuscated scripts, generate a license.lic in
advanced. For example:

pyarmor licenses --bind-mac xx:xx:xx:xx regcode-01

Then specify this license with option --with-license, for example:

pyarmor obufscate --with-license licenses/regcode-01/license.lic \
 --advanced 2 foo.py

By this way the specified license file will be embedded into the extension
module pytransform. If you prefer to use outer license.lic, so it can
be replaced with the others easily, just set option --with-license to
special value outer, for example:

pyarmor obfuscate --with-license outer --advanced 2 foo.py

When the obfuscated scripts start, it will search license.lic in order:

	Check environment variable PYARMOR_LICENSE, if set, use this filename

	If it’s not set, search license.lic in the current path

	If not found, search the path of extension module pytransform

	Raise exception if there is still not found

Obfuscating Many Packages

There are 3 packages: pkg1, pkg2, pkg2. All of them will be
obfuscated, and use shared runtime files.

First change to work path, create 3 projects:

mkdir build
cd build

pyarmor init --src /path/to/pkg1 --entry __init__.py pkg1
pyarmor init --src /path/to/pkg2 --entry __init__.py pkg2
pyarmor init --src /path/to/pkg3 --entry __init__.py pkg3

Then make the Runtime Package, save it in the path dist:

pyarmor build --output dist --only-runtime pkg1

Next obfuscate 3 packages, save them in the dist:

pyarmor build --output dist --no-runtime pkg1
pyarmor build --output dist --no-runtime pkg2
pyarmor build --output dist --no-runtime pkg3

Check all the output and test these obfuscated packages:

ls dist/

cd dist
python -c 'import pkg1
import pkg2
import pkg3'

Note

The runtime package pytransform in the output path dist also could
be move to any other Python path, only if it could be imported.

From v5.7.2, the Runtime Package also could be generate by command
runtime separately:

pyarmor runtime

Solve Conflicts With Other Obfuscated Libraries

Note

New in v5.8.7

Suppose there are 2 packages obfuscated by different developers, could they be
imported in the same Python interpreter?

If both of them are obfuscated by trial version of pyarmor, no problem, the
answer is yes. But if anyone is obfuscated by registerred version, the answer is
no.

Since v5.8.7, the scripts could be obfuscated with option --enable-suffix to
generate the Runtime Package with an unique suffix, other than fixed name
pytransform. For example:

pyarmor obfuscate --enable-suffix foo.py

The output would be like this:

dist/
 foo.py
 pytransform_vax_000001/
 __init__.py
 ...

The suffix _vax_000001 is based on the registration code of PyArmor.

For project, set enable-suffix by command config:

pyarmor config --enable-suffix 0
pyarmor build -B

Or disable it by this way:

pyarmor config --enable-suffix 1
pyarmor build -B

Distributing Obfuscated Scripts To Other Platform

First list all the avaliable platform names by command download:

pyarmor download
pyarmor download --help-platform

Display the detials with option --list:

pyarmor download --list
pyarmor download --list windows
pyarmor download --list windows.x86_64

Then specify platform name when obfuscating the scripts:

pyarmor obfuscate --platform linux.armv7 foo.py

For project
pyarmor build --platform linux.armv7

Obfuscating scripts with different features

There may be many available dynamic libraries for one same platform. Each one
has different features. For example, both of windows.x86_64.0 and
windows.x86_64.7 work in the platform windwos.x86_64. The last number
stands for the features:

	0: No anti-debug, JIT, advanced mode features, high speed

	7: Include anti-debug, JIT, advanced mode features, high security

It’s possible to obfuscate the scripts with special feature. For example:

pyarmor obfuscate --platform linux.x86_64.7 foo.py

Note that the dynamic library with different features aren’t compatible. For
example, try to obfuscate the scripts with --platform linux.arm.0 in
Windows:

pyarmor obfuscate --platform linux.arm.0 foo.py

Because the default platform is full features windows.x86_64.7 in Windows,
so PyArmor have to reboot with platform windows.x86_64.0, then obfuscate the
script for this low feature platform linux.arm.0.

It also could be set the enviornment variable PYARMOR_PLATFORM to same
feature platform as target machine. For example:

PYARMOR_PLATFORM=windows.x86_64.0 pyarmor obfuscate --platform linux.arm.0 foo.py

In Windows
set PYARMOR_PLATFORM=windows.x86_64.0
pyarmor obfuscate --platform linux.arm.0 foo.py
set PYARMOR_PLATFORM=

Running Obfuscated Scripts In Multiple Platforms

From v5.7.5, the platform names are standardized, all the available platform
names list here Standard Platform Names. And the obfuscated scripts could
be run in multiple platforms.

In order to support multiple platforms, all the dynamic libraries for these
platforms need to be copied to Runtime Package. For example, obfuscating
a script could run in Windows/Linux/MacOS:

pyarmor obfuscate --platform windows.x86_64 \
 --platform linux.x86_64 \
 --platform darwin.x86_64 \
 foo.py

The Runtime Package also could be generated by command runtime
once, then obfuscate the scripts without runtime files. For examples:

pyarmor runtime --platform windows.x86_64,linux.x86_64,darwin.x86_64
pyarmor obfuscate --no-runtime --recursive \
 --platform windows.x86_64,linux.x86_64,darwin.x86_64 \
 foo.py

Because the obfuscated scripts will check the dynamic library, the platforms
must be specified even if there is option --no-runtime. But if the option
--no-cross-protection is specified, the obfuscated scripts will not check
the dynamic library, so no platform is required. For example:

pyarmor obfuscate --no-runtime --recursive --no-cross-protection foo.py

Note

If the feature number is specified in one of platform, for example, one is
windows.x86_64.0, then all the other platforms must be same feature.

Note

If the obfuscated scripts don’t work in other platforms, try to update all
the downloaded files:

pyarmor download --update

If it still doesn’t work, try to remove the cahced platform files in the path
$HOME/.pyarmor

Obfuscating Scripts By Other Python Version

If there are multiple Python versions installed in the machine, the
command pyarmor uses default Python. In case the scripts need to be
obfuscated by other Python, run pyarmor by this Python explicitly.

For example, first find pyarmor.py:

find /usr/local/lib -name pyarmor.py

Generally it should be in the
/usr/local/lib/python2.7/dist-packages/pyarmor in most of linux.

Then run pyarmor as the following way:

/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py

It’s convenient to create a shell script /usr/local/bin/pyarmor3, the content is:

/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py "$*"

And

chmod +x /usr/local/bin/pyarmor3

then use pyarmor3 as before.

In the Windows, create a bat file pyarmor3.bat, the content would be like this:

C:\Python36\python C:\Python27\Lib\site-packages\pyarmor\pyarmor.py %*

Run bootstrap code in plain scripts

Before v5.7.0 the Bootstrap Code could be inserted into plain scripts
directly, but now, for the sake of security, the Bootstrap Code must be
in the obfuscated scripts. It need another way to run the Bootstrap Code
in plain scripts.

First create one bootstrap package pytransform_bootstrap by command
runtime:

pyarmor runtime -i

Next move bootstrap package to the path of plain script:

mv dist/pytransform_bootstrap /path/to/script

It also could be copied to python system library, for examples:

mv dist/pytransform_bootstrap /usr/lib/python3.5/ (For Linux)
mv dist/pytransform_bootstrap C:/Python35/Lib/ (For Windows)

Then edit the plain script, insert one line:

import pytransform_bootstrap

Now any other obfuscated modules could be imported after this line.

Note

Before v5.8.1, create this bootstrap package by this way:

echo "" > __init__.py
pyarmor obfuscate -O dist/pytransform_bootstrap --exact __init__.py

Run unittest of obfuscated scripts

In most of obfuscated scripts there are no Bootstrap Code. So the
unittest scripts may not work with the obfuscated scripts.

Suppose the test script is /path/to/tests/test_foo.py, first patch this
test script, refer to run bootstrap code in plain scripts

After that it works with the obfuscated modules:

cd /path/to/tests
python test_foo.py

The other way is patch system package unittest directly. Make sure the
bootstrap package pytransform_bootstrap is copied in the Python system
library, refer to run bootstrap code in plain scripts

Then edit /path/to/unittest/__init__.py, insert one line:

import pytransform_bootstrap

Now all the unittest scripts could work with the obfuscated scripts. It’s useful
if there are many unittest scripts.

Let Python Interpreter Recognize Obfuscated Scripts Automatically

In a few cases, if Python Interpreter could recognize obfuscated
scripts automatically, it will make everything simple:

	Almost all the obfuscated scripts will be run as main script

	In the obfuscated scripts call multiprocessing to create new process

	Or call Popen, os.exec etc. to run any other obfuscated scripts

	…

Here are the base steps:

	First create one bootstrap package pytransform_bootstrap:

pyarmor runtime -i

Before v5.8.1, it need be created by obfuscating an empty package:

echo "" > __init__.py
pyarmor obfuscate -O dist/pytransform_bootstrap --exact __init__.py

	Then create virtual python environment to run the obfuscated scripts, move
the bootstrap package to virtual python library. For example:

For windows
mv dist/pytransform_bootstrap venv/Lib/

For linux
mv dist/pytransform_bootstrap venv/lib/python3.5/

	Edit venv/lib/site.py or venv/lib/pythonX.Y/site.py, import
pytransform_bootstrap before the main line:

import pytransform_bootstrap

if __name__ == '__main__':
 ...

It also could be inserted into the end of function main, or anywhere they
could be executed as module site is imported.

After that in the virtual environment python could run the obfuscated
scripts directly, because the module site is automatically imported
during Python initialization.

Refer to https://docs.python.org/3/library/site.html

Note

The command pyarmor doesn’t work in this virtual environment, it’s only
used to run the obfuscated scripts.

Note

Before v5.7.0, you need create the bootstrap package by the Runtime Files manually.

Obfuscating Python Scripts In Different Modes

Advanced Mode is introduced from PyArmor 5.5.0, it’s disabled by
default. Specify option --advanced to enable it:

pyarmor obfuscate --advanced 1 foo.py

For project
cd /path/to/project
pyarmor config --advanced 1
pyarmor build -B

From PyArmor 5.2, the default Restrict Mode is 1. It could be changed by
the option --restrict:

pyarmor obfuscate --restrict=2 foo.py
pyarmor obfuscate --restrict=3 foo.py

For project
cd /path/to/project
pyarmor config --restrict 4
pyarmor build -B

All the restricts could be disabled by this way if required:

pyarmor obfuscate --restrict=0 foo.py

For project
pyarmor config --restrict=0
pyarmor build -B

The modes of Obfuscating Code Mode, Wrap Mode, Obfuscating module Mode could not be changed in command obfucate. They only could be
changed by command config when Using Project. For example:

pyarmor init --src=src --entry=main.py .
pyarmor config --obf-mod=1 --obf-code=1 --wrap-mode=0
pyarmor build -B

Using Plugin to Extend License Type

PyArmor could extend license type for obfuscated scripts by plugin. For example,
check internet time other than local time.

First create plugin script check_ntp_time.py [https://github.com/dashingsoft/pyarmor/blob/master/plugins/check_ntp_time.py]. The
key function in this script is check_ntp_time, the other important function is
_get_license_data which used to get extra data from the license.lic of
obfuscated scripts.

Then insert 2 comments in the entry script foo.py [https://github.com/dashingsoft/pyarmor/blob/master/plugins/foo.py]:

{PyArmor Plugins}
PyArmor Plugin: check_ntp_time()

Now obfuscate entry script:

pyarmor obfuscate --plugin check_ntp_time foo.py

If the plugin file isn’t in the current path, use absolute path instead:

pyarmor obfuscate --plugin /usr/share/pyarmor/check_ntp_time foo.py

Finally generate one license file for this obfuscated script, pass extra license
data by option -x, this data could be got by function _get_license_data in
the plugin script:

pyarmor licenses -x 20190501 rcode-001
cp licenses/rcode-001/license.lic dist/

More examples, refer to https://github.com/dashingsoft/pyarmor/tree/master/plugins

About how plugins work, refer to How to Deal With Plugins

Important

The output function name in the plugin must be same as plugin name, otherwise
the plugin will not take effects.

Bundle Obfuscated Scripts To One Executable File

Run the following command to pack the script foo.py to one
executable file dist/foo.exe. Here foo.py isn’t obfuscated, it
will be obfuscated before packing:

pyarmor pack -e " --onefile" foo.py
dist/foo.exe

If you don’t want to bundle the license.lic of the obfuscated
scripts into the executable file, but put it outside of the executable
file. For example:

dist/
 foo.exe
 license.lic

So that we could generate different licenses for different users
later easily. Here are basic steps:

	First create runtime-hook script copy_licese.py:

import sys
from os.path import join, dirname
with open(join(dirname(sys.executable), 'license.lic'), 'rb') as fs:
 with open(join(sys._MEIPASS, 'license.lic'), 'wb') as fd:
 fd.write(fs.read())

	Then pack the scirpt with extra options:

pyarmor pack --clean --without-license -x " --exclude copy_license.py" \
 -e " --onefile --icon logo.ico --runtime-hook copy_license.py" foo.py

Option --without-license tells pack not to bundle the license.lic
of obfuscated scripts to the final executable file. By option
--runtime-hook of PyInstaller [https://www.pyinstaller.org/], the specified script
copy_licesen.py will be executed before any obfuscated scripts are
imported. It will copy outer license.lic to right path.

Try to run dist/foo.exe, it should report license error.

	Finally run licenses to generate new license for the obfuscated
scripts, and copy new license.lic and dist/foo.exe to end
users:

pyarmor licenses -e 2020-01-01 code-001
cp license/code-001/license.lic dist/

dist/foo.exe

Bundle obfuscated scripts with customized spec file

If there is a customized .spec file works, for example:

pyinstaller myscript.spec

It could be used to pack obfuscated scripts directly:

pyarmor pack -s myscript.spec myscript.py

If it raises this error:

Unsupport .spec file, no XXX found

Check .spec file, make sure there are 2 lines in top level (no identation):

a = Analysis(...

pyz = PYZ(...

And there are 3 key parameters when creating an Analysis object, for example:

a = Analysis(
 ...
 pathex=...,
 hiddenimports=...,
 hookspath=...,
 ...
)

PyArmor will append required options to these lines automatically. But before
v5.9.6, it need to be patched by manual:

	Add module pytransform to hiddenimports

	Add extra path DISTPATH/obf/temp to pathex and hookspath

After changed, it may be like this:

a = Analysis(['myscript.py'],
 pathex=[os.path.join(DISTPATH, 'obf', 'temp'), ...],
 binaries=[],
 datas=[],
 hiddenimports=['pytransform', ...],
 hookspath=[os.path.join(DISTPATH, 'obf', 'temp'), ...],
 ...

Note

This featuer is introduced since v5.8.0

Before v5.8.2, the extra path is DISTPATH/obf, not DISTPATH/obf/temp

Improving The Security By Restrict Mode

By default the scripts are obfuscated by restrict mode 1, that is, the
obfuscated scripts can’t be changed. In order to improve the security,
obfuscating the scripts by restrict mode 2 so that the obfuscated scripts can’t
be imported out of the obfuscated scripts. For example:

pyarmor obfuscate --restrict 2 foo.py

Or obfuscating the scripts by restrict mode 3 for more security. It will even
check each function call to be sure all the functions are called in the
obfuscated scripts. For example:

pyarmor obfuscate --restrict 3 foo.py

However restrict mode 2 and 3 aren’t applied to Python package. There is another
solution for Python package to improve the security:

	The .py files which are used by outer scripts are obfuscated by restrice mode 1

	All the other .py files which are used only in the package are obfuscated by restrict mode 4

For example:

cd /path/to/mypkg
pyarmor obfuscate --exact __init__.py exported_func.py
pyarmor obfuscate --restrict 4 --recursive \
 --exclude __init__.py --exclude exported_func.py .

More information about restrict mode, refer to Restrict Mode

Using Plugin To Improve Security

By plugin any private checkpoint could be injected into the obfuscated scripts,
and it doesn’t impact the original scripts. Most of them must be run in the
obfuscated scripts, if they’re not commented as plugin, it will break the plain
scripts.

No one knows your check logic, and you can change it in anytime. So it’s more
security.

Using Inline Plugin To Check Dynamic Library

Althouth PyArmor provides cross protection, it also could check the dynamic
library in the startup to make sure it’s not changed by others. This example
uses inline plugin to check the modified time protecting the dynamic library by
inserting the following comment to main.py

PyArmor Plugin: import os
PyArmor Plugin: libname = os.path.join(os.path.dirname(__file__), '_pytransform.so')
PyArmor Plugin: if not os.stat(libname).st_mtime_ns == 102839284238:
PyArmor Plugin: raise RuntimeError('Invalid Library')

Then obfuscate the script and enable inline plugin by this way:

pyarmor obfuscate --plugin on main.py

Once the obfuscated script starts, the following plugin code will be run at
first

import os
libname = os.path.join(os.path.dirname(__file__), '_pytransform.so')
if not os.stat(libname).st_mtime_ns == 102839284238:
 raise RuntimeError('Invalid Library')

Checking Imported Function Is Obfuscated

Sometimes it need to make sure the imported functions from other module are
obfuscated. For example, there are 2 scripts main.py and foo.py

#
This is main.py
#

import foo

def start_server():
 foo.connect('root', 'root password')
 foo.connect2('user', 'user password')

#
This is foo.py
#

def connect(username, password):
 mysql.dbconnect(username, password)

def connect2(username, password):
 db2.dbconnect(username, password)

In the main.py, it need to be sure foo.connect is obfuscated. Otherwise the
end users may replace the obfuscated foo.py with this plain script, and run
the obfuscated main.py

def connect(username, password):
 print('password is %s', password)

The password is stolen, in order to avoid this, use decorator function
to make sure the function connect is obfuscated by plugin.

From v6.0.2, the Runtime Package pytransform provides internal
decorator assert_armored, it can be used to check all the list functions are
pyarmored in the script. Now let’s edit main.py, insert inline plugin code

import foo

PyArmor Plugin: from pytransform import assert_armored

PyArmor Plugin: @assert_armored(foo.connect, foo.connect2)
def start_server():
 foo.connect('root', 'root password')

Then obfuscate it with plugin on:

pyarmor obfuscate --plugin on main.py

The obfuscated script would be like this

import foo

from pytransform import assert_armored

@assert_armored(foo.connect, foo.connect2)
def start_server():
 foo.connect('root', 'root password')

Before call start_server, the decorator function assert_armored will
check both connect functions are pyarmored, otherwise it will raise
exception.

In order to improve security further, we implement the decorator function in the
script, instead of importing it. First create script assert_armored.py in the
current path

from pytransform import _pytransform, PYFUNCTYPE, py_object

def assert_armored(*names):
 prototype = PYFUNCTYPE(py_object, py_object)
 dlfunc = prototype(('assert_armored', _pytransform))

 def wrapper(func):
 def _execute(*args, **kwargs):

 # Call check point provide by PyArmor
 dlfunc(names)

 # Add your private check code
 for s in names:
 if s.__name__ == 'connect':
 if s.__code__.co_code[10:12] != b'\x90\xA2':
 raise RuntimeError('Access violate')

 return func(*args, **kwargs)
 return _execute
 return wrapper

Next edit main.py , insert plugin markers

import foo

{PyArmor Plugins}

PyArmor Plugin: @assert_armored(foo.connect, foo.connect2)
def start_server():
 foo.connect('root', 'root password')

Then obfuscate it with this command:

pyarmor obfuscate --plugin assert_armored main.py

Note

Since v6.2.0, if obfuscating scripts by Super Mode, it’s enough to
import assert_armored from pytransform, do not create outer script,
it doesn’t work.

Call pyarmor From Python Script

It’s also possible to call PyArmor methods inside Python script not by os.exec
or subprocess.Popen etc. For example

from pyarmor.pyarmor import main as call_pyarmor
call_pyarmor(['obfuscate', '--recursive', '--output', 'dist', 'foo.py'])

In order to suppress all normal output of pyarmor, call it with --silent

from pyarmor.pyarmor import main as call_pyarmor
call_pyarmor(['--silent', 'obfuscate', '--recursive', '--output', 'dist', 'foo.py'])

From v5.7.3, when pyarmor called by this way and something is wrong, it will
raise exception other than call sys.exit.

Check license periodly when the obfuscated script is running

Generally only at the startup of the obfuscated scripts the license is
checked. Since v5.9.3, it also could check the license per hour. Just generate a
new license with --enable-period-mode and overwrite the default one. For
example:

pyarmor obfuscate foo.py
pyarmor licenses --enable-period-mode code-001
cp licenses/code-001/license.lic ./dist

Work with Nuitka

Because the obfuscated scripts could be taken as normal scripts with an extra
runtime package pytransform, they also could be translated to C program by
Nuitka. When obfuscating the scprits, the option --restrict 0 and
--no-cross-protection should be set, otherwise the final C program could not
work. For example, first obfustate the scripts:

pyarmor obfuscate --restrict 0 --no-cross-protection foo.py

Then translate the obfuscated one as normal python scripts by Nuitka:

cd ./dist
python -m nuitka --include-package pytransform foo.py
./foo.bin

There is one problem is that the imported modules (packages) in the obfuscated
scripts could not be seen by Nuitka. To fix this problem, first generate the
corresponding .pyi with original script, then copy it within the obfuscated
one. For example:

Generating "mymodule.pyi"
python -m nuitka --module mymodule.py

pyarmor obfuscate --restrict 0 --no-bootstrap mymodule.py
cp mymodule.pyi dist/

cd dist/
python -m nuitka --module mymodule.py

But it may not take advantage of Nuitka features by this way, because most of
byte codes aren’t translated to c code indeed.

Note

So long as the C program generated by Nuitka is linked against libpython to
execute, pyarmor could work with Nuitka. But in the future, just as said in
the Nuitka official website:

It will do this - where possible - without accessing libpython but in C
with its native data types.

In this case, pyarmor maybe not work with Nuitka.

Work with Cython

Here it’s an example show how to cythonize a python script foo.py obfuscated
by pyarmor with Python37:

print('Hello Cython')

First obfuscate it with some extra options:

pyarmor obfuscate --package-runtime 0 --no-cross-protection --restrict 0 foo.py

The obfuscated script and runtime files will be saved in the path dist, about
the meaning of each options, refer to command obfuscate.

Next cythonize both foo.py and pytransform.py with extra options -k
and --lenient to generate foo.c and pytransform.c:

cd dist
cythonize -3 -k --lenient foo.py pytransform.py

Without options -k and --lenient, it will raise exception:

undeclared name not builtin: __pyarmor__

Then compile foo.c and pytransform.c to the extension modules. In MacOS,
just run the following commands, but in Linux, with extra cflag -fPIC:

gcc -shared $(python-config --cflags) $(python-config --ldflags) \
 -o foo$(python-config --extension-suffix) foo.c

gcc -shared $(python-config --cflags) $(python-config --ldflags) \
 -o pytransform$(python-config --extension-suffix) pytransform.c

Finally test it, remove all the .py files and import the extension modules:

mv foo.py pytransform.py /tmp
python -c 'import foo'

It will print Hello Cython as expected.

Work with PyUpdater

PyArmor should work with PyUpdater [https://www.pyupdater.org/] by this way, for example, there is a
script foo.py:

	Generate foo.spec by PyUpdater

	Generate foo-patched.spec by pyarmor with option --debug:

pyarmor pack --debug -s foo.spec foo.py

If the final executable raises protection error, try to disable restirct mode
by the following extra options
pyarmor pack --debug -s foo.spec -x " --restrict 0 --no-cross-protection" foo.py

This patched foo-patched.spec could be used by PyUpdater in build command

If your Python scripts are modified, just obfuscate them again, all the options
for command obfuscate could be got from the output of command pack

If anybody is having issues with the above. Just normally compiling it in
PyArmor then zipping and putting it into “/pyu-data/new” works. From there on
you can just normally sign, process and upload your update.

More information refer to the description of command pack and advanced
usage bundle-obfuscated-scripts-with-customized-spec-file

Binding obfuscated scripts to Python interpreter

In order to improve the security of obfuscated scripts, it also could bind the
obfuscated scripts to one fixed Python interperter, the obfuscated scripts will
not work if the Python dynamic library are changed.

If you use command obfuscate, after the scripts are obfuscated, just generate
a new license.lic which is bind to the current Python and overwrite the
default license. For example:

pyarmor licenses --fixed 1 -O dist/license.lic

When start the obfuscated scripts in target machine, it will check the Python
dynamic library, it may be pythonXY.dll, libpythonXY.so or libpythonXY.dylib in
different platforms. If this library is different from the python dynamic
library in build machine, the obfuscated script will quit.

If you use project to obfuscate scripts, first generate a fixed license:

cd /path/to/project
pyarmor licenses --fixed 1

By default it will be saved to licenses/pyarmor/license.lic, then configure
the project with this license:

pyarmor config --license=licenses/pyarmor/license.lic

If obfuscate the scripts for different platform, first get the bind key in
target platform. Create a script then run it with Python interpreter which would
be bind to:

import sys

from ctypes import CFUNCTYPE, cdll, pythonapi, string_at, c_void_p, c_char_p

def get_bind_key():
 c = cdll.LoadLibrary(None)

 if sys.platform.startswith('win'):
 from ctypes import windll
 dlsym = windll.kernel32.GetProcAddressA
 else:
 prototype = CFUNCTYPE(c_void_p, c_void_p, c_char_p)
 dlsym = prototype(('dlsym', c))

 refunc1 = dlsym(pythonapi._handle, 'PyEval_EvalCode')
 refunc2 = dlsym(pythonapi._handle, 'PyEval_GetFrame')

 size = refunc2 - refunc1
 code = string_at(refunc1, size)

 checksum = 0
 for c in code:
 checksum += ord(c)
 print('Get bind key: %s' % checksum)

if __name__ == '__main__':
 get_bind_key()

It will print the bind key xxxxxx, then generate one fixed license with this
bind key:

pyarmor licenses --fixed xxxxxx -O dist/license.lic

It also could bind the license to many Python interpreters by passing multiple
keys separated by ,:

pyarmor licenses --fixed 1,key2,key3 -O dist/license.lic
pyarmor licenses --fixed key1,key2,key3 -O dist/license.lic

The special key 1 means current Python interpreter.

Customizing cross protection code

In order to protect core dynamic library of PyArmor, the default protection code
will be injected into the entry scripts, refer to Special Handling of Entry Script. However this public protection code may be bypassed deliberately,
the better way is to write your private protection code, it could improve the
security largely.

Since v6.2.0, command runtime could generate the default protection code,
it could be as template to write your own protection code. Of course, you may
write it by yourself. Only if it could make sure the runtime files aren’t
changed by someone else as running the obfuscated scripts.

First generate protection script build/pytransform_protection.py:

pyarmor runtime --super-mode --output build

Then edit it with your private code, after that, obfuscate the scripts and set
option --cross-protection to this customized script, for example:

pyarmor obfuscate --cross-protection build/pytransform_protection.py \
 --advanced 2 foo.py

Note that Super Mode is total different from other modes, don’t specify
option --super-mode when generating runtime files for other modes, for
example:

pyarmor runtime --output build

Note

Obfuscating with --advanced 1 is not super mode, only --advanced 2 is
super mode.

Storing runtime file license.lic to any location

By creating a symbol link in the runtime package, it’s easy to store runtime
file license.lic to any location when running the obfuscated scripts.

In linux, for example, store license file in /opt/my_app:

ln -s /opt/my_app/license.lic /path/to/obfuscated/pytransform/license.lic

In windows, store license file in C:/Users/Jondy/my_app:

mklink \path\to\obfuscated\pytransform\license.lic C:\Users\Jondy\my_app\license.lic

When distributing the obfuscated package, just run this function on post-install:

import os

def make_link_to_license_file(package_path, target_license="/opt/mypkg/license.lic"):
 license_file = os.path.join(package_path, 'pytransform', 'license.lic')
 if os.path.exists(license_file):
 os.rename(license_file, target_license)
 os.symlink(target_license, license_file)

Register multiple pyarmor in same machine

From v5.9.0, pyarmor reads license and capsule data from environment variable
PYARMOR_HOME, the default value is ~/.pyarmor. So it’s easy to register
multiple pyarmor in one machine by setting environment variable PYARMOR_HOME
to another path before run pyarmor.

It also could create a new command pyarmor2 for the second project by the
following way.

In Linux, create a shell script pyarmor2

export PYARMOR_HOME=$HOME/.pyarmor_2
pyarmor "$@"

Save it to /usr/local/pyarmor2, and change its mode:

chmod +x /usr/local/pyarmor2

In Windows, create a bat script pyarmor2.bat

SET PYARMOR_HOME=%HOME%\another_pyarmor
pyarmor %%*

After that, run pyarmor2 for the second project:

pyarmor2 register pyarmor-regkey-2.zip
pyarmor2 obfuscate foo2.py

Examples

Here are some examples.

Obfuscating and Packing PyQt Application

There is a tool easy-han based on PyQt. Here list the main files:

config.json

main.py
ui_main.py
readers/
 __init__.py
 msexcel.py

tests/
vnev/py36

Here the shell script used to pack this tool by PyArmor:

cd /path/to/src
pyarmor pack --name easy-han \
 -e " --hidden-import comtypes --add-data 'config.json;.'" \
 -x " --exclude vnev --exclude tests" main.py

cd dist/easy-han
./easy-han

By option -e passing extra options to run PyInstaller [https://www.pyinstaller.org/], to be sure these
options work with PyInstaller [https://www.pyinstaller.org/]:

cd /path/to/src
pyinstaller --name easy-han --hidden-import comtypes --add-data 'config.json;.' main.py

cd dist/easy-han
./easy-han

By option -x passing extra options to obfuscate the scripts, there are many
.py files in the path tests and vnev, but all of them need not to be
obfuscated. By passing option --exclude to exclude them, to be sure these
options work with command obfuscate:

cd /path/to/src
pyarmor obfuscate -r --exclude vnev --exclude tests main.py

Important

The command pack will obfuscate the scripts automatically, do not try
to pack the obfuscated the scripts.

Note

From PyArmor 5.5.0, it could improve the security by passing the obfuscated
option --advanced 1 to enable Advanced Mode. For example:

pyarmor pack -x " --advanced 1 --exclude tests" foo.py

Running obfuscated Django site with Apache and mod_wsgi

Here is a simple site of Django:

/path/to/mysite/
 db.sqlite3
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py
 polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 urls.py
 views.py

First obfuscating all the scripts:

Create target path
mkdir -p /var/www/obf_site

Copy all files to target path, because pyarmor don't deal with any data files
cp -a /path/to/mysite/* /var/www/obf_site/

cd /path/to/mysite

Obfuscating all the scripts in the current path recursively, specify the entry script "wsgi.py"
The obfuscate scripts will be save to "/var/www/obf_site"
pyarmor obfuscate --src="." -r --output=/var/www/obf_site mysite/wsgi.py

Then edit the server configuration file of Apache:

WSGIScriptAlias / /var/www/obf_site/mysite/wsgi.py
WSGIPythonHome /path/to/venv

The runtime files required by pyarmor are generated in this path
WSGIPythonPath /var/www/obf_site

<Directory /var/www/obf_site/mysite>
 <Files wsgi.py>
 Require all granted
 </Files>
</Directory>

Finally restart Apache:

apachectl restart

Using Project

Project is a folder include its own configuration file, which used to
manage obfuscated scripts.

There are several advantages to manage obfuscated scripts by Project:

	Increment build, only updated scripts are obfuscated since last build

	Filter obfuscated scripts in the project, exclude some scripts

	Obfuscate the scripts with different modes

	More convenient to manage obfuscated scripts

Managing Obfuscated Scripts With Project

Use command init to create a project:

cd examples/pybench
pyarmor init --entry=pybench.py

It will create project configuration file .pyarmor_config in
the current path. Or create project in another path:

pyarmor init --src=examples/pybench --entry=pybench.py projects/pybench

The project path projects/pybench will be created, and
.pyarmor_config will be saved there.

The common usage for project is to do any thing in the project path:

cd projects/pybench

Show project information:

pyarmor info

Obfuscate all the scripts in this project by command build:

pyarmor build

Change the project configuration by command config.

For example, exclude the dist, test, the .py files in these
folder will not be obfuscated:

pyarmor config --manifest "include *.py, prune dist, prune test"

By --manifest, the project scripts could be selected exactly, more
information refer to the description of the attribute manifest in the section
Project Configuration File

Force rebuild:

pyarmor build --force

Run obfuscated script:

cd dist
python pybench.py

After some scripts changed, just run build again:

cd projects/pybench
pyarmor build

Obfuscating Scripts With Different Modes

First configure the different modes, refer to The Modes of Obfuscated Scripts:

pyarmor config --obf-mod=1 --obf-code=0

Then obfuscating scripts in new mode:

pyarmor build -B

Obfuscating Some Special Scripts With Child Project

Suppose most of scripts in the project are obfuscated with restrict mode 3, but
a few of them need to be obfuscated with restrict mode 2. The child project is
right for this case.

	First create a project in the source path:

cd /path/to/src
pyarmor init --entry foo.py
pyarmor config --restrict 3

	Next clone the project configuration file to create a child project named
.pyarmor_config-1:

cp .pyarmor_config .pyarmor_config-1

	Then config the child project with special scripts, no entry script, and
restrict mode 2:

pyarmor config --entry "" \
 --manifest "include a.py other/path/sa*.py" \
 --restrict 2 \
 .pyarmor_config-1

	Finally build the project and child project:

pyarmor build -B
pyarmor build --no-runtime -B .pyarmor_config-1

Project Configuration File

Each project has a configure file. It’s a json file named
.pyarmor_config stored in the project path.

	name

Project name.

	title

Project title.

	src

Base path to match files by manifest template string.

It could be absolute path, or relative path based on project folder.

	manifest

A string specifies files to be obfuscated, same as MANIFEST.in of
Python Distutils, default value is:

global-include *.py

It means all files anywhere in the src tree matching.

Multi manifest template commands are spearated by comma, for example:

global-include *.py, exclude __mainfest__.py, prune test

Refer to
https://docs.python.org/2/distutils/sourcedist.html#commands

	is_package

Available values: 0, 1, None

When it’s set to 1, the basename of src will be appended to output as
the final path to save obfuscated scripts, but runtime files are still in
the path output

When init a project and no --type specified, it will be set to 1 if
there is __init__.py in the path src, otherwise it’s None.

	restrict_mode

Available values: 0, 1, 2, 3, 4

By default it’s set to 1.

Refer to Restrict Mode

	entry

A string includes one or many entry scripts.

When build project, insert the following bootstrap code for each
entry:

from pytransform import pyarmor_runtime
pyarmor_runtime()

The entry name is relative to src, or filename with absolute
path.

Multi entries are separated by comma, for example:

main.py, another/main.py, /usr/local/myapp/main.py

Note that entry may be NOT obfuscated, if manifest does not
specify this entry.

	output

A path used to save output of build. It’s relative to project path.

	capsule

Warning

Removed since v5.9.0

Filename of project capsule. It’s relative to project path if it’s
not absolute path.

	obf_code

How to obfuscate byte code of each code object, refer to Obfuscating Code Mode:

	0

No obfuscate

	1 (Default)

Obfuscate each code object by default algorithm

	2

Obfuscate each code object by more complex algorithm

	wrap_mode

Available values: 0, 1, None

Whether to wrap code object with try..final block.

The default value is 1, refer to Wrap Mode

	obf_mod

How to obfuscate whole code object of module, refer to Obfuscating module Mode:

	0

No obfuscate

	1 (Default)

Obfuscate byte-code by DES algorithm

	cross_protection

How to proect dynamic library in obfuscated scripts:

	0

No protection

	1

Insert proection code with default template, refer to
Special Handling of Entry Script

	Filename

Read the template of protection code from this file other than
default template.

	runtime_path

None or any path.

When run obfuscated scripts, where to find dynamic library
_pytransform. The default value is None, it means it’s within the
Runtime Package or in the same path of pytransform.py.

It’s useful when obfuscated scripts are packed into a zip file,
for example, use py2exe to package obfuscated scripts. Set
runtime_path to an empty string, and copy Runtime Files to
same path of zip file, will solve this problem.

	plugins

None or list of string

Extend license type of obfuscated scripts, multi-plugins are
supported. For example:

plugins: ["check_ntp_time", "show_license_info"]

About the usage of plugin, refer to Using Plugin to Extend License Type

	package_runtime

How to save the runtime files:

	0

Save them in the same path with the obufscated scripts

	1 (Default)

Save them in the sub-path pytransform as a package

	enable_suffix

Note

New in v5.8.7

How to generate runtime package (module) and bootstrap code, it’s useful as
importing the scripts obfuscated by different developer:

	0 (Default)

There is no suffix for the name of runtime package (module)

	1

The name of runtime package (module) has a suffix, for example,
pytransform_vax_00001

	platform

Note

New in v5.9.0

A string includes one or many platforms. Multi platforms are separated by
comma.

Leave it to None or blank if not cross-platform obfuscating

	license_file

Note

New in v5.9.0

Use this license file other than the default one.

Leave it to None or blank to use the default one.

	bootstrap_code

Note

New in v5.9.0

How to generate Bootstrap Code for the obfuscated entry scripts:

	0

Do not insert bootstrap code into entry script

	1 (Default)

Insert the bootstrap code into entry script. If the script name is
__init__.py, make a relative import with leading dots, otherwise make
absolute import.

	2

The bootstrap code will always be made an absolute import without leading
dots in the entry script.

	3

The bootstrap code will always be made a relative import with leading dots
in the entry script.

Man Page

PyArmor is a command line tool used to obfuscate python scripts, bind
obfuscated scripts to fixed machine or expire obfuscated scripts.

The syntax of the pyarmor command is:

pyarmor <command> [options]

The most commonly used pyarmor commands are:

obfuscate Obfuscate python scripts
licenses Generate new licenses for obfuscated scripts
pack Pack obfuscated scripts to one bundle
hdinfo Show hardware information

The commands for project:

init Create a project to manage obfuscated scripts
config Update project settings
build Obfuscate all the scripts in the project

info Show project information
check Check consistency of project

The other commands:

benchmark Run benchmark test in current machine
register Make registration file work
download Download platform-dependent dynamic libraries
runtime Generate runtime package separately

See pyarmor <command> -h for more information on a specific command.

Note

From v5.7.1, the first character is command alias for most usage commands:

obfuscate, licenses, pack, init, config, build

For example:

pyarmor o => pyarmor obfuscate

obfuscate

Obfuscate python scripts.

SYNOPSIS:

pyarmor obfuscate <options> SCRIPT...

OPTIONS

	-O, --output PATH

	Output path, default is dist

	-r, --recursive

	Search scripts in recursive mode

	-s, --src PATH

	Specify source path if entry script is not in the top most path

	--exclude PATH

	Exclude the path in recusrive mode. Multiple paths are allowed, separated by “,”, or use this option multiple times

	--exact

	Only obfuscate list scripts

	--no-bootstrap

	Do not insert bootstrap code to entry script

	--bootstrap <0,1,2,3>

	How to insert bootstrap code to entry script

	--no-cross-protection

	Do not insert protection code to entry script

	--plugin NAME

	Insert extra code to entry script, it could be used multiple times

	--platform NAME

	Distribute obfuscated scripts to other platform

	--advanced <0,1,2>

	Enable advanced mode 1 or super mode 2

	--restrict <0,1,2,3,4>

	Set restrict mode

	-n, --no-runtime

	DO NOT generate runtime files

	--package-runtime <0,1>

	Save the runtime files as package or not

	--enable-suffix

	Generate the runtime package with unique name

	--obf-mod <0,1>

	Disable or enable to obfuscate module

	--obf-code <0,1,2>

	Disable or enable to obfuscate function

	--wrap-mode <0,1>

	Disable or enable wrap mode

	--with-license FILENAME

	Use this licese, special value outer means no license

	--cross-protection FILENAME

	Specify customized protection script

DESCRIPTION

PyArmor first checks whether Global Capsule exists in the HOME
path. If not, make it.

Then find all the scripts to be obfuscated. There are 3 modes to search the
scripts:

	Normal: find all the .py files in the same path of entry script

	Recursive: find all the .py files in the path of entry script recursively

	Exact: only these scripts list in the command line

Note that only the .py files are touched by this command, all the other files
aren’t copied to output path. If there are many data files in the package, first
copy the whole package to the output path, then obfuscate the .py files, thus
all the .py files in the output path are overwritten by the obfuscated ones.

If there is an entry script, PyArmor will modify it, insert cross protection
code into the entry script. Refer to Special Handling of Entry Script

If there is any plugin specified in the command line, PyArmor will scan all the
source scripts and inject the plugin code into them before obfuscating. Refer to
How to Deal With Plugins

Next obfuscate all found scripts, save them in the default output path dist.

After that make the Runtime Package in the dist path.

Finally insert the Bootstrap Code into entry script.

If --exact is set, all the scripts in the command line are taken as entry
scripts. Otherwise only the first script is entry script.

Option --src used to specify source path if entry script is not in the top
most path. For example:

if no option --src, the "./mysite" is the source path
pyarmor obfuscate --src "." --recursive mysite/wsgi.py

Option --plugin is used to extend license type of obfuscated scripts, it
will inject the content of plugin script into the obfuscated scripts. The
corresponding filename of plugin is NAME.py. More information about plugin,
refer to How to Deal With Plugins, and here is a real example to show
usage of plugin Using Plugin to Extend License Type

Option --platform is used to specify the target platform of obfuscated
scripts if target platform is different from build platform. Use this option
multiple times if the obfuscated scripts are being to run many platforms. From
v5.7.5, the platform names are standardized, command download could list all
the available platform names.

Option --restrict is used to set restrict mode, Restrict Mode

Option --advanced 2 will enable Super Mode. In this mode, no runtime
files and bootstrap code, only one extension module pytransform is required.

RUNTIME FILES

By default the runtime files will be saved in the separated folder pytransform
as package:

pytransform/
 __init__.py
 _pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
 pytransform.key
 license.lic

But if --package-runtime is 0, they will be saved in the same path with
obfuscated scripts as four separated files:

pytransform.py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

If the option --enable-suffix is set, the runtime package or module name
will be pytransform_xxx, here xxx is unique suffix based on the
registration code of PyArmor.

BOOTSTRAP CODE

By default, the following Bootstrap Code will be inserted into the entry
script:

from pytransform import pyarmor_runtime
pyarmor_runtime()

If the entry script is __init__.py, the Bootstrap Code will make a
relative import by using leading dots like this:

from .pytransform import pyarmor_runtime
pyarmor_runtime()

But the option --bootstrap is set to 2, the Bootstrap Code always
makes absolute import without leading dots. If it is set to 3, the
Bootstrap Code always makes relative import with leading dots.

If the option --enable-suffix is set, the bootstrap code may like this:

from pytransform_vax_000001 import pyarmor_runtime
pyarmor_runtime(suffix='vax_000001')

If --no-bootstrap is set, or --bootstrap is 0, then no bootstrap code
will be inserted into the entry scripts.

EXAMPLES

	Obfuscate all the .py only in the current path:

pyarmor obfuscate foo.py

	Obfuscate all the .py in the current path recursively:

pyarmor obfuscate --recursive foo.py

	Obfuscate all the .py in the current path recursively, but entry script not
in top most path:

pyarmor obfuscate --src "." --recursive mysite/wsgi.py

	Obfuscate a script foo.py only, no runtime files:

pyarmor obfuscate --no-runtime --exact foo.py

	Obfuscate all the .py in a path recursive, no entry script, no generate
runtime package:

pyarmor obfuscate --recursive --no-runtime .
pyarmor obfuscate --recursive --no-runtime src/

	Obfuscate all the .py in the current path recursively, exclude all
the .py in the path build and tests:

pyarmor obfuscate --recursive --exclude build,tests foo.py
pyarmor obfuscate --recursive --exclude build --exclude tests foo.py

	Obfuscate only two scripts foo.py, moda.py exactly:

pyarmor obfuscate --exact foo.py moda.py

	Obfuscate all the .py file in the path mypkg/:

pyarmor obfuscate --output dist/mypkg mypkg/__init__.py

	Obfuscate all the .py files in the current path, but do not insert
cross protection code into obfuscated script dist/foo.py:

pyarmor obfuscate --no-cross-protection foo.py

	Obfuscate all the .py files in the current path, but do not insert
bootstrap code at the beginning of obfuscated script
dist/foo.py:

pyarmor obfuscate --no-bootstrap foo.py

	Insert the content of check_ntp_time.py into foo.py, then
obfuscating foo.py:

pyarmor obfuscate --plugin check_ntp_time foo.py

	Only plugin assert_armored is called then inject it into the foo.py:

pyarmor obfuscate --plugin @assert_armored foo.py

	Obfuscate the scripts in Macos and run obfuscated scripts in
Ubuntu:

pyarmor obfuscate --platform linux.x86_64 foo.py

	Obfuscate the scripts in advanced mode:

pyarmor obfuscate --advanced 1 foo.py

	Obfuscate the scripts with restrict mode 2:

pyarmor obfuscate --restrict 2 foo.py

	Obfuscate all the .py files in the current path except __init__.py with
restrice mode 4:

pyarmor obfuscate --restrict 4 --exclude __init__.py --recursive .

	Obfuscate a package with unique runtime package name:

cd /path/to/mypkg
pyarmor obfuscate -r --enable-suffix --output dist/mypkg __init__.py

	Obfuscate scripts by super mode with expired license:

pyarmor licenses -e 2020-10-05 regcode-01
pyarmor obfuscate --with-license licenses/regcode-01/license.lic \
 --advanced 2 foo.py

	Obfuscate scripts by super mode with customized cross protection scripts, and
don’t embed license file to extension module, but use outer license.lic:

pyarmor obfuscate --cross-protection build/pytransform_protection.py \
 --with-license outer --advanced 2 foo.py

licenses

Generate new licenses for obfuscated scripts.

SYNOPSIS:

pyarmor licenses <options> CODE

OPTIONS

	-O, --output OUTPUT

	Output path, stdout is supported

	-e, --expired YYYY-MM-DD

	Expired date for this license

	-d, --bind-disk SN

	Bind license to serial number of harddisk

	-4, --bind-ipv4 IPV4

	Bind license to ipv4 addr

	-m, --bind-mac MACADDR

	Bind license to mac addr

	-x, --bind-data DATA

	Pass extra data to license, used to extend license type

	--disable-restrict-mode

	Disable all the restrict modes

	--enable-period-mode

	Check license per hour when the obfuscated script is running

–fixed key,… Bind license to Python interpreter

DESCRIPTION

In order to run obfuscated scripts, it’s necessarey to hava a license.lic. As
obfuscating the scripts, there is a default license.lic created at the same
time. In this license the obfuscated scripts can run on any machine and never
expired.

This command is used to generate new licenses for obfuscated scripts. For
example:

pyarmor licenses --expired 2019-10-10 mycode

An expired license will be generated in the default output path plus code name
licenses/mycode, then overwrite the old one in the same path of obfuscated
script:

cp licenses/mycode/license.lic dist/pytransform/

Another example, bind obfuscated scripts in mac address and expired on
2019-10-10:

pyarmor licenses --expired 2019-10-10 --bind-mac 2a:33:50:46:8f tom
cp licenses/tom/license.lic dist/pytransform/

Before this, run command hdinfo to get hardware information:

pyarmor hdinfo

By option -x any data could be saved into the license file, it’s mainly used
to extend license tyoe. For example:

pyarmor licenses -x "2019-02-15" tom

In the obfuscated scripts, the data passed by -x could be got by this way:

from pytransfrom import get_license_info
info = get_license_info()
print(info['DATA'])

It also could output the license key in the stdout other than a file:

pyarmor --silent licenses --output stdout -x "2019-05-20" reg-0001

By option --fixed, the license could be bind to Python interpreter. For
example, use special key 1 to bind the license to current Python interpreter:

pyarmor licenses --fixed 1

It also could bind the license to many Python interpreters by passing multiple
keys separated by comma:

pyarmor licenses --fixed 4265050,5386060

How to get bind key of Python interpreter, refer to Binding obfuscated scripts to Python interpreter

Note

Here is a real example Using Plugin to Extend License Type

pack

Obfuscate the scripts or project and pack them into one bundle.

SYNOPSIS:

pyarmor pack <options> SCRIPT | PROJECT

OPTIONS

	-O, --output PATH

	Directory to put final built distributions in.

	-e, --options OPTIONS

	Pass these extra options to pyinstaller

	-x, --xoptions OPTIONS

	Pass these extra options to pyarmor obfuscate

	-s FILE

	Use external .spec file to pack the scripts

	--without-license

	Do not generate license for obfuscated scripts

	--with-license FILE

	Use this license file other than default one

	--clean

	Remove cached files before packing

	--debug

	Do not remove build files after packing

	--name

	Name to assign to the bundled (default: the script’s basename)

DESCRIPTION

The command pack first calls PyInstaller [https://www.pyinstaller.org/] to generate .spec file which
name is same as entry script. The options specified by --e will be pass to
PyInstaller [https://www.pyinstaller.org/] to generate .spec file. It could be any option accepted by
PyInstaller [https://www.pyinstaller.org/] except -y, --noconfirm, -n, --name,
--distpath, --specpath.

If there is in trouble, make sure the script could be bundled by PyInstaller [https://www.pyinstaller.org/]
directly. For example:

pyinstaller foo.py

So long as PyInstaller [https://www.pyinstaller.org/] could work, just pass those options by -e, the
command pack should work either.

Then pack will obfuscates all the .py files in the same path of entry
script recursively. It will call command obfuscate with options -r,
--output, --package-runtime 0 and the options specified by
-x. However if packing a project, pack will obfuscate the project by
command build with option -B, and all the options specifed by -x will
be ignored. In this case config the project to control how to obfuscate the
scripts.

Next pack patches the .spec file so that the original scripts could be
replaced with the obfuscated ones.

Finally pack call PyInstaller [https://www.pyinstaller.org/] with this pacthed .spec file to generate
the output bundle with obfuscated scripts. Refer to How To Pack Obfuscated Scripts.

If the option --debug is set, for example:

pyarmor pack --debug foo.py

The following generated files will be kept, generally all of them are removed
after packing end:

foo.spec
foo-patched.spec
dist/obf/temp/hook-pytransform.py
dist/obf/*.py # All the obfuscated scripts

The patched foo-patched.spec could be used by pyinstaller to pack the
obfuscated scripts directly, for example:

pyinstaller -y --clean foo-patched.spec

If some scripts are modified, just obfuscate them again, then run this command
to pack them quickly. All the options for command obfuscate could be got from
the output of command pack.

If you’d like to change the final bundle name, specify the option --name
directly, do not pass it by the option -e, it need some special handling.

If you have a worked .spec file, just specify it by option -s (in this
case the option -e will be ignored), for example:

pyarmor pack -s foo.spec foo.py

The main script (here it’s foo.py) must be list in the command line, otherwise
pack doesn’t know where to find the scripts to be obfuscated. More refer to
Bundle obfuscated scripts with customized spec file

If there are many data files or hidden imports, it’s better to write a hook file
to find them easily. For example, create a hook file named hook-sys.py:

from PyInstaller.utils.hooks import collect_data_files, collect_all
datas, binaries, hiddenimports = collect_all('my_module_name')
datas += collect_data_files('submodule')
hiddenimports += ['_gdbm', 'socket', 'h5py.defs']
datas += [('/usr/share/icons/education_*.png', 'icons')]

Then call pack with extra option --additional-hooks-dir . to tell
pyinstaller find the hook in the current path:

pyarmor pack -e " --additional-hooks-dir ." foo.py

More information about pyinstaller hook, refer to
https://pyinstaller.readthedocs.io/en/stable/hooks.html#understanding-pyinstaller-hooks

When something is wrong, turn on PyArmor debug flag to print traceback:

pyarmor -d pack ...

EXAMPLES

	Obfuscate foo.py and pack them into the bundle dist/foo:

pyarmor pack foo.py

	Remove the build folder, and start a clean pack:

pyarmor pack --clean foo.py

	Pack the obfuscated scripts by an exists myfoo.spec:

pyarmor pack -s myfoo.spec foo.py

	Pass extra options to run PyInstaller:

pyarmor pack -e " -w --icon app.ico" foo.py

	Pass extra options to obfuscate scripts:

pyarmor pack -x " --exclude venv --exclude test" foo.py

	Pack the obfuscated script to one file and in advanced mode:

pyarmor pack -e " --onefile" -x " --advanced 1" foo.py

	Pack the obfuscated scripts and expired on 2020-12-25:

pyarmor licenses -e 2020-12-25 cy2020
pyarmor pack --with-license licenses/cy2020/license.lic foo.py

	Change the final bundle name to my_app other than foo:

pyarmor pack --name my_app foo.py

	Pack a project with advanced mode:

pyarmor init --entry main.py
pyarmor config --advanced 1
pyarmor pack .

Note

Since v5.9.0, possible pack one project directly by specify the project path
in the command line. For example, create a project in the current path, then
pack it:

pyarmor init --entry main.py
pyarmor pack .

By this way the obfuscated scripts could be fully controlled.

Important

The command pack will obfuscate the scripts automatically, do not
try to pack the obfuscated the scripts.

hdinfo

Show hardware information of this machine, such as serial number of hard disk,
mac address of network card etc. The information got here could be as input data
to generate license file for obfuscated scripts.

SYNOPSIS:

pyarmor hdinfo

If pyarmor isn’t installed, downlad this tool hdinfo

https://github.com/dashingsoft/pyarmor-core/tree/master/#hdinfo

And run it directly:

hdinfo

It will print the same hardware information as pyarmor hdinfo

init

Create a project to manage obfuscated scripts.

SYNOPSIS:

pyarmor init <options> PATH

OPTIONS

	-t, --type <auto,app,pkg>

	Project type, default value is auto

	-s, --src SRC

	Base path of python scripts, default is current path

	-e, --entry ENTRY

	Entry script of this project

DESCRIPTION

This command will create a project in the specify PATH, and a file
.pyarmor_config will be created at the same time, which is project
configuration of JSON format.

If the option --type is set to auto, which is the default value, the
project type will set to pkg if the entry script is __init__.py, otherwise
to app.

The init command will set is_package to 1 if the new project is configured
as pkg, otherwise it’s set to 0.

After project is created, use command config to change the project settings.

EXAMPLES

	Create a project in the current path:

pyarmor init --entry foo.py

	Create a project in the build path obf:

pyarmor init --entry foo.py obf

	Create a project for package:

pyarmor init --entry __init__.py

	Create a project in the path obf, manage the scripts in the path
/path/to/src:

pyarmor init --src /path/to/src --entry foo.py obf

config

Update project settings.

SYNOPSIS:

pyarmor config <options> [PATH]

OPTIONS

	--name NAME

	Project name

	--title TITLE

	Project title

	--src SRC

	Project src, base path for matching scripts

	--output PATH

	Output path for obfuscated scripts

	--manifest TEMPLATE

	Manifest template string

	--entry SCRIPT

	Entry script of this project

	--is-package <0,1>

	Set project as package or not

	--restrict <0,1,2,3,4>

	Set restrict mode

	--obf-mod <0,1>

	Disable or enable to obfuscate module

	--obf-code <0,1,2>

	Disable or enable to obfuscate function

	--wrap-mode <0,1>

	Disable or enable wrap mode

	--advanced <0,1,2>

	Enable advanced mode 1 or super mode 2

	--cross-protection <0,1>

	Disable or enable to insert cross protection code into entry script,
it also could be a filename to specify customized protection script

	--runtime-path RPATH

	Set the path of runtime files in target machine

	--plugin NAME

	Insert extra code to entry script, it could be used multiple times

	--package-runtime <0,1>

	Save the runtime files as package or not

	--bootstrap <0,1,2,3>

	How to insert bootstrap code to entry script

	--enable-suffix <0,1>

	Generate the runtime package with unique name

	--with-license FILENAME

	Use this license file, special value outer means no license

DESCRIPTION

Run this command in project path to change project settings:

pyarmor config --option new-value

Or specify the project path at the end:

pyarmor config --option new-value /path/to/project

Option --manifest is comma-separated list of manifest template command, same
as MANIFEST.in of Python Distutils.

Option --entry is comma-separated list of entry scripts, relative to src
path of project.

If option --plugin is set to empty string, all the plugins will be removed.

For the details of each option, refer to Project Configuration File

EXAMPLES

	Change project name and title:

pyarmor config --name "project-1" --title "My PyArmor Project"

	Change project entries:

pyarmor config --entry foo.py,hello.py

	Exclude path build and dist, do not search .py file from these
paths:

pyarmor config --manifest "global-include *.py, prune build, prune dist"

	Obfuscate script with wrap mode off:

pyarmor config --wrap-mode 0

	Set plugin for entry script. The content of check_ntp_time.py will
be insert into entry script as building project:

pyarmor config --plugin check_ntp_time.py

	Remove all plugins:

pyarmor config --plugin ''

build

Build project, obfuscate all scripts in the project.

SYNOPSIS:

pyarmor config <options> [PATH]

OPTIONS

	-B, --force

	Force to obfuscate all scripts

	-r, --only-runtime

	Generate extra runtime files only

	-n, --no-runtime

	DO NOT generate runtime files

	-O, --output OUTPUT

	Output path, override project configuration

	--platform NAME

	Distribute obfuscated scripts to other platform

	--package-runtime <0,1>

	Save the runtime files as package or not

DESCRIPTION

Run this command in project path:

pyarmor build

Or specify the project path at the end:

pyarmor build /path/to/project

The option --no-runtime may impact on the Bootstrap Code, the
bootstrap code will make absolute import without leading dots in entry script.

About option --platform and --package-runtime, refer to command obfuscate

EXAMPLES

	Only obfuscate the scripts which have been changed since last
build:

pyarmor build

	Force build all the scripts:

pyarmor build -B

	Generate runtime files only, do not try to obfuscate any script:

pyarmor build -r

	Obfuscate the scripts only, do not generate runtime files:

pyarmor build -n

	Save the obfuscated scripts to other path, it doesn’t change the
output path of project settings:

pyarmor build -B -O /path/to/other

	Build project in Macos and run obfuscated scripts in Ubuntu:

pyarmor build -B --platform linux.x86_64

info

Show project information.

SYNOPSIS:

pyarmor info [PATH]

DESCRIPTION

Run this command in project path:

pyarmor info

Or specify the project path at the end:

pyarmor info /path/to/project

check

Check consistency of project.

SYNOPSIS:

pyarmor check [PATH]

DESCRIPTION

Run this command in project path:

pyarmor check

Or specify the project path at the end:

pyarmor check /path/to/project

banchmark

Check the performance of obfuscated scripts.

SYNOPSIS:

pyarmor benchmark <options>

OPTIONS:

	-m, --obf-mode <0,1>

	Whether to obfuscate the whole module

	-c, --obf-code <0,1,2>

	Whether to obfuscate each function

	-w, --wrap-mode <0,1>

	Whether to obfuscate each function with wrap mode

	--debug

	Do not remove test path

DESCRIPTION

This command will generate a test script, obfuscate it and run it, then output
the elapsed time to initialize, import obfuscated module, run obfuscated
functions etc.

EXAMPLES

	Test performance with default mode:

pyarmor benchmark

	Test performance with no wrap mode:

pyarmor benchmark --wrap-mode 0

	Check the test scripts which saved in the path .benchtest:

pyarmor benchmark --debug

register

Make registration keyfile effect, or show registration information.

SYNOPSIS:

pyarmor register [KEYFILE]

DESCRIPTION

This command is used to register the purchased keyfile to take it effects:

pyarmor register /path/to/pyarmor-regfile-1.zip

Show registration information:

pyarmor register

download

List and download platform-dependent dynamic libraries.

SYNOPSIS:

pyarmor download <options> NAME

OPTIONS:

	--help-platform

	Display all available standard platform names

	-L, --list FILTER

	List available dynamic libraries in different platforms

	-O, --output PATH

	Save downloaded library to this path

	--update

	Update all the downloaded dynamic libraries

DESCRIPTION

This command mainly used to download available dynamic libraries for cross
platform.

List all available standard platform names. For examples:

pyarmor download
pyarmor download --help-platform
pyarmor download --help-platform windows
pyarmor download --help-platform linux.x86_64

Then download one from the list. For example:

pyarmor download linux.armv7
pyarmor download linux.x86_64

By default the download file will be saved in the path ~/.pyarmor/platforms
with different platform names.

Option --list could filter the platform by name, arch, features, and display
the information in details. For examples:

pyarmor download --list
pyarmor download --list windows
pyarmor download --list windows.x86_64
pyarmor download --list JIT
pyarmor download --list armv7

After pyarmor is upgraded, however these downloaded dynamic libraries won’t be
upgraded. The option --update could be used to update all these downloaded
files. For example:

pyarmor download --update

runtime

Geneate Runtime Package separately.

SYNOPSIS:

pyarmor runtime <options>

OPTIONS:

	-O, --output PATH

	Output path, default is dist

	-n, --no-package

	Generate runtime files without package

	-i, --inside

	Generate bootstrap script which is used inside one package

	-L, --with-license FILE

	Replace default license with this file, special value outer means
no license

	--platform NAME

	Generate runtime package for specified platform

	--enable-suffix

	Generate the runtime package with unique name

	--super-mode

	Generate runtime extension module for super mode

DESCRIPTION

This command is used to generate the runtime package separately.

The runtiem package could be shared if the scripts are obufscated by same
Global Capsule. So generate it once, then need not generate the runtime
files when obfuscating the scripts later.

It also generates a bootstrap script pytransform_bootstrap.py in the output
path. This script is obfuscated from an empty script, and there is
Bootstrap Code in it. It’s mainly used to run Bootstrap Code in
the plain script. For example, once it’s imported, all the other obfuscated
modules could be imported in one plain script:

import pytransform_bootstrap
import obf_foo

If option --inside is specified, it will generate bootstrap package
pytransform_bootstrap other than one single script.

The option --super-mode is used to generate runtime extension module for
Super Mode, it’s totally different from other modes.

About option --platform and --enable-suffix, refer to command
obfuscate

EXAMPLES

	Generate Runtime Package pytransform in the default path dist:

pyarmor runtime

	Not generate a package, but four separate files Runtime Files:

pyarmor runtime -n

	Generate bootstrap package dist/pytransform_boostrap:

pyarmor runtime -i

	Generate Runtime Package for platform armv7 with expired license:

pyarmor licenses --expired 2020-01-01 code-001
pyarmor runtime --with-license licenses/code-001/license.lic --platform linux.armv7

	Generate runtime module for super mode:

pyarmor runtime --super-mode
pyarmor runtime --advanced 2

	Generate runtime module for super mode but with outer license.lic:

pyarmor runtime --super-mode --with-license outer

Understanding Obfuscated Scripts

Global Capsule

The .pyarmor_capsule.zip in the HOME path called Global
Capsule. PyArmor will read data from Global Capsule when obfuscating
scripts or generating licenses for obfuscated scripts.

All the trial version of PyArmor shares one same .pyarmor_capsule.zip,
which is created implicitly when executing command pyarmor obfuscate. It
uses 1024 bits RSA keys, called public capsule.

For purchased version, each user will receive one exclusive private capsule,
which use 2048 bits RSA key.

The capsule can’t help restoring the obfuscated scripts at all. If your private
capsuel got by someone else, the risk is that he/she may generate new license
for your obfuscated scripts.

Generally this capsule is only in the build machine, it’s not used by the
obfuscated scripts, and should not be distributed to the end users.

Obfuscated Scripts

After the scripts are obfuscated by PyArmor, in the dist folder you find all
the required files to run obfuscated scripts:

dist/
 myscript.py
 mymodule.py

 pytransform/
 __init__.py
 _pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
 pytransform.key
 license.lic

The obfuscated scripts are normal Python scripts. The module dist/mymodule.py
would be like this:

__pyarmor__(__name__, __file__, b'\x06\x0f...', 1)

The entry script dist/myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'\x0a\x02...', 1)

Super Obfuscated Scripts

If the scripts are obfuscated by Super Mode, it’s totaly different. There
is only one runtime file, that is extension module pytransform. Only these
files in the dist:

myscript.py
mymodule.py

pytransform.so or pytransform.dll

All the obfuscated scripts would be like this:

from pytransform import pyarmor
pyarmor(__name__, __file__, b'\x0a\x02...', 1)

Or there is a suffix in extension name, for example:

from pytransform_vax_000001 import pyarmor
pyarmor(__name__, __file__, b'\x0a\x02...', 1)

Note

The bootstrap code is gone in the super mode which may make some users
confused. And both runtime package and runtime files now refer to the
extension module pytransform.

Entry Script

In PyArmor, entry script is the first obfuscated script to be run or to be
imported in a python interpreter process. For example, __init__.py is entry
script if only one single python package is obfuscated.

Bootstrap Code

The first 2 lines in the entry script called Bootstrap Code. It’s only in the
entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime()

For the obfuscated package which entry script is __init__.py. The bootstrap
code may make a relateive import by leading “.”:

from .pytransform import pyarmor_runtime
pyarmor_runtime()

And there is another form if the runtime path is specified as obfuscating
scripts:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/runtime')

Since v5.8.7, the runtime package may has a suffix. For example:

from pytransform_vax_000001 import pyarmor_runtime
pyarmor_runtime(suffix='_vax_000001')

Runtime Package

The package pytransform which is in the same folder with obfuscated scripts
called Runtime Packge. It’s required to run the obfuscated script, and it’s
the only dependency of obfuscated scripts.

Generally this package is in the same folder with obfuscated scripts, but it can
be moved anywhere. Only this package in any Python Path, the obfuscated scripts
can be run as normal scripts. And all the scripts obfuscated by the same
Global Capsule could share this package.

There are 4 files in this package:

pytransform/
 __init__.py A normal python module
 _pytransform.so/.dll/.lib A dynamic library implements core functions
 pytransform.key Data file
 license.lic The license file for obfuscated scripts

Before v5.7.0, the runtime package has another form Runtime Files

Runtime Files

They’re not in one package, but as four separated files:

pytransform.py A normal python module
_pytransform.so/.dll/.lib A dynamic library implements core functions
pytransform.key Data file
license.lic The license file for obfuscated scripts

Obviously Runtime Package is more clear than Runtime Files.

Since v5.8.7, the runtime package (module) may has a suffix, for example:

pytransform_vax_000001/
 __init__.py
 ...

pytransform_vax_000001.py
...

The License File for Obfuscated Script

There is a special runtime file license.lic, it’s required to run the
obfuscated scripts.

When executing pyarmor obfuscate, a default one will be generated, which
allows obfuscated scripts run in any machine and never expired.

In order to bind obfuscated scripts to fix machine, or expire the obfuscated
scripts, use command pyarmor licenses to generate a new license.lic and
overwrite the default one.

Note

In PyArmor, there is another license.lic, which locates in the source path
of PyArmor. It’s required to run pyarmor, and issued by me, :)

Key Points to Use Obfuscated Scripts

	The obfuscated scripts are normal python scripts, so they can be seamless to
replace original scripts.

	There is only one thing changed, the bootstrap code must be executed before
running or importing any obfuscated scripts.

	The runtime package must be in any Python Path, so that the bootstrap
code can run correctly.

	The bootstrap code will load dynamic library _pytransform.so/.dll/.dylib
by ctypes. This file is dependent-platform, all the prebuilt dynamic
libraries list here Support Platfroms

	By default the bootstrap code searchs dynamic library _pytransform in the
runtime package. Check pytransform._load_library to find the details.

	If the dynamic library _pytransform isn’t within the runtime package,
change the bootstrap code:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/runtime')

Both of runtime files license.lic and pytransform.key should be in this
path either.

	When starts a fresh python interpreter process by multiprocssing.Process,
os.exec, subprocess.Popen etc., make sure the bootstrap code are called
in new process before running any obfuscated script.

More information, refer to How to Obfuscate Python Scripts and How to Run Obfuscated Script

The Differences of Obfuscated Scripts

There are something changed after Python scripts are obfuscated:

	The major/minor version of Python in build machine should be same as
in target machine. Because the scripts will be compiled to byte-code
before they’re obfuscated, so the obfuscated scripts can’t be run by
all the Python versions as the original scripts could. Especially
for Python 3.6, it introduces word size instructions, and it’s
totally different from Python 3.5 and before. It’s recommeded to run
the obfuscated scripts with same major and minor version of Python.

	If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it
will crash to run obfuscated scripts.

	The callback function set by sys.settrace, sys.setprofile,
threading.settrace and threading.setprofile will be ignored by
obfuscated scripts.

	Some function in the module inspect may not work, and any other
module or package may not work if it visits the source or byte code
of the obfuscated scripts.

	It will crash to visit the attribute co_const of code object
directly if the script is obfuscated in advanced mode.

	The attribute __file__ of code object in the obfuscated scripts
will be <frozen name> other than real filename. So in the
traceback, the filename is shown as <frozen name>.

Note that __file__ of moudle is still filename. For example,
obfuscate the script foo.py and run it:

def hello(msg):
 print(msg)

The output will be 'foo.py'
print(__file__)

The output will be '<frozen foo>'
print(hello.__file__)

About Third-Party Interpreter

About third-party interperter, for example Jython, and any embeded
Python C/C++ code, they should satisfy the following conditions at
least to run the obfuscated scripts:

	They must be load offical Python dynamic library, which should be
built from the soure https://github.com/python/cpython , and the
core source code should not be modified.

	On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by
dlopen, otherwise obfuscated scripts couldn’t work.

Note

Boost::python does not load libpythonXY.so with RTLD_GLOBAL by
default, so it will raise error “No PyCode_Type found” as running
obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os.RTLD_GLOBAL) as initializing.

	The module ctypes must be exists and ctypes.pythonapi._handle
must be set as the real handle of Python dynamic library, PyArmor
will query some Python C APIs by this handle.

How PyArmor Does It

Look at what happened after foo.py is obfuscated by PyArmor. Here are the
files list in the output path dist:

foo.py

pytransform/
 __init__.py
 _pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
 pytransform.key
 license.lic

dist/foo.py is obfuscated script, the content is:

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'\x06\x0f...')

There is an extra folder pytransform called Runtime Package, which are
the only required to run or import obfuscated scripts. So long as this package
is in any Python Path, the obfuscated script dist/foo.py can be used as normal
Python script. That is to say:

The original python scripts can be replaced with obfuscated scripts seamlessly.

How to Obfuscate Python Scripts

How to obfuscate python scripts by PyArmor?

First compile python script to code object:

char *filename = "foo.py";
char *source = read_file(filename);
PyCodeObject *co = Py_CompileString(source, "<frozen foo>", Py_file_input);

Then change code object as the following way

	Wrap byte code co_code within a try...finally block:

wrap header:

 LOAD_GLOBALS N (__armor_enter__) N = length of co_consts
 CALL_FUNCTION 0
 POP_TOP
 SETUP_FINALLY X (jump to wrap footer) X = size of original byte code

changed original byte code:

 Increase oparg of each absolute jump instruction by the size of wrap header

 Obfuscate original byte code

 ...

wrap footer:

 LOAD_GLOBALS N + 1 (__armor_exit__)
 CALL_FUNCTION 0
 POP_TOP
 END_FINALLY

	Append function names __armor_enter, __armor_exit__ to co_consts

	Increase co_stacksize by 2

	Set CO_OBFUSCAED (0x80000000) flag in co_flags

	Change all code objects in the co_consts recursively

Next serializing reformed code object and obfuscate it to protect constants and
literal strings:

char *string_code = marshal.dumps(co);
char *obfuscated_code = obfuscate_algorithm(string_code);

Finally generate obfuscated script:

sprintf(buf, "__pyarmor__(__name__, __file__, b'%s')", obfuscated_code);
save_file("dist/foo.py", buf);

The obfuscated script is a normal Python script, it looks like this:

__pyarmor__(__name__, __file__, b'\x01\x0a...')

How to Deal With Plugins

In PyArmor, the plugin is used to inject python code into the obfuscted script
before the script is obfuscated, thus the plugin code could be executed when the
obfuscated script is running. For example, use a plugin to check internet time:

pyarmor obfuscate --plugin check_ntp_time foo.py

Why not insert the plugin code into the script directly? Because most of them
must be called in the obufscated scripts. For example, get the license
information of the obfuscated scripts.

Each plugin is a normal Python script, PyArmor searches it by this way:

	If the plugin has absolute path, then find the corresponding .py file exactly.

	
	If it has relative path, search the .py file in:

	
	The current path

	$HOME/.pyarmor/plugins

	{pyarmor_folder}/plugins

	Raise exception if not found

When there is plugin specified as obfuscating the script, each comment line will
be scanned to find any plugin marker. There are 3 types of plugin marker:

	Plugin Definition Marker

	Plugin Inline Marker

	Plugin Call Marker

The Plugin Definition Marker looks like this:

{PyArmor Plugins}

Generally there is only one in a script, all the plugins will be injected
here. It must be one leading comment line, no indentation. If there is no plugin
definition marker, none of plugins will be injected.

The others are mainly used to call the function defined in the plugin
scripts. There are 3 forms, any comment line with this prefix will be as a
plugin marker:

PyArmor Plugin:
pyarmor_
@pyarmor_

They could appear many times, in any indentation, generally should be behind
plugin definition marker.

The first form called Plugin Inline Marker, PyArmor just removes this pattern
and one following whitespace exactly, and leave the rest part as it is. For
example, these are inline markers in the script foo.py:

PyArmor Plugin: check_ntp_time()
PyArmor Plugin: print('This is plugin code')
PyArmor Plugin: if sys.flags.debug:
PyArmor Plugin: check_something():

In the dist/foo.py, they’ll be replaced as:

check_ntp_time()
print('This is plugin code')
if sys.flags.debug:
 check_something()

So long as there is any plugin specified in the command line, these replacements
will be taken place. If there is no external plugin script, use special plugin
name on in the command line. For example:

pyarmor obfuscate --plugin on foo.py

The second form called Plugin Call Marker, it’s only used to call function
deinfed in the plugin script. Besides, if this function name is not specified as
plugin name, PyArmor doesn’t touch this marker. For example, obufscate the
script by this command:

pyarmor obfuscate --plugin check_ntp_time foo.py

In the foo.py, only the first marker will be handled, the second marker will
be kept as it is, because there is no plugin name specified in the command line
as the function name check_multi_mac:

pyarmor_check_ntp_time()
pyarmor_check_multi_mac()

==>

check_ntp_time()
pyarmor_check_multi_mac()

The last form # @pyarmor_ is almost same as the second, but the comment
prefix will be replaced with @, it’s mainly used to inject a decorator. For
example:

@pyarmor_assert_obfuscated(foo.connect)
def login(user, name):
 foo.connect(user, name)

==>

@assert_obfuscated(foo.connect)
def login(user, name):
 foo.connect(user, name)

If the plugin name have a leading @, it will be injected into the script
only when it’s used in the script, otherwise it’s ignored. For example:

pyarmor obfuscate --plugin @check_ntp_time foo.py

The script foo.py must call plugin function check_ntp_time by one of
Plugin Call Marker. For example:

pyarmor_check_ntp_time()

The Plugin Inline Marker doesn’t work. For example:

PyArmor Plugin: check_ntp_time()

Even this marker will be replaced with check_ntp_time(), but the plugin
script will not be injected into the obfuscated script. When it runs, it will
complain of no function check_ntp_name found.

Special Handling of Entry Script

There are 2 extra changes for entry script:

	Before obfuscating, insert protection code to entry script.

	After obfuscated, insert bootstrap code to obfuscated script.

Before obfuscating entry scipt, PyArmor will search the content line by line. If
there is line like this:

{PyArmor Protection Code}

PyArmor will replace this line with protection code.

If there is line like this:

{No PyArmor Protection Code}

PyArmor will not patch this script.

If both of lines aren’t found, insert protection code before the line:

if __name__ == '__main__'

Do nothing if no __main__ line found.

Here it’s the default template of protection code:

def protect_pytransform():

 import pytransform

 def check_obfuscated_script():
 CO_SIZES = 49, 46, 38, 36
 CO_NAMES = set(['pytransform', 'pyarmor_runtime', '__pyarmor__',
 '__name__', '__file__'])
 co = pytransform.sys._getframe(3).f_code
 if not ((set(co.co_names) <= CO_NAMES)
 and (len(co.co_code) in CO_SIZES)):
 raise RuntimeError('Unexpected obfuscated script')

 def check_mod_pytransform():
 def _check_co_key(co, v):
 return (len(co.co_names), len(co.co_consts), len(co.co_code)) == v
 for k, (v1, v2, v3) in {keylist}:
 co = getattr(pytransform, k).{code}
 if not _check_co_key(co, v1):
 raise RuntimeError('unexpected pytransform.py')
 if v2:
 if not _check_co_key(co.co_consts[1], v2):
 raise RuntimeError('unexpected pytransform.py')
 if v3:
 if not _check_co_key(co.{closure}[0].cell_contents.{code}, v3):
 raise RuntimeError('unexpected pytransform.py')

 def check_lib_pytransform():
 filename = pytransform.os.path.join({rpath}, {filename})
 size = {size}
 n = size >> 2
 with open(filename, 'rb') as f:
 buf = f.read(size)
 fmt = 'I' * n
 checksum = sum(pytransform.struct.unpack(fmt, buf)) & 0xFFFFFFFF
 if not checksum == {checksum}:
 raise RuntimeError("Unexpected %s" % filename)
 try:
 check_obfuscated_script()
 check_mod_pytransform()
 check_lib_pytransform()
 except Exception as e:
 print("Protection Fault: %s" % e)
 pytransform.sys.exit(1)

protect_pytransform()

All the string template {xxx} will be replaced with real value by PyArmor.

To prevent PyArmor from inserting this protection code, pass
--no-cross-protection as obfuscating the scripts:

pyarmor obfuscate --no-cross-protection foo.py

After the entry script is obfuscated, the Bootstrap Code will be inserted
at the beginning of the obfuscated script.

How to Run Obfuscated Script

How to run obfuscated script dist/foo.py by Python Interpreter?

The first 2 lines, which called Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime()

It will fulfil the following tasks

	Load dynamic library _pytransform by ctypes

	Check license.lic is valid or not

	Add 3 cfunctions to module builtins: __pyarmor__, __armor_enter__, __armor_exit__

The next code line in dist/foo.py is:

__pyarmor__(__name__, __file__, b'\x01\x0a...')

__pyarmor__ is called, it will import original module from obfuscated code:

static PyObject *
__pyarmor__(char *name, char *pathname, unsigned char *obfuscated_code)
{
 char *string_code = restore_obfuscated_code(obfuscated_code);
 PyCodeObject *co = marshal.loads(string_code);
 return PyImport_ExecCodeModuleEx(name, co, pathname);
}

After that, in the runtime of this python interpreter

	__armor_enter__ is called as soon as code object is executed, it will
restore byte-code of this code object:

static PyObject *
__armor_enter__(PyObject *self, PyObject *args)
{
 // Got code object
 PyFrameObject *frame = PyEval_GetFrame();
 PyCodeObject *f_code = frame->f_code;

 // Increase refcalls of this code object
 // Borrow co_names->ob_refcnt as call counter
 // Generally it will not increased by Python Interpreter
 PyObject *refcalls = f_code->co_names;
 refcalls->ob_refcnt ++;

 // Restore byte code if it's obfuscated
 if (IS_OBFUSCATED(f_code->co_flags)) {
 restore_byte_code(f_code->co_code);
 clear_obfuscated_flag(f_code);
 }

 Py_RETURN_NONE;
}

	__armor_exit__ is called so long as code object completed execution, it
will obfuscate byte-code again:

static PyObject *
__armor_exit__(PyObject *self, PyObject *args)
{
 // Got code object
 PyFrameObject *frame = PyEval_GetFrame();
 PyCodeObject *f_code = frame->f_code;

 // Decrease refcalls of this code object
 PyObject *refcalls = f_code->co_names;
 refcalls->ob_refcnt --;

 // Obfuscate byte code only if this code object isn't used by any function
 // In multi-threads or recursive call, one code object may be referenced
 // by many functions at the same time
 if (refcalls->ob_refcnt == 1) {
 obfuscate_byte_code(f_code->co_code);
 set_obfuscated_flag(f_code);
 }

 // Clear f_locals in this frame
 clear_frame_locals(frame);

 Py_RETURN_NONE;
}

How To Pack Obfuscated Scripts

The obfuscated scripts generated by PyArmor can replace Python scripts
seamlessly, but there is an issue when packing them into one bundle by
PyInstaller:

All the dependencies of obfuscated scripts CAN NOT be found at all

To solve this problem, the common solution is

	Find all the dependencies by original scripts.

	Add runtimes files required by obfuscated scripts to the bundle

	Replace original scripts with obfuscated in the bundle

	Replace entry script with obfuscated one

PyArmor provides command pack to achieve this. But in some cases maybe it
doesn’t work. This document describes what the command pack does, and also
could be as a guide to bundle the obfuscated scripts by yourself.

First install pyinstaller:

pip install pyinstaller

Then obfuscate scripts to dist/obf:

pyarmor obfuscate --output dist/obf --runtime-mode 0 hello.py

Next generate specfile, add runtime files required by obfuscated
scripts:

pyinstaller --add-data dist/obf/license.lic:. \
 --add-data dist/obf/pytransform.key:. \
 --add-data dist/obf/_pytransform.*:. \
 -p dist/obf --hidden-import pytransform \
 hello.py

In windows, the : should be replace with ; in the command line.

And patch specfile hello.spec, insert the following lines after the
Analysis object. The purpose is to replace all the original scripts with
obfuscated ones:

src = os.path.abspath('.')
obf_src = os.path.abspath('dist/obf')

for i in range(len(a.scripts)):
 if a.scripts[i][1].startswith(src):
 x = a.scripts[i][1].replace(src, obf_src)
 if os.path.exists(x):
 a.scripts[i] = a.scripts[i][0], x, a.scripts[i][2]

for i in range(len(a.pure)):
 if a.pure[i][1].startswith(src):
 x = a.pure[i][1].replace(src, obf_src)
 if os.path.exists(x):
 if hasattr(a.pure, '_code_cache'):
 with open(x) as f:
 a.pure._code_cache[a.pure[i][0]] = compile(f.read(), a.pure[i][1], 'exec')
 a.pure[i] = a.pure[i][0], x, a.pure[i][2]

Run patched specfile to build final distribution:

pyinstaller --clean -y hello.spec

Note

Option --clean is required, otherwise the obfuscated scripts will not be
replaced because the cached .pyz will be used.

Check obfuscated scripts work:

It works
dist/hello/hello.exe

rm dist/hello/license.lic

It should not work
dist/hello/hello.exe

Runtime Module pytransform

If you have realized that the obfuscated scripts are black box for end
users, you can do more in your own Python scripts.In these cases,
pytransform would be useful.

The pytransform module is distributed with obfuscated scripts,
and must be imported before running any obfuscated scripts. It also
can be used in your python scripts.

Contents

	
exception PytransformError

	This is raised when any pytransform api failed. The argument to the
exception is a string indicating the cause of the error.

	
get_expired_days()

	Return how many days left for time limitation license.

>0: valid in these days

-1: never expired

Note

If the obfuscated script has been expired, it will raise exception
and quit directly. All the code in the obfuscated script will not
run, so this function will never return 0.

	
get_license_info()

	Get license information of obfuscated scripts.

It returns a dict with keys:

	expired: Expired date

	IFMAC: mac address bind to this license

	HARDDISK: serial number of harddisk bind to this license

	IPV4: ipv4 address bind to this license

	DATA: any data stored in this licese, used by extending license type

	CODE: registration code of this license

The value None means no this key in the license.

Raise Exception if license is invalid, for example, it has
been expired.

	
get_license_code()

	Return a string, which is specified as generating the licenses for obfucated
scripts.

Raise Exception if license is invalid.

	
get_user_data()

	Return a string, which is specified by -x as generating the licenses for
obfucated scripts.

Return None if no specify -x.

Raise Exception if license is invalid.

	
get_hd_info(hdtype, size=256)

	Get hardware information by hdtype, hdtype could one of

HT_HARDDISK return the serial number of first harddisk

HT_IFMAC return mac address of first network card

HT_IPV4 return ipv4 address of first network card

HT_DOMAIN return domain name of target machine

Raise Exception if something is wrong.

	
HT_HARDDISK, HT_IFMAC, HT_IPV4, HT_DOMAIN

	Constant for hdtype when calling get_hd_info()

	
assert_armored(*args)

	A decorator function used to check each function list in the args
is obfuscated.

Raise Exception if any function is not obfuscated.

Examples

Copy those example code to any script, for example foo.py, obfuscate
it, then run the obfuscated script.

Show left days of license

from pytransform import PytransformError, get_license_info, get_expired_days
try:
 code = get_license_info()['CODE']
 left_days = get_expired_days()
 if left_days == -1:
 print('This license for %s is never expired' % code)
 else:
 print('This license for %s will be expired in %d days' % (code, left_days))
except Exception as e:
 print(e)

More usage refer to Using Plugin to Extend License Type

Note

Though pytransform.py is not obfuscated when running the obfuscated script,
it’s also protected by PyArmor. If it’s changed, the obfuscated script will
raise protection exception.

Refer to Special Handling of Entry Script

Support Platfroms

The core of PyArmor is written by C, the prebuilt dynamic libraries include the
common platforms and some embeded platforms.

Some of them are distributed with PyArmor source package, in these
platforms, pyarmor could run without downloading anything. Refer to
Prebuilt Libraries Distributed with PyArmor.

For the other platforms, pyarmor first searches path
~/.pyarmor/platforms/SYSTEM/ARCH, SYSTEM.ARCH is one of
Standard Platform Names. If there is none, PyArmor will download it
from remote server automatically. Refer to The Others Prebuilt
Libraries For PyArmor.

Since v6.2.0, Super Mode is introduced, it uses the extension module
pytransform directly. All the prebuilt extension files list in the table
The Prebuilt Extensions For Super Mode

For all the latest platforms, refer to `_pyarmor-core/platforms/index.json <https://github.com/dashingsoft/pyarmor-core/blob/master/platforms/index.json`_

There may be serveral dynamic libraries with different features in each
platform. The platform name with feature number suffix combines an unique
name.

Each feature has its own bit

	1: Anti-Debug

	2: JIT

	4: ADV, advanced mode

	8: SUPER, super mode

For example, windows.x86_64.7 means anti-debug(1), JIT(2) and advanced
mode(4) supported, windows.x86_64.0 means no any feature, so highest speed.

Note that zero feature dynamic library isn’t compatible with any featured
library. For security reason, the zero feature library uses different alogrithm
to obfuscate the scripts. So the platform windows.x86_64.7 can not share the
same obfuscated scripts with platform linux.armv7.0.

In some platforms, pyarmor doesn’t know it but there is available dynamic
library in the table The Others Prebuilt Libraries For PyArmor. Just download
it and save it in the path ~/.pyarmor/platforms/SYSTEM/ARCH, this command
pyarmor -d download will also display this path at the beginning. It’s
appreicated to send this platform information to jondy.zhao@gmail.com so that it
could be recognized by pyarmor automatically.

This script will display the required information by pyarmor:

from platform import *
print('system name: %s' % system())
print('machine: %s' % machine())
print('processor: %s' % processor())
print('aliased terse platform: %s' % platform(aliased=1, terse=1))

if system().lower().startswith('linux'):
 print('libc: %s' % libc_ver())
 print('distribution: %s' % linux_distribution())

Contact jondy.zhao@gmail.com if you’d like to run PyArmor in other platform.

Standard Platform Names

These names are used in the command obfuscate, build,
runtime, download to specify platform.

	windows.x86

	windows.x86_64

	linux.x86

	linux.x86_64

	darwin.x86_64

	vs2015.x86

	vs2015.x86_64

	linux.arm

	linux.armv6

	linux.armv7

	linux.aarch32

	linux.aarch64

	android.aarch64

	android.armv7 (New in 5.9.3)

	uclibc.armv7 (New in 5.9.4)

	linux.ppc64

	darwin.arm64

	freebsd.x86_64

	alpine.x86_64

	alpine.arm

	poky.x86

Platform Tables

Table-1. Prebuilt Libraries Distributed with PyArmor

	Name

	Platform

	Arch

	Features

	Download

	Description

	windows.x86

	Windows

	i686

	Anti-Debug, JIT, ADV

	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/latest/win32/_pytransform.dll]

	Cross compile by i686-pc-mingw32-gcc in cygwin

	windows.x86_64

	Windows

	AMD64

	Anti-Debug, JIT, ADV

	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/latest/win_amd64/_pytransform.dll]

	Cross compile by x86_64-w64-mingw32-gcc in cygwin

	linux.x86

	Linux

	i686

	Anti-Debug, JIT, ADV

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/linux_i386/_pytransform.so]

	Built by GCC

	linux.x86_64

	Linux

	x86_64

	Anti-Debug, JIT, ADV

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/linux_x86_64/_pytransform.so]

	Built by GCC

	darwin.x86_64

	MacOSX

	x86_64, intel

	Anti-Debug, JIT, ADV

	_pytransform.dylib [http://pyarmor.dashingsoft.com/downloads/latest/macosx_x86_64/_pytransform.dylib]

	Built by CLang with MacOSX10.11

Table-2. The Others Prebuilt Libraries For PyArmor

	Name

	Platform

	Arch

	Features

	Download

	Description

	vs2015.x86

	Windows

	x86

	
	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/latest/vs2015/x86/_pytransform.dll]

	Built by VS2015

	vs2015.x86_64

	Windows

	x64

	
	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/latest/vs2015/x64/_pytransform.dll]

	Built by VS2015

	linxu.arm

	Linux

	armv5

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/armv5/_pytransform.so]

	32-bit Armv5 (arm926ej-s)

	linxu.armv6

	Linux

	armv6

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/linux.armv6.0/_pytransform.so]

	32-bit Armv6 (-marm -march=armv6 -mfloat-abi=hard)

	linux.armv7

	Linux

	armv7

	Anti-Debug, JIT

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/armv7/_pytransform.so]

	32-bit Armv7 Cortex-A, hard-float, little-endian

	linux.aarch32

	Linux

	aarch32

	Anti-Debug, JIT

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/armv8.32-bit/_pytransform.so]

	32-bit Armv8 Cortex-A, hard-float, little-endian

	linux.aarch64

	Linux

	aarch64

	Anti-Debug, JIT

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/armv8.64-bit/_pytransform.so]

	64-bit Armv8 Cortex-A, little-endian

	linux.ppc64

	Linux

	ppc64le

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/ppc64le/_pytransform.so]

	For POWER8

	darwin.arm64

	iOS

	arm64

	
	_pytransform.dylib [http://pyarmor.dashingsoft.com/downloads/latest/ios.arm64/_pytransform.dylib]

	Built by CLang with iPhoneOS9.3.sdk

	freebsd.x86_64

	FreeBSD

	x86_64

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/freebsd/_pytransform.so]

	Not support harddisk serial number

	alpine.x86_64

	Alpine Linux

	x86_64

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/alpine/_pytransform.so]

	Built with musl-1.1.21 for Docker

	alpine.arm

	Alpine Linux

	arm

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/alpine.arm/_pytransform.so]

	Built with musl-1.1.21, 32-bit Armv5T, hard-float, little-endian

	poky.x86

	Inel Quark

	i586

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/intel-quark/_pytransform.so]

	Cross compile by i586-poky-linux

	android.aarch64

	Android

	aarch64

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/android.aarch64/_pytransform.so]

	Build by android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/aarch64-linux-android21-clang

	android.armv7

	Android

	armv7l

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/android.armv7.0/_pytransform.so]

	Build by android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/armv7a-linux-android21-clang

	uclibc.armv7

	Linux

	armv7l

	
	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/uclibc.armv7.0/_pytransform.so]

	Build by armv7-buildroot-uclibceabihf-gcc

Table-3. The Prebuilt Extensions For Super Mode

	Name

	Platform

	Arch

	Features

	Download

	Description

	darwin.x86_64.11.py38

	MacOSX

	x86_64, intel

	Anti-Debug, JIT, SUPER

	pytransform.cpython-38-darwin.so [http://pyarmor.dashingsoft.com/downloads/latest/darwin.x86_64.11.py38/pytransform.cpython-38-darwin.so]

	Built by CLang with MacOSX10.11

	darwin.x86_64.11.py37

	MacOSX

	x86_64, intel

	Anti-Debug, JIT, SUPER

	pytransform.cpython-37m-darwin.so [http://pyarmor.dashingsoft.com/downloads/latest/darwin.x86_64.11.py37/pytransform.cpython-37-darwin.so]

	Built by CLang with MacOSX10.11

	darwin.x86_64.11.py27

	MacOSX

	x86_64, intel

	Anti-Debug, JIT, SUPER

	pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/darwin.x86_64.11.py27/pytransform.so]

	Built by CLang with MacOSX10.11

	linux.x86_64.11.py38

	Linux

	x86_64

	Anti-Debug, JIT, SUPER

	pytransform.cpython-38-x86_64-linux-gnu.so [http://pyarmor.dashingsoft.com/downloads/latest/linux.x86_64.11.py38/pytransform.cpython-38-x86_64-linux-gnu.so]

	Built by gcc

	linux.x86_64.11.py37

	Linux

	x86_64

	Anti-Debug, JIT, SUPER

	pytransform.cpython-37m-x86_64-linux-gnu.so [http://pyarmor.dashingsoft.com/downloads/latest/linux.x86_64.11.py37/pytransform.cpython-37m-x86_64-linux-gnu.so]

	Built by gcc

	linux.x86_64.11.py27

	Linux

	x86_64

	Anti-Debug, JIT, SUPER

	pytransform.so [http://pyarmor.dashingsoft.com/downloads/latest/linux.x86_64.11.py27/pytransform.so]

	Built by gcc

	windows.x86_64.11.py38

	Windows

	AMD64

	Anti-Debug, JIT, SUPER

	pytransform.pyd [http://pyarmor.dashingsoft.com/downloads/latest/windows.x86_64.11.py38/pytransform.pyd]

	Cross compile by x86_64-w64-mingw32-gcc in cygwin

	windows.x86_64.11.py37

	Windows

	AMD64

	Anti-Debug, JIT, SUPER

	pytransform.pyd [http://pyarmor.dashingsoft.com/downloads/latest/windows.x86_64.11.py37/pytransform.pyd]

	Cross compile by x86_64-w64-mingw32-gcc in cygwin

	windows.x86_64.11.py27

	Windows

	AMD64

	Anti-Debug, JIT, SUPER

	pytransform.pyd [http://pyarmor.dashingsoft.com/downloads/latest/windows.x86_64.11.py27/pytransform.pyd]

	Cross compile by x86_64-w64-mingw32-gcc in cygwin

The Modes of Obfuscated Scripts

PyArmor could obfuscate the scripts in many modes in order to balance the
security and performance. In most of cases, the default mode works fine. But if
the performace is to be bottle-block or in some special cases, maybe you need
understand what the differents of these modes and obfuscate the scripts in
different mode so that they could work as desired.

Super Mode

This feature Super Mode is introduced from PyArmor 6.2.0. In this mode the
structure of PyCode_Type is changed, and byte code or word code is mapped, it’s
the highest security level in PyArmor. There is only one runtime file required,
that is extension pytransform, and the form of obfuscated scripts is unique,
no so called Bootstrap Code which may make some users confused. All the
obfuscated scripts would be like this:

from pytransform import pyarmor
pyarmor(__name__, __file__, b'\x0a\x02...', 1)

It’s recommended to enable this mode in suitable cases. Now only the latest
Python versions are supported:

	Python 2.7

	Python 3.7

	Python 3.8

It may support Python 3.5, 3.6 later, but Python 3.0~3.4 is out of plan.

In order to enable it, set option --advanced 2 to obfuscate:

pyarmor obfuscate --advanced 2 foo.py

More usage refer to Using Super Mode

Advanced Mode

This feature Advanced Mode is introduced from PyArmor 5.5.0. In this mode
the structure of PyCode_Type is changed a little to improve the security. And a
hook also is injected into Python interpreter so that the modified code objects
could run normally. Besides if some core Python C APIs are changed unexpectedly,
the obfuscated scripts in advanced mode won’t work. Because this feature is
highly depended on the machine instruction set, it’s only available for x86/x64
arch now. And pyarmor maybe makes mistake if Python interpreter is compiled by
old gcc or some other C compiles. It’s welcome to report the issue if Python
interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to
enable it, pass option --advanced to command obfuscate:

pyarmor obfuscate --advanced 1 foo.py

In next minor version, this mode may be enabled by default.

Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to
be sure it works in advanced mode. Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

Note

In trial version the module could not be obfuscated by advanced
mdoe if there are more than about 30 functions in this module, (It
still could be obfuscated by non-advanced mode).

Obfuscating Code Mode

In a python module file, generally there are many functions, each
function has its code object.

	obf_code == 0

The code object of each function will keep it as it is.

	obf_code == 1 (Default)

In this case, the code object of each function will be obfuscated in
different ways depending on wrap mode.

	obf_code == 2

Almost same as obf_mode 1, but obfuscating bytecode by more complex
algorithm, and so slower than the former.

Wrap Mode

	wrap_mode == 0

When wrap mode is off, the code object of each function will be
obfuscated as this form:

0 JUMP_ABSOLUTE n = 3 + len(bytecode)

3 ...
 ... Here it's obfuscated bytecode of original function
 ...

n LOAD_GLOBAL ? (__armor__)
n+3 CALL_FUNCTION 0
n+6 POP_TOP
n+7 JUMP_ABSOLUTE 0

When this code object is called first time

	First op is JUMP_ABSOLUTE, it will jump to offset n

	At offset n, the instruction is to call PyCFunction
__armor__. This function will restore those obfuscated bytecode
between offset 3 and n, and move the original bytecode at offset 0

	After function call, the last instruction is to jump to
offset 0. The really bytecode now is executed.

After the first call, this function is same as the original one.

	wrap_mode == 1 (Default)

When wrap mode is on, the code object of each function will be wrapped
with try…finally block:

LOAD_GLOBALS N (__armor_enter__) N = length of co_consts
CALL_FUNCTION 0
POP_TOP
SETUP_FINALLY X (jump to wrap footer) X = size of original byte code

Here it's obfuscated bytecode of original function

LOAD_GLOBALS N + 1 (__armor_exit__)
CALL_FUNCTION 0
POP_TOP
END_FINALLY

When this code object is called each time

	__armor_enter__ will restore the obfuscated bytecode

	Execute the real function code

	In the final block, __armor_exit__ will obfuscate bytecode again.

Obfuscating module Mode

	obf_mod == 1 (Default)

The final obfuscated scripts would like this:

__pyarmor__(__name__, __file__, b'\x02\x0a...', 1)

The third parameter is serialized code object of the Python
script. It’s generated by this way:

PyObject *co = Py_CompileString(source, filename, Py_file_input);
obfuscate_each_function_in_module(co, obf_mode);
char *original_code = marshal.dumps(co);
char *obfuscated_code = obfuscate_whole_module(original_code);
sprintf(buffer, "__pyarmor__(__name__, __file__, b'%s', 1)", obfuscated_code);

	obf_mod == 0

In this mode, the last statement would be like this to keep the serialized module as it is:

sprintf(buffer, "__pyarmor__(__name__, __file__, b'%s', 0)", original_code);

And the final obfuscated scripts would be:

__pyarmor__(__name__, __file__, b'\x02\x0a...', 0)

All of these modes only could be changed in the project for now, refer to
Obfuscating Scripts With Different Modes

Restrict Mode

From PyArmor 5.7.0, the Bootstrap Code must be in the obfuscated scripts
and must be specified as entry script. For example, there are 2 scripts foo.py
and test.py in the same folder, obfuscated by this command:

pyarmor obfuscate foo.py

Inserting the bootstrap code into obfuscated script dist/test.py by manual
doesn’t work, because it’s not specified as entry script. It must be run this
command to insert the Bootstrap Code:

pyarmor obfuscate --no-runtime --exact test.py

If you need insert the Bootstrap Code into plain script, first obfuscate
an empty script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate --no-runtime --exact pytransform_bootstrap.py

Then import pytransform_bootstrap in the plain script.

From PyArmor 5.5.6, there are 4 restrice modes:

	Mode 1

In this mode, obfuscated scripts must be one of the following
formats:

__pyarmor__(__name__, __file__, b'...')

Or

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')

Or

from pytransform import pyarmor_runtime
pyarmor_runtime('...')
__pyarmor__(__name__, __file__, b'...')

No any other statement can be inserted into obfuscated scripts.

For examples, the obfuscate scirpt b.py doesn’t work, because there
is an extra line “print”:

$ cat b.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')
print(__name__)

$ python b.py

	Mode 2

In this mode, except that the obfuscated scripts can’t be changed, there are 2 restricts:

	The entry script must be obfuscated

	The obfuscated scripts could not be imported out of the obfuscated script

For example, this command will raise error if the foo.py is obfuscated by
restrict mode 2:

$ python -c'import foo'

	Mode 3

In this mode, there is another restrict base on Mode 2:

	All the functions in the obfuscated script cound not be called out of the
obfuscated scripts.

	Mode 4

It’s similar with Mode 3, but there is a exception:

	The entry script could be plain script

It’s mainly used for obfuscating Python package. The __init__.py is
obfuscated by restrict mode 1, all the other scripts are obfuscated by
restrict mode 4.

For example, it’s the content of mypkg/__init__.py

mypkg/
__init__.py is obfuscated by restrict mode 1
foo.py is obfuscated by restrict mode 4

The "foo.hello" could not be called by plain script directly
from .foo import hello

The "open_hello" could be called by plain scirpt
def open_hello(msg):
 print('This is public hello: %s' % msg)

The "proxy_hello" could be called by plain scirpt
def proxy_hello(msg):
 print('This is proxy hello: %s' % msg)
 # The "foo.hello" could be called by obfuscated "__init__.py"
 hello(msg)

Note

Mode 2 and 3 could not be used to obfuscate the Python package,
because it will be imported from other plain scripts.

Note

Restrict mode is applied to one single script, different scripts
could be obfuscated by different restrict mode.

From PyArmor 5.2, Restrict Mode 1 is default.

Obfuscating the scripts by other restrict mode:

pyarmor obfuscate --restrict=2 foo.py
pyarmor obfuscate --restrict=4 foo.py

For project
pyarmor config --restrict=2
pyarmor build -B

All the above restricts could be disabled by this way if required:

pyarmor obfuscate --restrict=0 foo.py

For project
pyarmor config --restrict=0
pyarmor build -B

For more examples, refer to Improving The Security By Restrict Mode

The Performance of Obfuscated Scripts

Run command banchmark to check the performance of obfuscated
scripts:

pyarmor benchmark

Here it’s sample output:

INFO Start benchmark test ...
INFO Obfuscate module mode: 1
INFO Obfuscate code mode: 1
INFO Obfuscate wrap mode: 1
INFO Benchmark bootstrap ...
INFO Benchmark bootstrap OK.
INFO Run benchmark test ...
Test script: bfoo.py
Obfuscated script: obfoo.py

load_pytransform: 28.429590911694085 ms
init_pytransform: 10.701080723946758 ms
verify_license: 0.515428636879825 ms
total_extra_init_time: 40.34842417122847 ms

import_no_obfuscated_module: 9.601499631936461 ms
import_obfuscated_module: 6.858413569322354 ms

re_import_no_obfuscated_module: 0.007263492985840059 ms
re_import_obfuscated_module: 0.0058666674116400475 ms

run_empty_no_obfuscated_code_object: 0.015085716201360122 ms
run_empty_obfuscated_code_object: 0.0058666674116400475 ms

run_one_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_one_thousand_obfuscated_bytecode: 0.005307937181960043 ms

run_ten_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_ten_thousand_obfuscated_bytecode: 0.005587302296800045 ms

INFO Remove test path: .\.benchtest
INFO Finish benchmark test.

The total extra init time is about 40ms. It includes the time of
loading dynamic library, initialzing it and verifing license.

Note that the time of importing obfuscated module is less than of
importing no obfuscated module, because the obfuscated scripts has
been compiled as byte-code, the original scripts need extra time to
compile.

List all available options:

pyarmor benchmark -h

Specify other options to check the performance in different mode. For
example:

pyarmor benchmark --wrap-mode 0

Look at the scripts used to run benchmark test:

pyarmor benchmark --debug

All the used files are saved in the folder .benchtest

The Security of PyArmor

PyArmor will obfuscate python module in two levels. First obfucate
each function in module, then obfuscate the whole module file. For
example, there is a file foo.py:

def hello():
 print('Hello world!')

def sum(a, b):
 return a + b

if __name == '__main__':
 hello()
 print('1 + 1 = %d' % sum(1, 1))

PyArmor first obfuscates the function hello and sum, then
obfuscates the whole moudle foo. In the runtime, only current called
function is restored and it will be obfuscated as soon as code object
completed execution. So even trace code in any c debugger, only a
piece of code object could be got one time.

Cross Protection for _pytransform

The core functions of PyArmor are written by c in the dynamic
library _pytransform. _pytransform protects itself by JIT
technical, and the obfuscated scripts is protected by _pytransform.
On the other hand, the dynamic library _pytransform is checked in
the obfuscated script to be sure it’s not changed. This is called
Cross Protection.

The dynamic library _pytransform.so uses JIT technical to achieve
two tasks:

	Keep the des key used to encrypt python scripts from tracing by any
c debugger

	The code segment can’t be changed any more. For example, change
instruction JZ to JNZ, so that _pytransform.so can execute
even if checking license failed

How JIT works?

First PyArmor defines an instruction set based on GNU lightning.

Then write some core functions by this instruction set in c file, maybe like this:

t_instruction protect_set_key_iv = {
 // function 1
 0x80001,
 0x50020,
 ...

 // function 2
 0x80001,
 0xA0F80,
 ...
}

t_instruction protect_decrypt_buffer = {
 // function 1
 0x80021,
 0x52029,
 ...

 // function 2
 0x80001,
 0xC0901,
 ...
}

Build _pytransform.so, calculate the codesum of code segment of
_pytransform.so

Replace the related instructions with real codesum got before, and
obfuscate all the instructions except “function 1” in c file. The
updated file maybe likes this:

t_instruction protect_set_key_iv = {
 // plain function 1
 0x80001,
 0x50020,
 ...

 // obfuscated function 2
 0xXXXXX,
 0xXXXXX,
 ...
}

t_instruction protect_decrypt_buffer = {
 // plain function 1
 0x80021,
 0x52029,
 ...

 // obfuscated function 2
 0xXXXXX,
 0xXXXXX,
 ...
}

Finally build _pytransform.so with this changed c file.

When running obfuscated script, _pytransform.so loaded. Once a
proected function is called, it will

	Generate code from function 1

	
	Run function 1:

	
	check codesum of code segment, if not expected, quit

	check tickcount, if too long, quit

	check there is any debugger, if found, quit

	clear hardware breakpoints if possible

	restore next function function 2

	Generate code from function 2

	Run function 2, do same thing as function 1

After repeat some times, the real code is called. All of that is to be
sure there is no breakpoint in protection code.

In order to protect _pytransform in Python script, some extra code
will be inserted into the entry script, refer to Special Handling of Entry Script

When Things Go Wrong

When there is in trouble, try to solve it by these ways.

As running pyarmor:

	Check the console output, is there any wrong path, or any odd information

	Run pyarmor with debug option -d to get more information. For example:

pyarmor -d obfuscate --recurisve foo.py

	Set Python debug flag to get more information. For example:

PYTHONDEBUG=y pyarmor obfuscate --recurisve foo.py

In Windows
set PYTHONDEBUG=y
pyarmor obfuscate --recurisve foo.py

As running the obfuscated scripts:

	Turn on Python debug option by -d to print more information. For example:

python -d obf_foo.py

After python debug option is on, there will be a log file pytransform.log
generated in the current path, which includes more debug information.

Segment fault

In the following cases, obfuscated scripts will crash

	Running obfuscated script by the debug version Python

	Obfuscating scripts by Python 2.6 but running the obfuscated scripts by Python 2.7

After PyArmor 5.5.0, some machines may be crashed because of advanced mode. A
quick workaround is to disable advanced mode by editing the file
pytransform.py which locates in the installed path of pyarmor , in
the function _load_library, uncomment about line 202. The final code looks
like this:

Disable advanced mode if required
m.set_option(5, c_char_p(1))

Bootstrap Problem

Could not find _pytransform

Generally, the dynamic library _pytransform is in the Runtime Package,
before v5.7.0, it’s in the same path of obfuscated scripts. It may be:

	_pytransform.so in Linux

	_pytransform.dll in Windows

	_pytransform.dylib in MacOS

First check whether the file exists. If it exists:

	Check the permissions of dynamic library

If there is no execute permissions in Windows, it will complain:
[Error 5] Access is denied

	Check whether ctypes could load _pytransform:

from pytransform import _load_library
m = _load_library(path='/path/to/dist')

	Try to set the runtime path in the Bootstrap Code of entry
script:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/dist')

Still doesn’t work, report an issue [https://github.com/dashingsoft/pyarmor/issues/]

ERROR: Unsupport platform linux.xxx

In some machines pyarmor could not recognize the platform and raise
error. If there is available dynamic library in the table Table-2. The Others Prebuilt Libraries For PyArmor. Just download it and save it
in the path ~/.pyarmor/platforms/SYSTEM/ARCH, this command
pyarmor -d download will also display this path at the beginning.

If there is no any available one, contact jondy.zhao@gmail.com if
you’d like to run pyarmor in this platform.

/lib64/libc.so.6: version ‘GLIBC_2.14’ not found

In some machines there is no GLIBC_2.14, it will raise this exception.

One solution is patching _pytransform.so by the following way.

First check version information:

readelf -V /path/to/_pytransform.so
...

Version needs section '.gnu.version_r' contains 2 entries:
 Addr: 0x00000000000056e8 Offset: 0x0056e8 Link: 4 (.dynstr)
 000000: Version: 1 File: libdl.so.2 Cnt: 1
 0x0010: Name: GLIBC_2.2.5 Flags: none Version: 7
 0x0020: Version: 1 File: libc.so.6 Cnt: 6
 0x0030: Name: GLIBC_2.7 Flags: none Version: 8
 0x0040: Name: GLIBC_2.14 Flags: none Version: 6
 0x0050: Name: GLIBC_2.4 Flags: none Version: 5
 0x0060: Name: GLIBC_2.3.4 Flags: none Version: 4
 0x0070: Name: GLIBC_2.2.5 Flags: none Version: 3
 0x0080: Name: GLIBC_2.3 Flags: none Version: 2

Then replace the entry of GLIBC_2.14 with GLIBC_2.2.5:

	Copy 4 bytes at 0x56e8+0x10=0x56f8 to 0x56e8+0x40=0x5728

	Copy 4 bytes at 0x56e8+0x18=0x5700 to 0x56e8+0x48=0x5730

Here are sample commands:

xxd -s 0x56f8 -l 4 _pytransform.so | sed "s/56f8/5728/" | xxd -r - _pytransform.so
xxd -s 0x5700 -l 4 _pytransform.so | sed "s/5700/5730/" | xxd -r - _pytransform.so

Note

From v5.7.9, this patch is not required. In cross-platform all you need to do
is specify the platform to centos6.x86_64 to fix this issue. For example:

pyarmor obfuscate --platform centos6.x86_64 foo.py

Obfuscating Scripts Problem

Warning: code object xxxx isn’t wrapped

It means this function isn’t been obfuscated, because it includes some
special instructions.

For example, there is 2-bytes instruction JMP 255, after the code
object is obfuscated, the operand is increased to 267, and the
instructions will be changed to:

EXTEND 1
JMP 11

In this case, it’s complex to obfuscate the code object with wrap
mode. So the code object is obfuscated with non wrap mode, but all the
other code objects still are obfuscated with wrap mode.

In current version add some unused code in this function so that the
operand isn’t the critical value may avoid this warning.

Note

Before v5.5.0, in this case the code object is left as it is.

Error: Try to run unauthorized function

If there is any file license.lic or pytransform.key in the current
path, pyarmor maybe reports this error. One solution is to remove all
of that files, the other solution to upgrade PyArmor to v5.4.5 later.

‘XXX’ codec can’t decode byte 0xXX

Add the exact source encode at the begin of the script. For example:

-*- coding: utf-8 -*-

Refer to https://docs.python.org/2.7/tutorial/interpreter.html#source-code-encoding

Why plugin doesn’t work

If the plugin script doesn’t work as expected, first check the plugin script
could be injected into the entry script by set Python debug flag:

In linux
export PYTHONDEBUG=y
In Windows
set PYTHONDEBUG=y

pyarmor obfuscate --exact --plugin check_ntp_time foo.py

It will generate patched file foo.py.pyarmor-patched, make sure the content
of plugin script has been inserted into the right place, and the verify function
will be executed.

Running Obfuscated Scripts Problem

The license.lic generated doesn’t work

The key is that the capsule used to obfuscate scripts must be same as
the capsule used to generate licenses.

The Global Capsule will be changed if the trial license file of
PyArmor is replaced with normal one, or it’s deleted occasionally
(which will be generated implicitly as running command pyarmor
obfuscate next time).

In any cases, generating new license file with the different capsule
will not work for the obfuscated scripts before. If the old capsule is
gone, one solution is to obfuscate these scripts by the new capsule
again.

NameError: name ‘__pyarmor__’ is not defined

No Bootstrap Code are executed before importing obfuscated
scripts.

When creating new process by Popen or Process in mod subprocess
or multiprocessing, to be sure that Bootstrap Code will be
called before importing any obfuscated code in sub-process. Otherwise
it will raise this exception.

Marshal loads failed when running xxx.py

	Check whether the version of Python to run obfuscated scripts is
same as the version of Python to obfuscate script

	Run obfuscated script by python -d to show more error message.

	Be sure the capsule used to generated the license file is same as
the capsule used to obfuscate the scripts. The filename of the
capsule will be shown in the console when the command is running.

_pytransform can not be loaded twice

When the function pyarmor_runtime is called twice, it will complaint
_pytransform can not be loaded twice

For example, if an obfuscated module includes the following lines:

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(....)

When importing this module from entry script, it will report this
error. The first 2 lines should be in the entry script only, not in
the other module.

This limitation is introduced from v5.1, to disable this check, just
edit pytransform.py and comment these lines in function
pyarmor_runtime:

if _pytransform is not None:
 raise PytransformError('_pytransform can not be loaded twice')

Note

This limitation has been removed from v5.3.5.

Check restrict mode failed

Use obfuscated scripts in wrong way, by default all the obfuscated
scripts can’t be changed any more.

Besides packing the obfuscated scripts will report this error
either. Do not pack the obfuscated scripts, but pack the plain scripts
directly.

For more information, refer to Restrict Mode

Protection Fault: unexpected xxx

Use obfuscated scripts in wrong way, by default, all the runtime files
can’t be changed any more. Do not touch the following files

	pytransform.py

	_pytransform.so/.dll/.dylib

For more information, refer to Special Handling of Entry Script

Run obfuscated scripts reports: Invalid input packet

If the scripts are obfuscated in different platform, check the notes in
Distributing Obfuscated Scripts To Other Platform

Before v5.7.0, check if there is any of license.lic or pytransform.key in
the current path. Make sure they’re generated for the obfuscated scripts. If
not, rename them or move them to other path.

Because the obfuscated scripts will first search the current path, then search
the path of runtime module pytransform.py to find the file license.lic and
pytransform.key. If they’re not generated for the obfuscated script, this
error will be reported.

OpenCV fails because of NEON - NOT AVAILABLE

In some Raspberry Pi platform, run the obfuscated scripts to import
OpenCV fails:

** ****************
* FATAL ERROR: *
* This OpenCV build doesn't support current CPU / HW configuration *
* *
* Use OPENCV_DUMP_CONFIG = 1 environment variable for details *
** ****************

Required baseline features:
NEON - NOT AVAILABLE
terminate called after throwing an instance of 'cv :: Exception'
 what (): OpenCV (3.4.6) /home/pi/opencv-python/opencv/modules/core/src/system.cpp:538: error:
(-215: Assertion failed) Missing support for required CPU baseline features. Check OpenCV build
configuration and required CPU / HW setup. in function 'initialize'

One solution is to specify optioin --platform to linux.armv7.0:

pyarmor obfuscate --platform linux.armv7.0 foo.py
pyarmor build --platform linux.armv7.0
pyarmor runtime --platform linux.armv7.0

The other solution is to set environment variable PYARMOR_PLATFORM
to linux.armv7.0. For examples:

PYARMOR_PLATFORM=linux.armv7.0 pyarmor obfuscate foo.py
PYARMOR_PLATFORM=linux.armv7.0 pyarmor build

Or,

export PYARMOR_PLATFORM=linux.armv7.0
pyarmor obfuscate foo.py
pyarmor build

Packing Obfuscated Scripts Problem

No module name pytransform

If report this error as running command pyarmor pack:

	Make sure the script specified in the command line is not obfuscated

	Run pack with extra option --clean to remove cached myscript.spec:

pyarmor pack --clean foo.py

PyArmor Registration Problem

Purchased pyarmor is not private

Even obfuscated with purchased version, license from trial version works:

	Make sure command pyarmor register shows correct registration information

	Make sure Global Capsule file ~/.pyarmor_capsule.zip is same as the one in the keyfile pyarmor-regfile-1.zip

	Try to reboot system.

Known Issues

Obfuscate scripts in cross platform

From v5.6.0 to v5.7.0, there is a bug for cross platform. The scripts obfuscated
in linux64/windows64/darwin64 don’t work after copied to one of this target
platform:

armv5, android.aarch64, ppc64le, ios.arm64, freebsd, alpine, alpine.arm, poky-i586

Misc. Questions

How easy is to recover obfuscated code

If someone tries to break the obfuscation, he first must be an expert in the
field of reverse engineer, and be an expert of Python, who should understand the
structure of code object of python, how python interpreter each instruction. If
someone of them start to reverse, he/she must step by step thousands of machine
instruction, and research the algorithm by machine codes. So it’s not an easy
thing to reverse pyarmor.

License

The software is distributed as Free To Use But Restricted. Free trial
version never expires, the limitations are

	The maximum size of code object is 32756 bytes in trial version

	The scripts obfuscated by trial version are not private. It means
anyone could generate the license file which works for these
obfuscated scripts.

	In trial version if obfuscating the Python scripts in advanced modes,
the limitation is no more than about 32 functions (code objects) in
one module.

	Without permission the trial version may not be used for the Python
scripts of any commercial product.

About the license file of obfuscated scripts, refer to The License File for Obfuscated Script

A registration code is required to obfuscate big code object or
generate private obfuscated scripts.

There are 2 basic types of licenses issued for the software. These are:

	A personal license for home users. The user purchases one license to
use the software on his own computer.

Home users may use their personal license to obfuscate all the
python scripts which are property of the license owner, to generate
private license files for the obfuscated scripts and distribute them
and all the required files to any other machine or device.

Home users could NOT obfuscate any python script which is NOT
property of the license owner.

	A enterprise license for business users. The user purchases one
license to use the software for one product serials of an
organization.

One product serials include the current version and any other latter
versions of the same product.

Business users may use their enterprise license on all computers and
embedded devices to obfuscate all the python scripts of this product
serials, to generate private license files for these obfuscated
scripts and distribute them and all the required files to any other
machine and device.

Without permission of the software owner the license purchased for
one product serials should not be used for other product
serials. Business users should purchase new license for different
product serials.

In any case, the software is only used to obfuscate the Python scripts
owned by the authorized person or enterprise. For example, if PyCharm
purchases one license, it’s no problem to obufscate any Python script
of PyCharm self, but it’s not allowed to apply this license to the Python
scripts just written in the PyCharm by someone else.

Purchase

To buy a license, please visit the following url

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT[300871197]=1

A registration keyfile generally named “pyarmor-regfile-1.zip” will be
sent to your email immediately after payment is completed
successfully. There are 3 files in the archive:

	REAME.txt

	license.lic (registration code)

	.pyarmor_capsule.zip (private capsule)

Run the following command to take this keyfile effects:

pyarmor register /path/to/pyarmor-regfile-1.zip

Check the registeration information:

pyarmor register

If the version of PyArmor < 5.6, unzip this registration file, then

	Copy “license.lic” in the archive to the installed path of PyArmor

	Copy “.pyarmor_capsule.zip” in the archive to user HOME path

After the registration keyfile takes effect, you need obfuscate the
scripts again.

Important

The registration code is valid forever, it can be used permanently. But it
may not work with new versions, although up to now it works with all of
versions.

Q & A

	Single PyArmor license purchased can be used on various machines for
obfuscation? or its valid only on one machine? Do we need to install license
on single machine and distribute obfuscate code?

It can be used on various machines, but one license only for one product.

	Single license can be used to obfuscate Python code that will run various
platforms like windows, various Linux flavors?

For all the features of current version, it’s yes. But in future versions,

I’m not sure one license could be used in all of platforms supported by

PyArmor.

	How long the purchased license is valid for? is it life long?

It’s life long. But I can’t promise it will work for the future version of PyArmor.

	Can we use the single license to obfuscate various versions of Python
package/modules?

Yes, only if they’re belong to one product.

	Is there support provided in case of issues encountered?

Report issue in github or send email to me.

	Does Pyarmor works on various Python versions?

Most of features work on Python27, and Python30~Python38, a few features

may only work for Python27, Python35 later.

	Are there plans to maintain PyArmor to support future released Python
versions?

Yes. The goal of PyArmor is let Python could be widely used in the

commercial softwares.

	What is the mechanism in PyArmor to identify whether modules belong to same
product? how it identifies product?

PyArmor could not identify it by itself, but I can check the obfuscated

scripts to find which registerred user distributes them. So I can find two

products are distributed by one same license.

	If product undergoes revision ie. version changes, can same license be used
or need new license?

Same license is OK.

Change Logs

6.2.1

	Fix issue(#244): when specify only one platform the obfuscated scripts raise exception:

[Errno 2] No such file or directory: 'xxx/_pytransform.so'

	Super mode supports windows.x86, linux.x86, linux.aarch64, linux.aarch32, linux.armv7

6.2.0

In this version, super mode is introduced to improve the security. In this
mode the structure of PyCode_Type is changed, and byte code or word code is
mapped, it’s the highest security level in PyArmor. There is only one runtime
file required, that is extension module pytransform, and the form of
obfuscated scripts is unique, no so called Bootstrap Code which may make
some users confused. All the obfuscated scripts would be like this

from pytransform import pyarmor
pyarmor(__name__, __file__, b'\x0a\x02...', 1)

It’s recommended to enable this mode in suitable cases. Now only the latest
Python versions are supported:

	Python 2.7

	Python 3.7

	Python 3.8

It may support Python 3.5, 3.6 later, but Python 3.0~3.4 is out of plan.

	Add new option –obf-mode, –obf-code, –wrap-mode to command obfuscate

	Add new value 2 for option –advanced to enable super mode, refer to Using Super Mode

	Fix multiprocessing issue: ValueError: __mp_main__.__spec__ is None (#232)

	The command runtime will generate default protection script pytransform_protection.py

	Add new option –cross-protection to command obfuscate to specify customized protection script

	The default cross protection code will not be injected the entry script if
–no-runtime is specified as obfuscating the scripts. In this case, use
option –cross-protection to specify one protection script

	Change the default capsule location from ~/.pyarmor_capsule.zip to
~/.pyarmor/.pyarmor_capsule.zip

	Add new functions get_user_data, assert_armored in runtime module pytransform

	Document how to store runtime file license.lic to any location [https://pyarmor.readthedocs.io/en/latest/advanced.html#storing-runtime-file-license-lic-to-any-location]

	Remove the trailing dot from harddisk serial number, it may impact the license verified.

6.1.0

	Add external plugin script assert_armored.py

	
	Enhance the command licenses:

	
	The final argument could be empty, for example, pyarmor licenses will
generate a default license to licenses/pyarmor/license.lic

	If the output is end with license.lic, it will not append any other path,
just save it as it is. For example, pyarmor licenses -O dist/license.lic
will save the final output to dist/license.lic

	Add new option –fixed, and document how to use this option to improve
the security [https://pyarmor.readthedocs.io/en/latest/advanced.html#binding-obfuscated-scripts-to-python-interpreter]

	In command pack, the default license will be generated with –fixed to
improve the security

6.0.2

	Refine the obfuscated code object to improve security

	Refine plugin code to make it clear
https://pyarmor.readthedocs.io/en/latest/how-to-do.html#how-to-deal-with-plugins

	Add internal plugin assert_armored and document basic usage
https://pyarmor.readthedocs.io/en/latest/advanced.html#checking-imported-function-is-obfuscated

6.0.1

	Fix restrict mode 3 bug: the obfuscated script crashes or complains of this
error: This function could not be called from the plain script (#219)

	Fix bug: the obfuscated script raises unknown opcode error when the script is
obfuscated by obf_code=2 if there is recursive function call

	Fix command init and config bug: the entry script is set to . other than
empty when passing --entry=""

	Fix bug: the traceback will print very long line if the obfuscated script
raises exception

	Fix bug: in some special cases the obfuscated scripts which are obfuscated
with --enable-suffix still conflict with other obfuscated packages

	Refine the error message as violating restrict mode

	The obfuscated script will raise exception RuntimeError other than quit
directly when something is wrong
Now it will print a pretty traceback to find where is the problem

	When generating license.lic for the obfuscated scripts, the license version
information will be embedded into the license file implicitly

	Do not transfer exception type to PytransformError as pyarmor initializes
failed

5.9.8

	Fix restrict mode 3 bug: the obfuscated function failed if it’s called from
generator function even in the obfuscated script.

	In pack command it will try to use the encoding coding: xxx in the first
comment line of .spec file

5.9.7

	Fix pack issue: it will raise UnicodeDecodeError when the source path
includes non-ascii characters(#217)

	Fix obfuscate issue for Python2: it will raise UnicodeDecodeError when the
source path includes non-ascii characters

	Refine pack command: it will print the output of PyInstaller to the console
either

5.9.6

	Refine pack command. Now it’s easy to pack the obfuscated scripts with an
exists .spec file, just specify it by -s, refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-with-customized-spec-file

5.9.5

	Change the plugin search policy, do not support enviorment variable
PYARMOR_PLUGIN, but search folder plugins in the pyarmor package path.

	Add a new path plugins in the package source, there are several common
plugins. So it’s easy to check internet time by this way:

pyarmor obfuscate --plugin check_ntp_time foo.py

Before that both of these lines should be inserted into foo.py:

{PyArmor Plugins}
PyArmor Plugin: check_ntp_time()

	Fix pack bug: pyi-makespec: error: unrecognized arguments: -y if
extra options are passed

	Document command pack in details:
https://pyarmor.readthedocs.io/en/latest/man.html#pack

5.9.4

	Fix pack issue: pyi-makespec doesn’t work

	Add new platform: uclibc-armv7

	Fix issue: guess encoding failed if there are non-ascii characters in the second line

	Document how to work with Nuitka,
https://pyarmor.readthedocs.io/en/latest/advanced.html#work-with-nuitka

5.9.3

	Add new option --enable-period-mode in the command licenses

	When running the obfuscated scripts it will check license periodly (per hour)
if the option --enable-period-mode is set in the license file

5.9.2

	Fix bug: the command pyarmor runtime –platform alpine.x86_64 raises error (#201)

	Fix bug: the platform linux.armv6 doesn’t work in Raspberry PI Zero W,
rebuild the dynamic library with -march=armv6 -mfloat-abi=hard -marm

5.9.1

	Python debugger and profile tool could work with the plain python
scripts even if the obfuscated packages are imported. Note that the
obfuscated scripts still couldn’t be traced.

	Refine pack command, use pyi-makespec to generate .spec file

	Fix advanced mode fails in some linux platforms

	Support platform linux.armv6

	Fix python38 issue: in the wrap mode the footer block isn’t executed

5.9.0

pyarmor-webui is published as a separated package, it has been removed from
source package of pyarmor. Now it’s a full feature webui, and could be installed
by pip install pyarmor-webui.

	Support environment variable PYARMOR_HOME as one extra path to find the
license.lic of pyarmor. Now the search order is:

	In the package path of pyarmor

	$PYARMOR_HOME/.pyarmor/license.lic

	$HOME/.pyarmor/license.lic

	$USERPROFILE/.pyarmor/license.lic (Only for Windows)

	In command licenses if option output is set, do not append extra path
licenses in the final output path

	In command obfuscate with option –exact, all the scripts list in the
command line will be taken as entry script.

	The last argument in command pack could be a project path or .json file

	Add new option --name in the command pack

	Add new project attribute license_file, bootstrap_code

	Add new option --with-license, --bootstrap in the command config

	Add new option --bootstrap in the command obfuscate

	The options --package-runtime doesn’t support 2 and 3, use
--bootstrap=2 or --bootstrap=3 instead

	For command licenses the generated license could be printed to stdout by
setting the option --output to stdout

5.8.9

	Fix cross platform issue for vs2015.x86 and vs2015.x86_64

	In command config add option --advanced as alias of --advanced-mode

5.8.8

	Fix issue: the obfuscated scripts will crash when importing the
packages obfuscated with advanced mode by other registered pyarmor

5.8.7

In this version, the scripts could be obfuscated with option --enable-suffix,
then the name of the runtime package and builtin functions will be unique. By
this way the scripts obfuscated by different capsule could run in the same
Python interpreter.

For example, the bootstrap code may like this with suffix _vax_000001:

from pytransform_vax_000001 import pyarmor_runtime
pyarmor_runtime(suffix="_vax_000001")

Refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#obfuscating-package-no-conflict-with-others

	Add option --enable-suffix in the commands obfuscate, config and runtime

	Add option --with-license in the command pack

	Fix issue: the executable file made by pack raises protection fault exception on MacOSX

5.8.6

	Raise exception other than sys.exit(1) when pyarmor_runtime fails

	Refine cross protection code to improve the security

	Fix issue: advanced mode fails in some MacOSX machines with python2.7

5.8.5

	Add platform data file index.json to source package

	Refine core library for platform MacOSX

5.8.4

	Fix issue: advanced mode doesn’t work in some MacOSX machines.

	Fix issue: can’t get the serial number of SSD harddisk in MacOSX platform

5.8.3

	Fix issue: the _pytransform.dll for windows.x86_64 is not latest

5.8.2

	Fix issue: the option --exclude in command obfuscate could not exclude .py files

	Refine command pack

5.8.1

	Fix issue: check license failed if there is no environment variable HOME in linux platform

	Add new value 3 for option --package-runtime, the bootstrap code will always use relative import with an extra leading dot

	The command runtime also generates bootstrap script pytransform_bootstrap.py

	Add option --inside in command runtime to generate bootstrap package pytransform_bootstrap

	Document how to run unittest of obfuscated scripts, refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#run-unittest-of-obfuscated-scripts

5.8.0

	Move the license file of pyarmor from the install path of pyarmor package to user home path ~/.pyarmor

	Refine error messages so that the users could solve most of problems by the hints.

	Refine command pack, use hook hook-pytransform.py to add the runtime files.

	The command pack supports customized spec file, refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-with-customized-spec-file

	In runtime module pytransform, the functions may raise Exception instead of PytransformError in some cases.

	In command register, add option --legency to store license.lic in the traditional way

	Fix platform name issue: in some linux platforms the platform name may not be right

5.7.10

	Fix new linux platform centos6.x86_64 issue: raise TypeError when run pyarmor twice.

5.7.9

	Support new linux platform centos6.x86_64, arch is x86_64, glibc < 2.14

	Do not print traceback if no option --debug specified as running pyarmor

5.7.8

	When the obfuscated scripts raise exception, eliminate the very long line from traceback to make it clear

5.7.7

	Fix issue: pyarmor load _pytransform.dll faild by 32-bit Python in 64-bit Windows.

5.7.6

	Add option --update for command download to update all the downloaded dynamic libraries automatically

	Fix issue: the obfuscated script raises unexpected exception when the license is expired

5.7.5

	Standardize platform names, refer to
https://pyarmor.readthedocs.io/en/v5.7.5/platforms.html#standard-platform-names

	Run obfuscated scripts in multiple platforms, refer to
https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#running-obfuscated-scripts-in-multiple-platforms

	Downloaded dynamic library files by command command will be saved in the
~/.pyarmor/platforms other than the installed path of pyarmor package.

	Refine platforms folder structure according to new standard platform name

	In command obfuscate, build, runtime, specify the option --platform
multiple times, so that the obfuscated scripts could run in these platforms

5.7.4

	Fix issue: command obfuscate fails if the option --src is specifed

5.7.3

	Refine pytransform to handle error message of core library

	Refine command online help message

	Sort the scripts being to obfuscated to fix some random errors (#143)

	Raise exception other than call sys.exit if pyarmor is called from another Python script directly

	
	In the function get_license_info of module pytransform

	
	Change the value to None if there is no corresponding information

	Change the key name expired to upper case EXPIRED

5.7.2

	Fix plugin codec issue (#138): ‘gbk’ codec can’t decode byte 0x82 in position 590: illegal multibyte sequence

	Project src may be relative path base on project path

	Refine plugin and document it in details: https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#how-to-deal-with-plugins

	Add common option --debug for pyarmor to show more information in the console

	Project commands, for examples build, cofig, the last argument supports any valid project configuration file

5.7.1

	Add command runtime to generate runtime package separately

	Add the first character as alias for command obfuscate, licenses, pack, init, config, build

	Fix cross platform obfuscating scripts don’t work issue (#136).
This bug should be exists from v5.6.0 to v5.7.0
Related target platforms armv5, android.aarch64, ppc64le, ios.arm64, freebsd, alpine, alpine.arm, poky-i586

5.7.0

There are 2 major changes in this version:

	The runtime files are saved in the separated folder pytransform as package:

dist/
 obf_foo.py

 pytransform/
 __init__.py
 license.lic
 pytransform.key
 ...

Upgrade notes:

	If you have generated new runtime file “license.lic”, it should be copied to
dist/pytransform other than dist/

	If you’d like to save the runtime files in the same folder with obfuscated
scripts as before, obfuscating the scripts with option package-runtime like
this:

pyarmor obfuscate --package-runtime=0 foo.py
pyarmor build --package-runtime=0

	The bootstrap code must be in the obfuscated scripts, and it must be entry
script as obfuscating.

Upgrade notes:

	If you have inserted bootstrap code into the obfuscated script dist/foo.py
which is obfuscated but not as entry script manually. Do it by this command
after v5.7.0:

pyarmor obfuscate --no-runtime --exact foo.py

	If you need insert bootstrap code into plain script, first obfuscate an empty
script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate --no-runtime --exact pytransform_bootstrap.py

Then import pytransform_bootstrap in the plain script.

Other changes:

	Change default value of project attribute package_runtime from 0 to 1

	Change default value of option --package-runtime from 0 to 1 in command obfuscate

	Add option --no-runtime for command obfuscate

	Add optioin --disable-restrict-mode for command licenses

5.6.8

	Add option --package-runtime in command obfuscate, config and build

	Add attribute package_runtime for project

	Refine default cross protection code

	Remove deprecated flag for option --src in command obfuscate

	Fix help message errors in command obfuscate

5.6.7

	Fix issue (#129): “Invalid input packet” on raspberry pi (armv7)

	Add new obfuscation mode: obf_code == 2

5.6.6

	Remove unused exported symbols from core libraries

5.6.5

	Fix win32 issue: verify license failed in some cases

	Refine core library to improve security

5.6.4

	Fix segmentation fault issue for Python 3.8

5.6.3

	Add option -x in command licenses to save extra data in the license file. It’s mainly used to extend license type.

5.6.2

	Fix pyarmor-webui start issue in some cases: can’t import name ‘_project’

5.6.1

	The command download will check the version of dynamic library to
be sure it works with the current PyArmor.

5.6.0

In this version, new private capsule, which use 2048 bits RSA key to
improve security for obfucated scripts, is introduced for purchased
users. All the trial versions still use one same public capsule
which use 1024 bits RSA keys. After purchasing PyArmor, a keyfile
which includes license key and private capsule will be sent to
customer by email.

For the previous purchased user, the old private capsules which are
generated implicitly by PyArmor after registered PyArmor still work,
but maybe not supported later. Contact jondy.zhao@gmail.com if you’d
like to use new private capsule.

The other changes:

	Command register are refined according to new private capsule

Upgrade Note for Previous Users

There are 2 solutions:

	Still use old license code.

It’s recommanded that you have generated some customized “license.lic”
for the obfuscated scrips and these “license.lic” files have been
issued to your customers. If use new key file, all the previous
“license.lic” does not work, you need generate new one and resend to
your customers.

Actually the command pip install –upgrade pyarmor does not overwrite the
purchased license code, you need not run command pyarmor register again. It
should still work, you can check it by run pyarmor -v.

Or in any machine in which old version pyarmor is running, compress the
following 2 files to one archive “pyarmor-regfile.zip”:

	license.lic, which locates in the installed path of pyarmor

	.pyarmor_capsule.zip, which locates in the user HOME path

Then register this keyfile in the new version of pyarmor

pyarmor register pyarmor-regfile.zip

	Use new key file.

It’s recommanded that you have not yet issued any customized “license.lic” to
your customers.

Forward the purchased email received from MyCommerce to jondy.zhao@gmail.com,
and the new key file will be sent to the registration email, no fee for this
upgrading.

5.5.7

	Fix webui bug: raise “name ‘output’ is not defined” as running packer

5.5.6

	Add new restrict mode 2, 3 and 4 to improve security of the obfuscated scripts, refer to Restrict Mode

	In command obfuscate, option --restrict supports new value 2, 3 and 4

	In command config, option --disable-restrict-mode is deprecrated

	In command config, add new option --restrict

	In command obfuscate the last argument could be a directory

5.5.5

	Win32 issue: the obfuscated scripts will print extra message.

5.5.4

	Fix issue: the output path isn’t correct when building a package with multiple entries

	Fix issue: the obfuscated scripts raise SystemError “unknown opcode” if advanced mode is enabled in some MacOS machines

5.5.3

	Fix issue: it will raise error “Invalid input packet” to import 2 independent obfuscated packages in 64-bit Windows.

5.5.2

	Fix bug of command pack: the obfuscated modules aren’t packed into the
bundle if there is an attribute _code_cache in the a.pure

5.5.1

	Fix bug: it could not obfuscate more than 32 functions in advanced mode even
pyarmor isn’t trial version.

	In command licenses, the output path of generated license file is truncated
if the registration code is too long, and all the invalid characters for path
are removed.

5.5.0

	Fix issue: Warning: code object xxxx isn’t wrapped (#59)

	Refine command download, fix some users could not download library file from pyarmor.dashingsoft.com

	Introduce advanced mode for x86/x64 arch, it has some limitations in trial version

	Add option --advanced for command obfuscate

	Add new property advanced_mode for project

A new feature Advanced Mode is introduced in this version. In this mode the
structure of PyCode_Type is changed a little to improve the security. And a hook
also is injected into Python interpreter so that the modified code objects could
run normally. Besides if some core Python C APIs are changed unexpectedly, the
obfuscated scripts in advanced mode won’t work. Because this feature is highly
depended on the machine instruction set, it’s only available for x86/x64 arch
now. And pyarmor maybe makes mistake if Python interpreter is compiled by old
gcc or some other C compiles. It’s welcome to report the issue if Python
interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to
enable it, pass option --advanced to command obfuscate. But in next minor
version, this mode may be enable by default.

Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to
be sure it works in advanced mode. Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

5.4.6

	Add option --without-license for command pack. Sample usage refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-to-one-executable-file

	Add option --debug for command pack. If this option isn’t set, all the build files will be removed after packing.

5.4.5

	Enhancement: In Linux support to get the serial number of NVME harddisk

	Fix issue: After run command register, pyarmor could not generate capsule if there is license.lic in the current path

5.4.4

	Fix issue: In Linux could not get the serial number of SCSI harddisk

	Fix issuse: In Windows the serial number is not right if the leading character is alpha number

5.4.3

	Add function get_license_code in runtime module pytransform, which mainly used in plugin to extend license type.
Refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

	Fix issue: the command download always shows trial version

5.4.2

	Option --exclude can use multiple times in command obfuscate

	Exclude build path automatically in command pack

5.4.1

	New feature: do not obfuscate functions which name starts with lambda_

	Fix issue: it will raise Protection Fault as packing obfuscated scripts to one file

5.4.0

	Do not obfuscate lambda functions by default

	Fix issue: local variable platname referenced before assignment

5.3.13

	Add option --url for command download

5.3.12

	Add integrity checks for the downloaded binaries (#85)

5.3.11

	Fix issue: get wrong harddisk’s serial number for some special cases in Windows

5.3.10

	Query harddisk’s serial number without administrator in Windows

5.3.9

	Remove the leading and trailing whitespace of harddisk’s serial number

5.3.8

	Fix non-ascii path issue in Windows

5.3.7

	Fix bug: the bootstrap code isn’t inserted correctly if the path of entry script is absolute path.

5.3.6

	Fix bug: protection code can’t find the correct dynamic library if distributing obfuscated scripts to other platforms.

	Document how to distribute obfuscated scripts to other platforms
https://pyarmor.readthedocs.io/en/latest/advanced.html#distributing-obfuscated-scripts-to-other-platform

5.3.5

	The bootstrap code could run many times in same Python interpreter.

	Remove extra . from the bootstrap code of __init__.py as building project without runtime files.

5.3.4

	Add command download used to download platform-dependent dynamic libraries

	Keep shell line for obfuscated entry scripts if there is first line starts with #!

	Fix issue: if entry script is not in the src path, bootstrap code will not be inserted.

5.3.3

	Refine benchmark command

	Document the performance of obfuscated scripts https://pyarmor.readthedocs.io/en/latest/performance.html

	Add command register to take registration code effects

	Rename trial license file license.lic to license.tri

5.3.2

	Fix bug: if there is only one comment line in the script it will raise IndexError as obfuscating this script.

5.3.1

	Refine pack command, and make output clear.

	Document plugin usage to extend license type for obufscated scripts. Refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

5.3.0

	In the trial version of PyArmor, it will raise error as obfuscating the code object which size is greater than 32768 bytes.

	Add option --plugin in command obfuscate

	Add property plugins for Project, and add option --plugin in command config

	Change default build path for command pack, and do not remove it after command finished.

5.2.9

	Fix segmentation fault issue for python3.5 and before: run too big obfuscated code object (>65536 bytes) will crash (#67)

	Fix issue: missing bootstrap code for command pack (#68)

	Fix issue: the output script is same as original script if obfuscating scripts with option --exact

5.2.8

	Fix issue: pyarmor -v complains not enough arguments for format string

5.2.7

	In command obfuscate add new options --exclude, --exact,
--no-bootstrap, --no-cross-protection.

	In command obfuscate deprecate the options --src, --entry,
--cross-protection.

	In command licenses deprecate the option --bind-file.

5.2.6

	Fix issue: raise codec exception as obfuscating the script of utf-8 with BOM

	Change the default path to user home for command capsule

	Disable restrict mode by default as obfuscating special script __init__.py

	Refine log message

5.2.5

	Fix issue: raise IndexError if output path is ‘.’ as building project

	For Python3 convert error message from bytes to string as checking license failed

	Refine version information

5.2.4

	Fix arm64 issue: verify rsa key failed when running the obufscated scripts(#63)

	Support ios (arm64) and ppc64le for linux

5.2.3

	Refine error message when checking license failed

	Fix issue: protection code raises ImportError in the package file __init.py__

5.2.2

	Improve the security of dynamic library.

5.2.1

	Fix issue: in restrict mode the bootstrap code in __init__.py will raise exception.

	Add option --cross-protection in command obfuscate

5.2.0

	Use global capsule as default capsule for project, other than creating new one for each project

	Add option --obf-code, --obf-mod, --wrap-mode, --cross-protection in command config

	Add new attributes for project: obf_code, obf_mod, wrap_mode, cross_protection

	Deprecrated project attributes obf_code_mode, obf_module_mode, use obf_code, obf_mod, wrap_mode instead

	Change the behaviours of restrict mode, refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#restrict-mode

	Change option --restrict in command obfuscate and licenses

	Remove option --no-restrict in command obfuscate

	Remove option --clone in command init

5.1.2

	Improve the security of PyArmor self

5.1.1

	Refine the procedure of encrypt script

	Reform module pytransform.py

	Fix issue: it will raise exception if no entry script when obfuscating scripts

	Fix issue: ‘gbk’ codec can’t decode byte 0xa1 in position 28 (#51)

	Add option --upgrade for command capsule

	Merge runtime files pyshield.key, pyshield.lic and product.key into pytransform.key

Upgrade notes

The capsule created in this version will include a new file
pytransform.key which is a replacement for 3 old runtime files:
pyshield.key, pyshield.lic and product.key.

The old capsule which created in the earlier version still works, it
stills use the old runtime files. But it’s recommended to upgrade the
old capsule to new version. Just run this command:

pyarmor capsule --upgrade

All the license files generated for obfuscated scripts by old capsule
still work, but all the scripts need to be obfuscated again to take
new capsule effects.

5.1.0

	Add extra code to protect dynamic library _pytransform when obfuscating entry script

	Fix compling error when obfuscating scripts in windows for Python 26/30/31 (newline issue)

5.0.5

	Refine protect_pytransform to improve security, refer to https://pyarmor.readthedocs.io/en/latest/security.html

5.0.4

	Fix get_expired_days issue, remove decorator dllmethod

	Refine output message of pyarmor -v

5.0.3

	Add option -q, --silent, suppress all normal output when running any PyArmor command

	Refine runtime error message, make it clear and more helpful

	Add new function get_hd_info in module pytransform to get hardware information

	Remove function get_hd_sn from module pytransform, use get_hd_info instead

	Remove useless function version_info, get_trial_days from module pytransform

	Remove attribute lib_filename from module pytransform, use _pytransform._name instead

	Add document https://pyarmor.readthedocs.io/en/latest/pytransform.html

	Refine document https://pyarmor.readthedocs.io/en/latest/security.html

5.0.2

	Export lib_filename in the module pytransform in order to protect
dynamic library _pytransform. Refer to

https://pyarmor.readthedocs.io/en/latest/security.html

5.0.1

Thanks to GNU lightning, from this version, the core routines are
protected by JIT technicals. That is to say, there is no binary code
in static file for core routines, they’re generated in runtime.

Besides, the pre-built dynamic library for linux arm32/64 are packed
into the source package.

Fixed issues:

	The module multiprocessing starts new process failed in obfuscated script:

AttributeError: ‘__main__’ object has no attribute ‘f’

4.6.3

	Fix backslash issue when running pack command with PyInstaller

	When PyArmor fails, if sys.flags.debug is not set, only print error message, no traceback printed

4.6.2

	Add option --options for command pack

	For Python 3, there is no new line in the output when pack command fails

4.6.1

	Fix license issue in 64-bit embedded platform

4.6.0

	Fix crash issue for special code object in Python 3.6

4.5.5

	Fix stack overflow issue

4.5.4

	Refine platform name to search dynamic library _pytransform

4.5.3

	Print the exact message when checking license failed to run obfuscated scripts.

4.5.2

	Add documentation https://pyarmor.readthedocs.io/en/latest/

	Exclude dist, build folder when executing pyarmor obfuscate –recursive

4.5.1

	Fix #41: can not find dynamic library _pytransform

4.5.0

	Add anti-debug code for dynamic library _pytransform

4.4.2

	Change default capsule to user home other than the source path of pyarmor

4.4.2

This patch mainly changes webui, make it simple more:

	WebUI : remove source field in tab Obfuscate, and remove ipv4 field in tab Licenses

	WebUI Packer: remove setup script, add output path, only support PyInstaller

4.4.1

	Support Py2Installer by a simple way

	For command obfuscate, get default src and entry from first argument, --src is not required.

	Set no restrict mode as default for new project and command obfuscate, licenses

4.4.0

	Pack obfuscated scripts by command pack

In this version, introduces a new command pack used to pack
obfuscated scripts with py2exe and cx_Freeze. Once the setup
script of py2exe or cx_Freeze can bundle clear python scripts,
pack could pack obfuscated scripts by single command: pyarmor
pack –type cx_Freeze /path/to/src/main.py

	Pack obfuscated scripts by WebUI packer

WebUI is well reformed, simple and easy to use.

http://pyarmor.dashingsoft.com/demo/index.html

4.3.4

	Fix start pyarmor issue for pip install in Python 2

4.3.3

	Fix issue: missing file in wheel

4.3.2

	Fix pip install issue in MacOS

	Refine sample scripts to make workaround for py2exe/cx_Freeze simple

4.3.1

	Fix typos in examples

	Fix bugs in sample scripts

4.3.0

In this version, there are three significant changes:

[Simplified WebUI](http://pyarmor.dashingsoft.com/demo/index.html)
[Clear Examples](src/examples/README.md), quickly understand the most features of Pyarmor
[Sample Shell Scripts](src/examples), template scripts to obfuscate python source files

	Simply webui, easy to use, only input one filed to obfuscate python scripts

	The runtime files will be always saved in the same path with obfuscated scripts

	Add shell scripts obfuscate-app, obfuscate-pkg,
build-with-project, build-for-2exe in src/examples, so that
users can quickly obfuscate their python scripts by these template
scripts.

	If entry script is __init__.py, change the first line of bootstrap
code from pytransform import pyarmor runtime to from .pytransform
import pyarmor runtime

	Rewrite examples/README.md, make it clear and easy to understand

	Do not generate entry scripts if only runtime files are generated

	Remove choice package for option --type in command init, only pkg reserved.

4.2.3

	Fix pyarmor-webui can not start issue

	Fix runtime-path issue in webui

	Rename platform name macosx_intel to macosx_x86_64 (#36)

4.2.2

	Fix webui import error.

4.2.1

	Add option --recursive for command obfuscate

4.1.4

	Rewrite project long description.

4.1.3

	Fix Python3 issue for get_license_info

4.1.2

	Add function get_license_info in pytransform.py to show license information

4.1.1

	Fix import main from pyarmor issue

4.0.3

	Add command capsule

	Find default capsule in the current path other than --src in command obfuscate

	Fix pip install issue #30

4.0.2

	Rename pyarmor.py to pyarmor-depreted.py

	Rename pyarmor2.py to pyarmor.py

	Add option --capsule, -disable-restrict-mode and --output for command licenses

4.0.1

	Add option --capsule for command init, config and obfuscate

	Deprecate option --clone for command init, use --capsule instead

	Fix sys.settrace and sys.setprofile issues for auto-wrap mode

3.9.9

	Fix segmentation fault issues for asyncio, typing modules

3.9.8

	Add documentation for examples (examples/README.md)

3.9.7

	Fix windows 10 issue: access violation reading 0x000001ED00000000

3.9.6

	Fix the generated license bind to fixed machine in webui is not correct

	Fix extra output path issue in webui

3.9.5

	Show registration code when printing version information

3.9.4

	Rewrite long description of package in pypi

3.9.3

	Fix issue: __file__ is not really path in main code of module when import obfuscated module

3.9.2

	Replace option --disable-restrict-mode with --no-restrict in command obfuscate

	Add option --title in command config

	Change the output path of entry scripts when entry scripts belong to package

	Refine document user-guide.md and mechanism.md

3.9.1

	Add option --type for command init

	Refine document user-guide.md and mechanism.md

3.9.0

This version introduces a new way auto-wrap to protect python code when it’s imported by outer scripts.

Refer to [Mechanism Without Restrict Mode](src/mechanism.md#mechanism-without-restrict-mode)

	Add new mode wrap for --obf-code-mode

	Remove func.__refcalls__ in __wraparmor__

	Add new project attribute is_package

	Add option --is-package in command config

	Add option --disable-restrict-mode in command obfuscate

	Reset build_time when project configuration is changed

	Change output path when is_package is set in command build

	Change default value of project when find __init__.py in comand init

	Project attribute entry supports absolute path

3.8.10

	Fix shared code object issue in __wraparmor__

3.8.9

	Clear frame as long as tb is not Py_None when call __wraparmor__

	Generator will not be obfucated in __wraparmor__

3.8.8

	Fix bug: the frame.f_locals still can be accessed in callback function

3.8.7

	The frame.f_locals of wrapper and wrapped function will return an empty dictionary once __wraparmor__ is called.

3.8.6

	The frame.f_locals of wrapper and wrapped function return an empty dictionary, all the other frames still return original value.

3.8.5

	The frame.f_locals of all frames will always return an empty dictionary to protect runtime data.

	Add extra argument tb when call __wraparmor__ in decorator wraparmor, pass None if no exception.

3.8.4

	Do not touch frame.f_locals when raise exception, let decorator wraparmor to control everything.

3.8.3

	Fix issue: option --disable-restrict-mode doesn’t work in command licenses

	Remove freevar func from frame.f_locals when raise exception in decorator wraparmor

3.8.2

	Change module filename to <frozen modname> in traceback, set attribute __file__ to real filename when running obfuscated scripts.

3.8.1

	Try to access original func_code out of decorator wraparmor is forbidden.

3.8.0

	Add option --output for command build, it will override the value in project configuration file.

	Fix issue: defalut project output path isn’t relative to project path.

	Remove extra file “product.key” after obfuscating scripts.

3.7.5

	Remove dotted name from filename in traceback, if it’s not a package.

3.7.4

	Strip __init__ from filename in traceback, replace it with package name.

3.7.3

	Remove brackets from filename in traceback, and add dotted prefix.

3.7.2

	Change filename in traceback to <frozen [modname]>, other than original filename

3.7.1

	Fix issue #12: module attribute __file__ is filename in build machine other than filename in target machine.

	Builtins function __wraparmor__ only can be used in the decorator wraparmor

3.7.0

	Fix issue #11: use decorator “wraparmor” to obfuscate func_code as soon as function returns.

	Document usage of decorator “wraparmor”, refer to src/user-guide.md#use-decorator-to-protect-code-objects-when-disable-restrict-mode

3.6.2

	Fix issue #8 (Linux): option –manifest broken in shell script

3.6.1

	Add option “Restrict Mode” in web ui

	Document restrict mode in details (user-guide.md)

3.6.0

	Introduce restrict mode to avoid obfuscated scripts observed from no obfuscated scripts

	Add option –disable-restrict-mode for command “config”

3.5.1

	Support pip install pyarmor

3.5.0

	Fix Python3.6 issue: can not run obfuscated scripts, because it uses a 16-bit wordcode instead of bytecode

	Fix Python3.7 issue: it adds a flag in pyc header

	Fix option –obf-module-mode=none failed

	Add option –clone for command “init”

	Generate runtime files to separate path “runtimes” when project runtime-path is set

	Add advanced usages in user-guide

3.4.3

	Fix issue: raise exception when project entry isn’t obfuscated

3.4.2

	Add webui to manage project

3.4.1

	Fix README.rst format error.

	Add title attribute to project

	Print new command help when option is -h, –help

3.4.0

Pyarmor v3.4 introduces a group new commands. For a simple package,
use command obfuscate to obfuscate scripts directly. For
complicated package, use Project to manage obfuscated scripts.

Project includes 2 files, one configure file and one project
capsule. Use manifest template string, same as MANIFEST.in of Python
Distutils, to specify the files to be obfuscated.

To create a project, use command init, use command info to
show project information. config to update project settings, and
build to obfuscate the scripts in the project.

Other commands, benchmark to metric performance, hdinfo to
show hardware information, so that command licenses can generate
license bind to fixed machine.

All the old commands capsule, encrypt, license are
deprecated, and will be removed from v4.

A new document src/user-guide.md is written for
this new version.

3.3.1

	Remove unused files in distribute package

3.3.0

In this version, new obfuscate mode 7 and 8 are introduced. The main
difference is that obfuscated script now is a normal python file (.py)
other than compiled script (.pyc), so it can be used as common way.

Refer to https://github.com/dashingsoft/pyarmor/blob/v3.3.0/src/mechanism.md

	Introduce new mode: 7, 8

	Change default mode from 3 to 8

	Change benchmark.py to test new mode

	Update webapp and tutorial

	Update usage

	Fix issue of py2exe, now py2exe can work with python scripts obfuscated by pyarmor

	Fix issue of odoo, now odoo can load python modules obfuscated by pyarmor

3.2.1

	Fix issue: the traceback of an exception contains the name “<pytransform>” instead of the correct module name

	Fix issue: All the constant, co_names include function name, variable name etc still are in clear text.
Refer to https://github.com/dashingsoft/pyarmor/issues/5

3.2.0

From this version, a new obfuscation mode is introduced. By this way,
no import hooker, no setprofile, no settrace required. The performance
of running or importing obfuscation python scripts has been remarkably
improved. It’s significant for Pyarmor.

	Use this new mode as default way to obfuscate python scripts.

	Add new script “benchmark.py” to check performance in target machine: python benchmark.py

	Change option “–bind-disk” in command “license”, now it must be have a value

3.1.7

	Add option “–bind-mac”, “–bind-ip”, “–bind-domain” for command “license”

	Command “hdinfo” show more information(serial number of hdd, mac address, ip address, domain name)

	Fix the issue of dev name of hdd for Banana Pi

3.1.6

	Fix serial number of harddisk doesn’t work in mac osx.

3.1.5

	Support MACOS

3.1.4

	Fix issue: load _pytransfrom failed in linux x86_64 by subprocess.Popen

	Fix typo in error messge when load _pytransfrom failed.

3.1.3

A web gui interface is introduced as Pyarmor WebApp， and support MANIFEST.in

	In encrypt command, save encrypted scripts with same file structure of source.

	Add a web gui interface for pyarmor.

	Support MANIFEST.in to list files for command encrypt

	Add option –manifest, file list will be written here

	DO NOT support absolute path in file list for command encrypt

	Option –main support format “NAME:ALIAS.py”

3.1.2

	Refine decrypted mechanism to improve performance

	Fix unknown opcode problem in recursion call

	Fix wrapper scripts generated by -m in command ‘encrypt’ doesn’t work

	Raise ImportError other than PytransformError when import encrypted module failed

3.1.1

In this version, introduce 2 extra encrypt modes to improve
performance of encrypted scripts.

	Fix issue when import encrypted package

	Add encrypted mode 2 and 3 to improve performance

	Refine module pyimcore to improve performance

3.0.1

It’s a milestone for Pyarmor, from this version, use ctypes import
dynamic library of core functions, other than by python extensions
which need to be built with every python version.

Besides, in this version, a big change which make Pyarmor could avoid
soure script got by c debugger.

	Use ctypes load core library other than python extentions which need
built for each python version.

	“__main__” block not running in encrypted script.

	Avoid source code got by c debugger.

	Change default outoupt path to “build” in command “encrypt”

	Change option “–bind” to “–bind-disk” in command “license”

	Document usages in details

2.6.1

	Fix encrypted scripts don’t work in multi-thread framework (Django).

2.5.5

	Add option ‘-i’ for command ‘encrypt’ so that the encrypted scripts will be saved in the original path.

2.5.4

	Verbose tracelog when checking license in trace mode.

	In license command, change default output filename to “license.lic.txt”.

	Read bind file when generate license in binary mode other than text mode.

2.5.3

	Fix problem when script has line “from __future__ import with_statement”

	Fix error when running pyarmor by 32bit python on the 64bits Windows.

	(Experimental)Support darwin_15-x86_64 platform by adding extensions/pytransform-2.3.3.darwin_15.x86_64-py2.7.so

2.5.2

	License file can mix expire-date with fix file or fix key.

	Fix log error: not enough arguments for format string

2.5.1

	License file can bind to ssh private key file or any other fixed file.

2.4.1

	Change default extension “.pyx” to “.pye”, because it confilcted with CPython.

	Custom the extension of encrypted scripts by os environment variable: PYARMOR_EXTRA_CHAR

	Block the hole by which to get bytescode of functions.

2.3.4

	The trial license will never be expired (But in trial version, the
key used to encrypt scripts is fixed).

2.3.3

	Refine the document

2.3.2

	Fix error data in examples of wizard

2.3.1

	Implement Run function in the GUI wizard

	Make license works in trial version

2.2.1

	Add a GUI wizard

	Add examples to show how to use pyarmor

2.1.2

	Fix syntax-error when run/import encrypted scripts in linux x86_64

2.1.1

	Support armv6

2.0.1

	Add option ‘–path’ for command ‘encrypt’

	Support script list in the file for command ‘encrypt’

	Fix issue to encrypt an empty file result in pytransform crash

1.7.7

	Add option ‘–expired-date’ for command ‘license’

	Fix undefined ‘tfm_desc’ for arm-linux

	Enhance security level of scripts

1.7.6

	Print exactaly message when pyarmor couldn’t load extension
“pytransform”

	Fix problem “version ‘GLIBC_2.14’ not found”

	Generate “license.lic” which could be bind to fixed machine.

1.7.5

	Add missing extensions for linux x86_64.

1.7.4

	Add command “licene” to generate more “license.lic” by project
capsule.

1.7.3

	Add information for using registration code

1.7.2

	Add option –with-extension to support cross-platform publish.

	Implement command “capsule” and add option –with-capsule so that we
can encrypt scripts with same capsule.

	Remove command “convert” and option “-K/–key”

1.7.1

	Encrypt pyshield.lic when distributing source code.

1.7.0

	Enhance encrypt algorithm to protect source code.

	Developer can use custom key/iv to encrypt source code

	Compiled scripts (.pyc, .pyo) could be encrypted by pyshield

	Extension modules (.dll, .so, .pyd) could be encrypted by pyshield

Index

 A
 | G
 | P

A

 	
 	assert_armored() (built-in function)

G

 	
 	get_expired_days() (built-in function)

 	get_hd_info() (built-in function)

 	
 	get_license_code() (built-in function)

 	get_license_info() (built-in function)

 	get_user_data() (built-in function)

P

 	
 	PytransformError

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 PyArmor’s Documentation

 		
 Installation

 		
 Verifying the installation

 		
 Installed commands

 		
 Clean uninstallation

 		
 Using PyArmor

 		
 Obfuscating Python Scripts

 		
 Distributing Obfuscated Scripts

 		
 Generating License For Obfuscated Scripts

 		
 Extending License Type

 		
 Obfuscating Single Module

 		
 Obfuscating Whole Package

 		
 Packing Obfuscated Scripts

 		
 Improving Security Further

 		
 Advanced Topics

 		
 Using Super Mode

 		
 Obfuscating Many Packages

 		
 Solve Conflicts With Other Obfuscated Libraries

 		
 Distributing Obfuscated Scripts To Other Platform

 		
 Obfuscating scripts with different features

 		
 Running Obfuscated Scripts In Multiple Platforms

 		
 Obfuscating Scripts By Other Python Version

 		
 Run bootstrap code in plain scripts

 		
 Run unittest of obfuscated scripts

 		
 Let Python Interpreter Recognize Obfuscated Scripts Automatically

 		
 Obfuscating Python Scripts In Different Modes

 		
 Using Plugin to Extend License Type

 		
 Bundle Obfuscated Scripts To One Executable File

 		
 Bundle obfuscated scripts with customized spec file

 		
 Improving The Security By Restrict Mode

 		
 Using Plugin To Improve Security

 		
 Using Inline Plugin To Check Dynamic Library

 		
 Checking Imported Function Is Obfuscated

 		
 Call pyarmor From Python Script

 		
 Check license periodly when the obfuscated script is running

 		
 Work with Nuitka

 		
 Work with Cython

 		
 Work with PyUpdater

 		
 Binding obfuscated scripts to Python interpreter

 		
 Customizing cross protection code

 		
 Storing runtime file license.lic to any location

 		
 Register multiple pyarmor in same machine

 		
 Examples

 		
 Obfuscating and Packing PyQt Application

 		
 Running obfuscated Django site with Apache and mod_wsgi

 		
 Using Project

 		
 Managing Obfuscated Scripts With Project

 		
 Obfuscating Scripts With Different Modes

 		
 Obfuscating Some Special Scripts With Child Project

 		
 Project Configuration File

 		
 Man Page

 		
 obfuscate

 		
 licenses

 		
 pack

 		
 hdinfo

 		
 init

 		
 config

 		
 build

 		
 info

 		
 check

 		
 banchmark

 		
 register

 		
 download

 		
 runtime

 		
 Understanding Obfuscated Scripts

 		
 Global Capsule

 		
 Obfuscated Scripts

 		
 Super Obfuscated Scripts

 		
 Entry Script

 		
 Bootstrap Code

 		
 Runtime Package

 		
 Runtime Files

 		
 The License File for Obfuscated Script

 		
 Key Points to Use Obfuscated Scripts

 		
 The Differences of Obfuscated Scripts

 		
 About Third-Party Interpreter

 		
 How PyArmor Does It

 		
 How to Obfuscate Python Scripts

 		
 How to Deal With Plugins

 		
 Special Handling of Entry Script

 		
 How to Run Obfuscated Script

 		
 How To Pack Obfuscated Scripts

 		
 Runtime Module pytransform

 		
 Contents

 		
 Examples

 		
 Support Platfroms

 		
 Standard Platform Names

 		
 Platform Tables

 		
 The Modes of Obfuscated Scripts

 		
 Super Mode

 		
 Advanced Mode

 		
 Obfuscating Code Mode

 		
 Wrap Mode

 		
 Obfuscating module Mode

 		
 Restrict Mode

 		
 The Performance of Obfuscated Scripts

 		
 The Security of PyArmor

 		
 Cross Protection for _pytransform

 		
 When Things Go Wrong

 		
 Segment fault

 		
 Bootstrap Problem

 		
 Could not find _pytransform

 		
 ERROR: Unsupport platform linux.xxx

 		
 /lib64/libc.so.6: version ‘GLIBC_2.14’ not found

 		
 Obfuscating Scripts Problem

 		
 Warning: code object xxxx isn’t wrapped

 		
 Error: Try to run unauthorized function

 		
 ‘XXX’ codec can’t decode byte 0xXX

 		
 Why plugin doesn’t work

 		
 Running Obfuscated Scripts Problem

 		
 The license.lic generated doesn’t work

 		
 NameError: name ‘__pyarmor__’ is not defined

 		
 Marshal loads failed when running xxx.py

 		
 _pytransform can not be loaded twice

 		
 Check restrict mode failed

 		
 Protection Fault: unexpected xxx

 		
 Run obfuscated scripts reports: Invalid input packet

 		
 OpenCV fails because of NEON - NOT AVAILABLE

 		
 Packing Obfuscated Scripts Problem

 		
 No module name pytransform

 		
 PyArmor Registration Problem

 		
 Purchased pyarmor is not private

 		
 Known Issues

 		
 Obfuscate scripts in cross platform

 		
 Misc. Questions

 		
 How easy is to recover obfuscated code

 		
 License

 		
 Purchase

 		
 Q & A

 		
 Change Logs

 		
 6.2.1

 		
 6.2.0

 		
 6.1.0

 		
 6.0.2

 		
 6.0.1

 		
 5.9.8

 		
 5.9.7

 		
 5.9.6

 		
 5.9.5

 		
 5.9.4

 		
 5.9.3

 		
 5.9.2

 		
 5.9.1

 		
 5.9.0

 		
 5.8.9

 		
 5.8.8

 		
 5.8.7

 		
 5.8.6

 		
 5.8.5

 		
 5.8.4

 		
 5.8.3

 		
 5.8.2

 		
 5.8.1

 		
 5.8.0

 		
 5.7.10

 		
 5.7.9

 		
 5.7.8

 		
 5.7.7

 		
 5.7.6

 		
 5.7.5

 		
 5.7.4

 		
 5.7.3

 		
 5.7.2

 		
 5.7.1

 		
 5.7.0

 		
 5.6.8

 		
 5.6.7

 		
 5.6.6

 		
 5.6.5

 		
 5.6.4

 		
 5.6.3

 		
 5.6.2

 		
 5.6.1

 		
 5.6.0

 		
 5.5.7

 		
 5.5.6

 		
 5.5.5

 		
 5.5.4

 		
 5.5.3

 		
 5.5.2

 		
 5.5.1

 		
 5.5.0

 		
 5.4.6

 		
 5.4.5

 		
 5.4.4

 		
 5.4.3

 		
 5.4.2

 		
 5.4.1

 		
 5.4.0

 		
 5.3.13

 		
 5.3.12

 		
 5.3.11

 		
 5.3.10

 		
 5.3.9

 		
 5.3.8

 		
 5.3.7

 		
 5.3.6

 		
 5.3.5

 		
 5.3.4

 		
 5.3.3

 		
 5.3.2

 		
 5.3.1

 		
 5.3.0

 		
 5.2.9

 		
 5.2.8

 		
 5.2.7

 		
 5.2.6

 		
 5.2.5

 		
 5.2.4

 		
 5.2.3

 		
 5.2.2

 		
 5.2.1

 		
 5.2.0

 		
 5.1.2

 		
 5.1.1

 		
 5.1.0

 		
 5.0.5

 		
 5.0.4

 		
 5.0.3

 		
 5.0.2

 		
 5.0.1

 		
 4.6.3

 		
 4.6.2

 		
 4.6.1

 		
 4.6.0

 		
 4.5.5

 		
 4.5.4

 		
 4.5.3

 		
 4.5.2

 		
 4.5.1

 		
 4.5.0

 		
 4.4.2

 		
 4.4.2

 		
 4.4.1

 		
 4.4.0

 		
 4.3.4

 		
 4.3.3

 		
 4.3.2

 		
 4.3.1

 		
 4.3.0

 		
 4.2.3

 		
 4.2.2

 		
 4.2.1

 		
 4.1.4

 		
 4.1.3

 		
 4.1.2

 		
 4.1.1

 		
 4.0.3

 		
 4.0.2

 		
 4.0.1

 		
 3.9.9

 		
 3.9.8

 		
 3.9.7

 		
 3.9.6

 		
 3.9.5

 		
 3.9.4

 		
 3.9.3

 		
 3.9.2

 		
 3.9.1

 		
 3.9.0

 		
 3.8.10

 		
 3.8.9

 		
 3.8.8

 		
 3.8.7

 		
 3.8.6

 		
 3.8.5

 		
 3.8.4

 		
 3.8.3

 		
 3.8.2

 		
 3.8.1

 		
 3.8.0

 		
 3.7.5

 		
 3.7.4

 		
 3.7.3

 		
 3.7.2

 		
 3.7.1

 		
 3.7.0

 		
 3.6.2

 		
 3.6.1

 		
 3.6.0

 		
 3.5.1

 		
 3.5.0

 		
 3.4.3

 		
 3.4.2

 		
 3.4.1

 		
 3.4.0

 		
 3.3.1

 		
 3.3.0

 		
 3.2.1

 		
 3.2.0

 		
 3.1.7

 		
 3.1.6

 		
 3.1.5

 		
 3.1.4

 		
 3.1.3

 		
 3.1.2

 		
 3.1.1

 		
 3.0.1

 		
 2.6.1

 		
 2.5.5

 		
 2.5.4

 		
 2.5.3

 		
 2.5.2

 		
 2.5.1

 		
 2.4.1

 		
 2.3.4

 		
 2.3.3

 		
 2.3.2

 		
 2.3.1

 		
 2.2.1

 		
 2.1.2

 		
 2.1.1

 		
 2.0.1

 		
 1.7.7

 		
 1.7.6

 		
 1.7.5

 		
 1.7.4

 		
 1.7.3

 		
 1.7.2

 		
 1.7.1

 		
 1.7.0

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

