PyArmor Documentation
Release 5.7.0

Jondy Zhao

Nov 19, 2019

Contents

Installation

1.1 Verifying the installation
1.2 Installed commands
1.3 Clean uninstallation

Using PyArmor

2.1 Obfuscating Python Scripts
2.2 Distributing Obfuscated Scripts
2.3 Generating License For Obfuscated Scripts
2.4 Extending License Type
2.5 Obfuscating Single Module

2.6 Obfuscating Whole Package
2.7 Packing Obfuscated Scripts

Advanced Topics

3.1 Obfuscating Many Packages
3.2 Distributing Obfuscated Scripts To Other Platform
3.3 Obfuscating Scripts By Other Version Of Python
3.4 Let Python Interpreter Recognize Obfuscated Scripts Automatically
3.5 Obfuscating Python Scripts In Different Modes
3.6 Using Plugin to Extend License Type
3.7 Bundle Obfuscated Scripts To One Executable File
3.8 Improving The Security By Restrict Mode
3.9 Checking Imported Function Is Obfuscated
3.10 About Third-Party Interpreter
3.11 Call pyarmor From Python Script

Examples

4.1 Obfuscating and Packing PyQt Application
4.2 Running obfuscated Django site with Apache and mod_wsgi

Using Project

5.1 Managing Obfuscated Scripts With Project
5.2 Obfuscating Scripts With Different Modes
5.3 Project Configuration File

Man Page

ENUSERUS I FS)

[eclie SREN IR o e NV N0 |

9

10

11

12

13

6.1 obfuscate e e e e e e e e e e e e
6.2 HCENSES . . . v v e e e e e e e e e e e e e e e
0.3 paCK . . . e e e e e
6.4 hdinfo. L e
6.5 INIL . . . e e e e e e e e e e e e
6.6 config L e e
6.7 build
6.8 Info . . . L e e e e
6.9 check e e e e
6.10 banchmark L e
6.11 T1egISter o e e e e e
6.12 download L e e e e e e e e
6.13 TUNLIME ot e e e e e e e e e e e e e e e
Understanding Obfuscated Scripts

7.1 Global Capsule e e e e e e e e
7.2 Obfuscated SCIiptS v o i i e e e e e e e e e e e e e e e e
7.3 BootstrapCode e e e e e e e e e
7.4 Runtime Package L e e e
7.5 The License File for Obfuscated Script e
7.6 Key Points to Use Obfuscated Scripts 0 0 i i e e e e e e
7.7 The Differences of Obfuscated Scripts. o 0 v i i v i e e e e
How PyArmor Does It

8.1 How to Obfuscate Python Scripts e
8.2 HowtoDeal With Plugins o e e e e e
8.3 Special Handling of Entry Script e
8.4 How to Run Obfuscated Script o . o o e e e e e
8.5 How To Pack Obfuscated Scripts o o o i e e
Runtime Module pytransform

0.1 Contents i v i e e e e e e e e e e e e e e e
0.2 Examples
Support Platfroms

10.1 Standard Platform Names e e e e e e e e e e
10.2 Platform Tables o e e e e e e e e e e e e e e e e e
The Modes of Obfuscated Scripts

11.1 Advanced Mode e e e e e e e e e e
11.2 Obfuscating Code Mode e
113 WrapMode o o e e e e e e e e e e e
11.4 Obfuscatingmodule Mode e e e e
11.5 Restrict Mode e e e e e e e e e

The Performance of Obfuscated Scripts

The Security of PyArmor

13.1

Cross Protection for _pytransform e e e e e

14 When Things Go Wrong

14.1
14.2
14.3
14.4

Segment fault L. e
Could not find _pytransform e e e e e e e e
The license.lic generated doesn’twork L e
NameError: name °__pyarmor__’isnotdefined

43
43
43
44
44
45
45
46

47
47
48
50
51
53

55
55
56

57
57
58

61
61
62
62
63
63

67

69
69

14.5 Marshal loads failed when running XXX.py . . .« v v v v v v i vt e e e e e e e e e e e
14.6 _pytransform cannotbe loaded twice L. e e
14.7 Checkrestrict mode failed L e
14.8 Protection Fault: unexpected XXX L
14.9 Warning: code object xxxx isn’twrapped L. Ll
14.10 Error: Try to run unauthorized function o
14.11 Run obfuscated scripts reports: Invalid inputpacket.
14.12 ‘XXX’ codec can’tdecode byte OXXX L L L e e e
14.13 /lib64/libc.so0.6: version ‘GLIBC_2.14’ notfound
14.14 Purchased pyarmor is DO Private o v v v v vt e et e e e e e e e e e e e e
14.15 No module name pytransform L e
14.16 ERROR: Unsupport platform HNUX.XXX oo v v ittt e e e e e e e e e

15 License
15.1 Purchase e e

16 Change Logs
16.1 5.7.6 . . o e
16.2 57,5 o e e e
16.3 574 e e e
16.4 5.7.3 e e
16.5 5.7.2 o e e e e
16.6 S5.7.1
16.7 S5.7.0 . . e
16.8 5.6.8 . . e
16.9 5.6.7 . e e e
16.10 5.6.6 . . o o i e e e e e
16.11 5.6.5 . . o o e e e
16.12 5.6.4 . . L
16.13 5.6.3 .« . e
16.14 5.6.2 . e e e e
16.15 5.6.1 o o
16.16 5.6.0 . . . o L e e
16.17 5.5.7 o e e
16.18 5.5.6 . . . o e e e e
16.19 5.5.5 & e e e
16.20 5.5.4 . e e
16.21 5,53 . o o e e e
16.22 5.5.2 e
16.23 5.5.1 .
16.24 5.5.0 . . . e e
16.25 5.4.6 . . e e e e
16.26 545 o e e e e
16.27 5.4.4 e e
16.28 5.4.3 . e
16.29 5.4.2 . e
16.30 5.4.1 o o e e e
16.31 5.4.0 « . o e e e
16.32 5.3.13 . o o e e
16.33 5.3.12 . o o e
1634 53,11 . o o o o e e e
16.35 53,10 . o o o o e e
16.30 5.3.9 . . e e
16.37 5.3.8 o o e e e

81
81
81
81
81
82
82
82
83
83
83
84
84
84
84
84
84
85
85
85
85
85
86
86
86
86
87
&7
87
87
87
87
87
87
88
88
88
88

1638 5.3.7 88

1639 5.3.6 . . 88
16,40 5.3.5 . . 88
16.41 5.3.4 L o e e 88
16.42 533 . L L e 89
1643 53.2 L L L e 89
16.44 53,1 89
16.45 53.0 . . 89
1646 5.2.9 . . &9
16.47 5.2.8 o o e 89
16.48 5.2.7 .« o o e 90
16,49 5.2.6 . . . 90
16.50 5.2.5 o 90
16.51 5.2.4 . . 90
16.52 5.2.3 o o e 90
16.53 5.2.2 0 o L e e 90
16.54 5.2.1 o 90
16.55 5.2.0 . 91
16.56 5.1.2 . 91
16.57 511 L o e 91
16.58 5.1.0 . . o o e 91
16.59 5.0.5 . . L e 92
16.60 5.0.4 .« . 92
16.61 5.0.3 . . . 92
16.62 5.0.2 . . . 92
16.63 5.0.1 . . . o e 92
16.64 4.6.3 e 92
16.65 4.6.2 . . . 93
16.660 4.6.1 93
16.67 4.6.0 93
16.68 4.5.5 . o . e 93
16.60 4.5.4 . . . e 93
16.70 4.5.3 93
16.71 4.5.2 o 93
16.72 4.5.1 . o o 93
16.73 4.5.0 . o o e e 93
1674 442 . . L . L e 94
16.75 4.4.2 o 94
16.76 4.4.1 . o 94
1677 4.4.0 . . . 94
1678 4.3.4 . 94
1679 4.3.3 o o e 94
16.80 4.3.2 . . L e 94
16.81 4.3.1 o 95
16.82 4.3.0 . . 95
16.83 4.2.3 . . 95
16.84 4.2.2 . e 95
16.85 42,1 . . o o e 95
16.86 4.1.4 .« o o L 95
16.87 4.1.3 o 96
16.88 4.1.2 . . 96
16.89 4. 1.1 . . o o 96
1690 4.0.3 96

1691 4.0.2 . . . L e e 96

16.92 4.0.1 . 96

16.93 3.9.9 . 96
16.94 3.9.8 . . 96
16.95 3.9.7 . o e 97
16.96 3.9.6 e 97
16.97 3.9.5 . 97
16.98 3.9.4 . . L 97
16.99 3.9.3 . . 97
16.1003.9.2 . . . o o 97
16.1013.9.1 . o o e 97
16.1023.9.0 e 97
16.103.8.10 . . . o o o 98
16.1043.8.9 . . . 98
16.1053.8.8 98
16.1063.8.7 . o o e e 98
16.1073.8.6 . . o o e 98
16.1083.8.5 . . . 98
16.10DB.8.4 . . o 99
16.11MB.8.3 . . o o 99
T16.1113.8.2 . o e e 99
I6.1123.8.1 . . o o e 99
16.1133.8.0 . . . o e 99
L6.1143.77.5 o o 99
L16.1153.7.4 . . 99
16.1163.77.3 . . 99
16117372 L oo e 99
T6.118.7.1 o o o e 100
L6.11DB.7.0 .« o o 100
16.120B.6.2 e 100
16.1213.6.1 . . . 100
16.1223.6.0 . . . e e 100
16.1233.5.1 . o o o e 100
16.1243.5.0 .« . . 100
16.1253.4.3 . . 101
16.1263.4.2 . . . 101
16127341 L o e e 101
16.1283.4.0 e 101
16.129.3.1 . . o e 101
16.1303.3.0 . . . 101
16.1313.2.1 . o 102
16.1323.2.0 . . . 102
16133317 o o o 102
16.1343.1.6 e 102
16.1353.1.5 .« o o 102
16.1363.1.4 . . . 102
16.13.1.3 . o 103
T6.138.1.2 . o e e 103
LI6.13B.1 o o e 103
16.140.0.1 .« . o o 103
16.1412.6.1 . . . 104
L6.1422.5.5 . . o 104
16.1432.5.4 . o o oo 104
16.1442.5.3 . L L o e 104
16.1452.5.2 . L L o e e 104

16.14@.5.1 . o o 104

TO.1AT2.4.1 . o e e e e 104
16.1482.3.4 . . . e e e 105
16.1492.3.3 . . e e e 105
16.1502.3.2 o . o e 105
L6.1512.3.1 . o o e 105
T6.1522.2.1 . . o e e e 105
L6.1532. 1.2 . o o o e e e e e e 105
16.058.1.1 . o e e e e e e 105
16.1552.0.1 . . o L e e e e 105
16.1561.7.7 . . o o e 106
L6.1571.7.6 . . o o e e e e 106
16.1581.7.5 . . o e e e e e 106
16.1591.7.4 . e e e e e 106
16.1601.7.3 . . . e e e 106
16.1611.7.2 . . o e e 106
T6.1621.7.1 . . o e e e e e 106
16.1631.7.0 . . o o e e e e e 107
17 Indices and tables 109
Index 111

vi

PyArmor Documentation, Release 5.7.0

Version PyArmor 5.7

Homepage http://pyarmor.dashingsoft.com/

Contact jondy.zhao@gmail.com

Authors Jondy Zhao

Copyright This document has been placed in the public domain.

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts. It protects Python scripts by the following ways:

* Obfuscate code object to protect constants and literal strings.
» Obfuscate co_code of each function (code object) in runtime.
* Clear f_locals of frame as soon as code object completed execution.
* Verify the license file of obfuscated scripts while running it.
PyArmor supports Python 2.6, 2.7 and Python 3.
PyArmor is tested against Windows, Mac OS X, and Linux.

PyArmor has been used successfully with FreeBSD and embedded platform such as Raspberry Pi, Banana
Pi,Orange Pi,TS-4600 / TS-7600 etc. butis not fullly tested against them.

Contents:

Contents 1

http://pyarmor.dashingsoft.com/
mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.7.0

2 Contents

CHAPTER 1

Installation

PyArmor is a normal Python package. You can download the archive from PyPi, but it is easier to install using pip
where is available, for example:

’pip install pyarmor

or upgrade to a newer version:

’pip install --upgrade pyarmor

1.1 Verifying the installation

On all platforms, the command pyarmor should now exist on the execution path. To verify this, enter the command:

’pyarmor —-—version

The result should show PyArmor Version X.Y.ZorPyArmor Trial Version X.Y.Z.

If the command is not found, make sure the execution path includes the proper directory.

1.2 Installed commands

The complete installation places these commands on the execution path:
* pyarmor is the main command. See Using PyArmor.
* pyarmor-webui is used to open a simple web ui of PyArmor.

If you do not perform a complete installation (installing via pip), these commands will not be installed as commands.
However, you can still execute all the functions documented below by running Python scripts found in the distribution
folder. The equivalent of the pyarmor command is pyarmor—folder/pyarmor.py, and of pyarmor-webui
is pyarmor—folder/pyarmor-webui.py.

https://pypi.python.org/pypi/pyarmor/
http://www.pip-installer.org/

PyArmor Documentation, Release 5.7.0

1.3 Clean uninstallation

The following files are created by pyarmor after it has been installed:

{pyarmor-folder}/license.lic

~/.pyarmor_capsule.zip
~/.pyarmor/platforms/

Run the following commands to make a clean uninstallation:

pip uninstall pyarmor

rm —-rf {pyarmor—-folder}
rm ~/.pyarmor_capsule.zip
rm -rf ~/.pyarmor/platforms

Chapter 1. Installation

CHAPTER 2

Using PyArmor

The syntax of the pyarmor command is:

pyarmor [command] [options]

2.1 Obfuscating Python Scripts

Use command obfuscate to obfuscate python scripts. In the most simple case, set the current directory to the location
of your program myscript . py and execute:

’pyarmor obfuscate myscript.py

PyArmor obfuscates myscript .py and all the = . py in the same folder:
e Create .pyarmor_capsule.zip in the HOME folder if it doesn’t exists.
* Creates a folder dist in the same folder as the script if it does not exist.
e Writes the obfuscated myscript .py in the dist folder.
* Writes all the obfuscated * . py in the same folder as the script in the dist folder.
» Copy runtime files used to run obfuscated scripts to the dist folder.

In the dist folder the obfuscated scripts and all the required files are generated:

dist/
myscript.py

pytransform/
__init__ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

PyArmor Documentation, Release 5.7.0

The extra folder pytransform called Runtime Package, it’s required to run the obfuscated script.

Normally you name one script on the command line. It’s entry script. The content of myscript .py would be like
this:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ (__name__, file. , b'\x06\x0£f...")

The first 2 lines called Bootstrap Code, are only in the entry script. They must be run before using any obfuscated file.
For all the other obfuscated « . py, there is only last line:

__pyarmor__ (__name__, _ file__, b'\x0a\x02...")

Run the obfuscated script:

cd dist
python myscript.py

By default, only the » .py in the same path as the entry script are obfuscated. To obfuscate all the % .py in the
sub-folder recursively, execute this command:

’pyarmor obfuscate —-recursive myscript.py

2.2 Distributing Obfuscated Scripts

Just copy all the files in the output path dist to end users. Note that except the obfuscated scripts, the Runtime Package
need to be distributed to end users too.

The Runtime Package may not with the obfuscated scripts, it could be moved to any Python path, only if import
pytransform works.

About the security of obfuscated scripts, refer to The Security of PyArmor

Note: PyArmor need NOT be installed in the runtime machine

2.3 Generating License For Obfuscated Scripts

Use command licenses to generate new 1icense. lic for obfuscated scripts.

By default there is dist /pytransform/license.lic generated by command obfuscate. It allows obfuscated
scripts run in any machine and never expired.

Generate an expired license for obfuscated script:

pyarmor licenses —--expired 2019-01-01 product-001

PyArmor generates new license file:
* Read data from .pyarmor_capsule.zip in the HOME folder
¢ Create l1icense.licinthe licenses/product—-001 folder

* Create license.lic.txt inthe licenses/product-001 folder

6 Chapter 2. Using PyArmor

PyArmor Documentation, Release 5.7.0

Overwrite default license with new one:

cp licenses/code-001/license.lic dist/pytransform/

Run obfuscated script with new license, It will report error after Jan. 1, 2019:

cd dist
python myscript.py

Generate license to bind obfuscated scripts to fixed machine, first get hardware information:

pyarmor hdinfo

Then generate new license bind to harddisk serial number and mac address:

pyarmor licenses —-bind-disk "100304PBN2081SF3NJS5T" —-bind-mac "20:cl:d2:2f:a0:96"
—~code-002

Run obfuscated script with new license:

cp licenses/code-002/license.lic dist/pytransform/

cd dist/
python myscript.py

Note: Before v5.7.0, the default 1icense. 1ic locates in the path dist other than dist/pytransform

2.4 Extending License Type

It’s easy to extend any other licese type for obfuscated scripts: just add authentication code in the entry script.
The script can’t be changed any more after it is obfuscated, so do whatever you want in your script. In this case the
Runtime Module pytransform would be useful.

The prefer way is Using Plugin to Extend License Type. The advantage is that your scripts needn’t be changed at all.
Just write authentication code in a separated script, and inject it in the obfuscated scripts as obfuscating. For more
information, refer to How to Deal With Plugins

Here are some plugin examples

https://github.com/dashingsoft/pyarmor/tree/master/plugins

2.5 Obfuscating Single Module

To obfuscate one module exactly, use option ——exact:

’pyarmor obfuscate —-exact foo.py

Only foo.py is obfuscated, now import this obfuscated module:

cd dist
python -c¢ "import foo"

2.4. Extending License Type 7

https://github.com/dashingsoft/pyarmor/tree/master/plugins

PyArmor Documentation, Release 5.7.0

2.6 Obfuscating Whole Package

Run the following command to obfuscate a package:

’pyarmor obfuscate —--recursive --output dist/mypkg mykpg/__init__ .py

To import the obfuscated package:

cd dist
python -c¢ "import mypkg"

2.7 Packing Obfuscated Scripts

Use command pack to pack obfuscated scripts into the bundle.

First install PyInstaller:

’pip install pyinstaller

Set the current directory to the location of your program myscript . py and execute:

’pyarmor pack myscript.py

PyArmor packs myscript.py:

¢ Execute pyarmor obfuscate to obfuscate myscript.py

* Execute pyinstaller myscipt.py tocreate myscript.spec

* Update myscript . spec, replace original scripts with obfuscated ones

e Execute pyinstaller myscript.spec to bundle the obfuscated scripts
In the dist /myscript folder you find the bundled app you distribute to your users.

Run the final executeable file:

dist/myscript/myscript

Check the scripts have been obfuscated. It should return error:

rm dist/myscript/license.lic
dist/myscript/myscript

Generate an expired license for the bundle:

pyarmor licenses --expired 2019-01-01 code-003
cp licenses/code-003/license.lic dist/myscript

dist/myscript/myscript

For complicated cases, refer to command pack and How To Pack Obfuscated Scripts.

8 Chapter 2

. Using PyArmor

CHAPTER 3

Advanced Topics

3.1 Obfuscating Many Packages

There are 3 packages: pkgl, pkg2, pkg2. All of them will be obfuscated, and use shared runtime files.

First change to work path, create 3 projects:

mkdir build
cd build

pyarmor init --src /path/to/pkgl --entry _ _init_ .py pkgl
pyarmor init --src /path/to/pkg2 ——-entry __init__ .py pkg2
pyarmor init --src /path/to/pkg3 —--entry __init__ .py pkg3

Then make the Runtime Package, save it in the path dist:

pyarmor build —--output dist —--only-runtime pkgl

Next obfuscate 3 packages, save them in the dist:

pyarmor build —--output dist —--no-runtime pkgl
pyarmor build —--output dist —--no-runtime pkg2
pyarmor build —--output dist —--no-runtime pkg3

Check all the output and test these obfuscated packages:

ls dist/

cd dist

python -c¢ '"import pkgl
import pkg2

import pkg3'

PyArmor Documentation, Release 5.7.0

Note: The runtime package pytransform in the output path dist also could be move to any other Python path,
only if it could be imported.

From v5.7.2, the Runtime Package also could be generate by command runtime separately:

’pyarmor runtime

3.2 Distributing Obfuscated Scripts To Other Platform

First list all the avaliable platform names by command download:

pyarmor download
pyarmor download —-help-platform

Display the detials with option ——11ist:

pyarmor download —-list
pyarmor download --list windows
pyarmor download —--list windows.x86_64

If the target platform is one of Table-1. Prebuilt Libraries Distributed with PyArmor, it could be used directly. Other-
wise download it by platform name:

pyarmor download linux.armv7

Then specify platform name when obfuscating the scripts:

pyarmor obfuscate —-platform linux.armv7 foo.py

For project
pyarmor build —--platform linux.armv7

3.2.1 Running Obfuscated Scripts In Multiple Platforms
From v5.7.5, the platform names are standardized, all the available platform names list here Standard Platform Names.
And the obfuscated scripts could be run in multiple platforms.

In order to support multiple platforms, all the dynamic libraries for these platforms need to be copied to Runtime
Package. For example, obfuscating a script could run in Windows/Linux/MacOS:

pyarmor obfuscate —-platform windows.x86_64 \
——platform linux.x86_64 \
——platform darwin.x86_64 \
foo.py

The Runtime Package also could be generated by command runtime once, then obfuscate the scripts without runtime
files. For examples:

pyarmor runtime —--platform windows.x86_64 —-platform linux.x86_64 —-platform darwin.
—x86_064
pyarmor obfuscate ——no-runtime --recursive \

(continues on next page)

10 Chapter 3. Advanced Topics

PyArmor Documentation, Release 5.7.0

(continued from previous page)

—--platform windows.x86_64 —-platform linux.x86_64 --platform darwin.
foo.py

Because the obfuscated scripts will check the dynamic library, the platforms must be specified even if there is option
——no-runtime. Butif the option ——no-cross-protection is specified, the obfuscated scripts will not check
the dynamic library, so no platform is required. For example:

pyarmor obfuscate —--no-runtime --recursive --no-cross-protection foo.py

Note: After pyarmor is upgraded, these downloaded dynamic libraries are still old. If the obfuscated scripts don’t
work in other platforms, run command download again to download the latest dynamic library.

From v5.7.6, the following command could update all these downloaded files:

’pyarmor download —-update

3.3 Obfuscating Scripts By Other Version Of Python

If there are multiple Python versions installed in the machine, the command pyarmor uses default Python. In case the
scripts need to be obfuscated by other Python, run pyarmor by this Python explicitly.

For example, first find pyarmor.py:

’find /usr/local/lib -name pyarmor.py

Generally it should be in the /usr/local/lib/python2.7/dist-packages/pyarmor in most of linux.

Then run pyarmor as the following way:

’/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py

It’s convenient to create a shell script /usr/local/bin/pyarmor3, the content is:

’/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py "$*"

And

’chmod +x /usr/local/bin/pyarmor3

then use pyarmor3 as before.

In the Windows, create a bat file pyarmor3.bat, the content would be like this:

’C:\Python36\python C:\Python27\Lib\site-packages\pyarmor\pyarmor.py %=

3.4 Let Python Interpreter Recognize Obfuscated Scripts Automati-
cally

In a few cases, if Python Interpreter could recognize obfuscated scripts automatically, it will make everything simple:

3.3. Obfuscating Scripts By Other Version Of Python 11

PyArmor Documentation, Release 5.7.0

Almost all the obfuscated scripts will be run as main script
* In the obfuscated scripts call multiprocessing to create new process
* Or call Popen, os.exec etc. to run any other obfuscated scripts
e ...

Here are the base steps:

1. First create the Runtime Package with empty entry script:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate pytransform_bootstrap.py

2. Move the Runtime Package dist/pytransform to Python system library. For example:

For windows
mv dist/pytransform C:/Python37/Lib/site-packages/

For linux
mv dist/pytransform /usr/local/lib/python3.5/dist-packages/

3. Move obfuscated bootstrap script dist/pytransform_bootstrap.py to Python system library:

mv dist/pytransform_bootstrap.py C:/Python37/Lib/
mv dist/pytransform_bootstrap.py /usr/lib/python3.5/

4. Edit lib/site.py (on Windows) or lib/pythonX.Y/site.py (on Linux), import pytransform_bootstrap before the line

>

if _name__=="‘_main__":

import pytransform bootstrap

if name == main :

It also could be inserted into the end of function site.main, or anywhere they could be executed as module sife is
imported.

After that python could run the obfuscated scripts directly, becausee the module site is automatically imported during
Python initialization.

Refer to https://docs.python.org/3/library/site.html

Note: Before v5.7.0, you need create the Runtime Package by the Runtime Files manually.

3.5 Obfuscating Python Scripts In Different Modes

Advanced Mode is introduced from PyArmor 5.5.0, it’s disabled by default. Specify option ——advanced to enable
it

pyarmor obfuscate —--advanced 1 foo.py

For project

cd /path/to/project

pyarmor config —--advanced 1
pyarmor build -B

12 Chapter 3. Advanced Topics

https://docs.python.org/3/library/site.html

PyArmor Documentation, Release 5.7.0

From PyArmor 5.2, the default Restrict Mode is 1. It could be changed by the option ——restrict:

pyarmor obfuscate —--restrict=2 foo.py
pyarmor obfuscate --restrict=3 foo.py

For project

cd /path/to/project
pyarmor config —--restrict 4
pyarmor build -B

All the restricts could be disabled by this way if required:

pyarmor obfuscate —--restrict=0 foo.py

For project
pyarmor config —-restrict=0
pyarmor build -B

The modes of Obfuscating Code Mode, Wrap Mode, Obfuscating module Mode could not be changed in command
obfucate. They only could be changed by command config when Using Project. For example:

pyarmor init --src=src —--entry=main.py
pyarmor config —-obf-mod=1 --obf-code=1 —-wrap-mode=0
pyarmor build -B

3.6 Using Plugin to Extend License Type

PyArmor could extend license type for obfuscated scripts by plugin. For example, check internet time other than local
time.

First create plugin check_ntp_time.py:

Uncomment the next 2 lines for debug as the script isn't obfuscated,
otherwise runtime module "pytransform" isn't available in development
from pytransform import pyarmor_init

pyarmor_init ()

from ntplib import NTPClient
from time import mktime, strptime
import sys

def get_license_data():
from ctypes import py_object, PYFUNCTYPE
from pytransform import _pytransform
prototype = PYFUNCTYPE (py_object)

dlfunc = prototype(('get_registration_code', _pytransform))
rcode = dlfunc () .decode ()
index = rcode.find(';', rcode.find('*CODE:"))

return rcode[index+1:]

def check_ntp_time():
NTP_SERVER = 'europe.pool.ntp.org'
EXPIRED_DATE = get_license_data()
c = NTPClient ()
response = c.request (NTP_SERVER, version=3)

(continues on next page)

3.6. Using Plugin to Extend License Type 13

PyArmor Documentation, Release 5.7.0

(continued from previous page)

if response.tx_time > mktime (strptime (EXPIRED_DATE, '%Y%m2d')):
sys.exit (1)

Then insert 2 comments in the entry script foo . py:

{PyArmor Plugins}

def main():
PyArmor Plugin: check_ntp_ time ()
if name_ == '_ main_
logging.basicConfig(level=logging.INFO)
main ()

Now obfuscate entry script:

pyarmor obfuscate —--plugin check_ntp_time foo.py

By this way, the content of check_ntp_time.py will be insert after the first comment:

{PyArmor Plugins}

the conent of check_ntp_time.py

At the same time, the prefix of second comment will be stripped:

def main() :
PyArmor Plugin: check_ntp_time ()
check_ntp_time ()

So the plugin takes effect.

If the plugin file isn’t in the current path, use absolute path instead:

pyarmor obfuscate —--plugin /usr/share/pyarmor/check_ntp_time foo.py

Or set environment variable PYARMOR_PLUGIN. For example:

export PYARMOR_PLUGIN=/usr/share/pyarmor/plugins
pyarmor obfuscate —--plugin check_ntp_time foo.py

Finally generate one license file for this obfuscated script:

pyarmor licenses —-x 20190501 MYPRODUCT-0001
cp licenses/MYPRODUCT-0001/license.lic dist/

Note: It’s better to insert the content of ntplib.py into the plugin so that NTPClient needn’t be imported out of
obfuscated scripts.

Important: The output function name in the plugin must be same as plugin name, otherwise the plugin will not take

14 Chapter 3. Advanced Topics

PyArmor Documentation, Release 5.7.0

effects.

3.7 Bundle Obfuscated Scripts To One Executable File

Run the following command to pack the script foo.py to one executable file dist/foo.exe. Here foo.py isn’t obfuscated,
it will be obfuscated before packing:

"

pyarmor pack -e
dist/foo.exe

—-—onefile" foo.py

If you don’t want to bundle the license.lic of the obfuscated scripts into the executable file, but put it outside of the
executable file. For example:

dist/
foo.exe
license.lic

So that we could generate different licenses for different users later easily. Here are basic steps:

1. First create runtime-hook script copy_licese.py:

import sys
from os.path import join, dirname
with open(join(dirname (sys.executable), 'license.lic'), 'rb') as fs:
with open(join(sys._MEIPASS, 'license.lic'), 'wb') as fd:
fd.write(fs.read())

2. Then pack the scirpt with extra options:

pyarmor pack —--clean —-without-license \

-e " —-onefile --icon logo.ico —--runtime-hook copy_license.py" foo.py

Option ——without-1icense tells pack not to bundle the license.lic of obfuscated scripts to the final
executable file. By option ——runt ime—-hook of Pylnstaller, the specified script copy_licesen.py will be
executed before any obfuscated scripts are imported. It will copy outer license.lic to right path.

Try to run dist/foo.exe, it should report license error.

3. Finally run /icenses to generate new license for the obfuscated scripts, and copy new license.lic and dist/foo.exe
to end users:

pyarmor licenses -e 2020-01-01 code-001
cp license/code-001/license.lic dist/

dist/foo.exe

3.8 Improving The Security By Restrict Mode

By default the scripts are obfuscated by restrict mode 1, that is, the obfuscated scripts can’t be changed. In order to
improve the security, obfuscating the scripts by restrict mode 2 so that the obfuscated scripts can’t be imported out of
the obfuscated scripts. For example:

3.7. Bundle Obfuscated Scripts To One Executable File 15

http://www.pyinstaller.org/

PyArmor Documentation, Release 5.7.0

’pyarmor obfuscate —-restrict 2 foo.py

Or obfuscating the scripts by restrict mode 3 for more security. It will even check each function call to be sure all the
functions are called in the obfuscated scripts. For example:

’pyarmor obfuscate —-restrict 3 foo.py

However restrict mode 2 and 3 aren’t applied to Python package. There is another solutiion for Python package to
improve the security:

» The .py files which are used by outer scripts are obfuscated by restrice mode 1
 All the other .py files which are used only in the package are obfuscated by restrict mode 4

For example:

cd /path/to/mypkg

pyarmor obfuscate ——exact __init__ .py exported_func.py
pyarmor obfuscate —-restrict 4 --recursive \
——exclude __init___.py —-—exclude exported_func.py

More information about restrict mode, refer to Restrict Mode

3.9 Checking Imported Function Is Obfuscated

Sometimes it need to make sure the imported functions from other module are obfuscated. For example, there are 2
scripts main.py and foo.py:

$ cat main.py
import foo

def start_server():
foo.connect ('root', 'root password')

$ cat foo.py

def connect (username, password) :
mysgl.dbconnect (username, password)

In the obfuscated main.py, it need to be sure foo.connect is obfuscated. Otherwise the end users may replace the
obfuscated foo.py with this plain code:

def connect (username, password) :

print ('password is , password)

One solution is to check imported functions by decorator assert_armored in the main.py. For example:

import foo

def assert_armored (*names) :
def wrapper (func) :
def _execute(xargs, xxkwargs):
for s in names:
For PythonZ2
1f not (s.func_code.co_flags & 0x20000000) :

(continues on next page)

16 Chapter 3. Advanced Topics

PyArmor Documentation, Release 5.7.0

(continued from previous page)

For Python3
if not (s.__code_ .co_flags & 0x20000000) :
raise RuntimeError ('Access violate')
Also check a piece of byte code for special function
if s._ name_ == 'connect':
if s. code_ .co_code[10:12] !'= b'\x90\xA2':
raise RuntimeError ('Access violate')
return func(xargs, xxkwargs)
return _execute
return wrapper

@ assert_armored(foo.connect, foo.connect2)
def start_server () :
foo.connect ('root', 'root password')
foo.connect2 ('user', 'user password')

3.9.1 Plugin Implementation

First write a plugin script asser_armored.py:

def assert_armored (*names) :
def wrapper (func) :
def _execute(xargs, *xxkwargs):
for s in names:
For Python2
if not (s.func_code.co_flags & 0x20000000) :
For Python3
if not (s.__code_ .co_flags & 0x20000000) :
raise RuntimeError ('Access violate')
Also check a piece of byte code for special function
if s._ name_ == 'connect':
if s. code_ .co_code[10:12] !'= b'\x90\xA2':
raise RuntimeError ('Access violate')
return func(xargs, =*xkwargs)
return _execute
return wrapper

Then edit main.py , insert plugin markers. For examples:

import foo
{PyArmor Plugins}
PyArmor Plugin: (@assert_armored(foo.connect, foo.connect2)

def start_server () :
foo.connect ('root', 'root password')

So the original script could be run normally when it’s not obfuscated. Only when it’s distributed, obfuscating the script
with this plugin:

pyarmor obfuscate --plugin assert_armored main.py

Note: After v5.7.2, if you prefer, the marker could be this form:

3.9. Checking Imported Function Is Obfuscated 17

PyArmor Documentation, Release 5.7.0

’# @pyarmor_assert_armored (foo.connect, foo.connectZ2)

3.10 About Third-Party Interpreter

About third-party interperter, for example Jython, and any embeded Python C/C++ code, they should satisfy the
following conditions at least to run the obfuscated scripts:

e They must be load offical Python dynamic library, which should be built from the soure https://github.com/
python/cpython , and the core source code should not be modified.

e On Linux, RTLD_GLOBAL must be set as loading libpythonXY.so by dlopen, otherwise obfuscated scripts
couldn’t work.

Note: Boost::python does not load libpythonXY.so with RTLD_GLOBAL by default, so it will raise er-
ror “No PyCode_Type found” as running obfuscated scripts. To solve this problem, try to call the method
sys.setdlopenflags(os.RTLD_GLOBAL) as initializing.

¢ The module ctypes must be exists and ctypes.pythonapi._handle must be set as the real handle of Python dynamic
library, PyArmor will query some Python C APIs by this handle.

3.11 Call pyarmor From Python Script

It’s also possible to call PyArmor methods inside Python script not by os.exec or subprocess.Popen etc. For example

from pyarmor.pyarmor import main as call_pyarmor
call_pyarmor (['obfuscate', '—-recursive', '--output', 'dist', 'foo.py'])

In order to suppress all normal output of pyarmor, call it with ——silent

from pyarmor.pyarmor import main as call_pyarmor
call pyarmor(['--silent', 'obfuscate', '—-recursive', '—-output', 'dist', 'foo.py'l)

From v5.7.3, when pyarmor called by this way and something is wrong, it will raise exception other than call sys.exit.

18 Chapter 3. Advanced Topics

https://github.com/python/cpython
https://github.com/python/cpython

CHAPTER 4

Examples

Here are some examples.

4.1 Obfuscating and Packing PyQt Application

There is a tool easy-han based on PyQt. Here list the main files:

config. json

main.py

ui_main.py

readers/
__init__ .py
msexcel.py

tests/
vnev/py36

Here the shell script used to pack this tool by PyArmor:

cd /path/to/src

pyarmor pack -e " —--name easy-han —--hidden-import comtypes --add-data 'config.json;.'
LA

-x " —--exclude vnev --exclude tests" -s "easy-han.spec" main.py
cd dist/easy-han

./easy—han

By option —e passing extra options to run PylInstaller, to be sure these options work with Pylnstaller:

cd /path/to/src
pyinstaller ——name easy-han --hidden-import comtypes --add-data 'config.json;.' main.
=Py

(continues on next page)

19

http://www.pyinstaller.org/
http://www.pyinstaller.org/

PyArmor Documentation, Release 5.7.0

(continued from previous page)

cd dist/easy-han
./easy—-han

By option —x passing extra options to obfuscate the scripts, there are many .py files in the path tests and vnev, but all
of them need not to be obfuscated. By passing option ——exclude to exclude them, to be sure these options work
with command obfuscate:

cd /path/to/src
pyarmor obfuscate —-—-exclude vnev —--exclude tests main.py

By option —s to specify the .spec filename, because Pylnstaller changes the default filename of .spec by option
——name, so it tell command pack the right filename.

Important: The command pack will obfuscate the scripts automatically, do not try to pack the obfuscated the scripts.

Note: From PyArmor 5.5.0, it could improve the security by passing the obfuscated option ——advanced to enable
Advanced Mode. For example:

’pyarmor pack -x " —-—advanced 1 —--exclude tests" foo.py

4.2 Running obfuscated Django site with Apache and mod_wsgi

Here is a simple site of Django:

/path/to/mysite/
db.sglite3
manage.py
mysite/

__init___.py
settings.py
urls.py
wsgi.py
polls/
__init__ .py
admin.py
apps.py
migrations/
__init__ .py

models.py
tests.py
urls.py
views.py

First obfuscating all the scripts:

Create target path
mkdir -p /var/www/obf_site

Copy all files to target path, because pyarmor don't deal with any data files

(continues on next page)

20 Chapter 4. Examples

http://www.pyinstaller.org/

PyArmor Documentation, Release 5.7.0

(continued from previous page)

cp —a /path/to/mysite/x /var/www/obf_site/
cd /path/to/mysite

Obfuscating all the scripts in the current path recursively, specify the entry,,
—script "wsgi.py"

The obfuscate scripts will be save to "/var/www/obf_site"

pyarmor obfuscate --src="." -r —-output=/var/www/obf_site mysite/wsgi.py

Then edit the server configuration file of Apache:

WSGIScriptAlias / /var/www/obf_site/mysite/wsgi.py
WSGIPythonHome /path/to/venv

The runtime files required by pyarmor are generated in this path
WSGIPythonPath /var/www/obf_site

<Directory /var/www/obf_site/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Finally restart Apache:

apachectl restart

4.2. Running obfuscated Django site with Apache and mod_wsgi 21

PyArmor Documentation, Release 5.7.0

22

Chapter 4. Examples

CHAPTER B

Using Project

Project is a folder include its own configuration file, which used to manage obfuscated scripts.
There are several advantages to manage obfuscated scripts by Project:

* Increment build, only updated scripts are obfuscated since last build

* Filter obfuscated scripts in the project, exclude some scripts

* Obfuscate the scripts with different modes

* More convenient to manage obfuscated scripts

5.1 Managing Obfuscated Scripts With Project

Use command inif to create a project:

cd examples/pybench
pyarmor init —--entry=pybench.py

It will create project configuration file . pyarmor_config in the current path. Or create project in another path:

’pyarmor init --src=examples/pybench —--entry=pybench.py projects/pybench

The project path projects/pybench will be created, and . pyarmor_config will be saved there.

The common usage for project is to do any thing in the project path:

cd projects/pybench

Show project information:

’pyarmor info

Obfuscate all the scripts in this project by command build:

23

PyArmor Documentation, Release 5.7.0

’pyarmor build

Change the project configuration by command config.

For example, exclude the dist, test, the .py files in these folder will not be obfuscated:

’pyarmor config ——manifest "include x.py, prune dist, prune test"

Force rebuild:

’pyarmor build —--force

Run obfuscated script:

cd dist
python pybench.py

After some scripts changed, just run build again:

cd projects/pybench
pyarmor build

5.2 Obfuscating Scripts With Different Modes

First configure the different modes, refer to The Modes of Obfuscated Scripts:

’pyarmor config ——obf-mod=1 —-obf-code=0

Then obfuscating scripts in new mode:

’pyarmor build -B

5.3 Project Configuration File

Each project has a configure file. It’s a json file named .pyarmor_config stored in the project path.
* name
Project name.
* title
Project title.
* src
Base path to match files by manifest template string.
It could be absolute path, or relative path based on project folder.
* manifest

A string specifies files to be obfuscated, same as MANIFEST.in of Python Distutils, default value is:

global-include x*.py

24 Chapter 5. Using Project

PyArmor Documentation, Release 5.7.0

It means all files anywhere in the src tree matching.

Multi manifest template commands are spearated by comma, for example:

global-include *.py, exclude _ _mainfest__ .py, prune test

Refer to https://docs.python.org/2/distutils/sourcedist.html#commands
* is_package
Available values: 0, 1, None

When it’s set to 1, the basename of src will be appended to output as the final path to save obfuscated
scripts, but runtime files are still in the path output

When init a project and no ——t ype specified, it will be set to 1 if there is __iniz__.py in the path src,
otherwise it’s None.

e restrict_mode
Available values: 0, 1, 2, 3, 4
By defaultit’s set to 1.
Refer to Restrict Mode
* entry
A string includes one or many entry scripts.

When build project, insert the following bootstrap code for each entry:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

The entry name is relative to src, or filename with absolute path.

Multi entries are separated by comma, for example:

main.py, another/main.py, /usr/local/myapp/main.py

Note that entry may be NOT obfuscated, if manifest does not specify this entry.
¢ output
A path used to save output of build. It’s relative to project path.
* capsule
Filename of project capsule. It’s relative to project path if it’s not absolute path.
e obf _code
How to obfuscate byte code of each code object:
-0
No obfuscate
-1
Obfuscate each code object by default algorithm
-2
Obfuscate each code object by more complex algorithm

The default value is I, refer to Obfuscating Code Mode

5.3. Project Configuration File 25

https://docs.python.org/2/distutils/sourcedist.html#commands

PyArmor Documentation, Release 5.7.0

e wrap_mode
Auvailable values: 0, 1, None
Whether to wrap code object with zry..final block.
The default value is /, refer to Wrap Mode
e obf_mod
How to obfuscate whole code object of module:
-0
No obfuscate
-1
Obfuscate byte-code by DES algorithm
The default value is I, refer to Obfuscating module Mode
* cross_protection
How to proect dynamic library in obfuscated scripts:
-0
No protection
-1
Insert proection code with default template, refer to Special Handling of Entry Script
— Filename
Read the template of protection code from this file other than default template.
* runtime_path
None or any path.

When run obfuscated scripts, where to find dynamic library _pytransform. The default value is None,
it means it’s within the Runtime Package or in the same path of pytransform.py.

It’s useful when obfuscated scripts are packed into a zip file, for example, use py2exe to package
obfuscated scripts. Set runtime_path to an empty string, and copy Runtime Files to same path of zip
file, will solve this problem.

* package_runtime
How to save the runtime files:
-0
Save them in the same path with the obufscated scripts
— 1 (Default)
Save them in the sub-path pytransform as a package
-2

Same as 1, but the package pytransform may be in other path in runtime. So the bootstrap code will
not be made a relative import when inserting entry script.

* plugins

26 Chapter 5. Using Project

PyArmor Documentation, Release 5.7.0

None or list of string

Extend license type of obfuscated scripts, multi-plugins are supported. For example:

plugins: ["check_ntp_time", "show_license_info"]

About the usage of plugin, refer to Using Plugin to Extend License Type

5.3. Project Configuration File 27

PyArmor Documentation, Release 5.7.0

28

Chapter 5. Using Project

CHAPTER O

Man Page

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts.

The syntax of the pyarmor command is:

pyarmor <command> [options]

The most commonly used pyarmor commands are:

obfuscate Obfuscate python scripts

licenses Generate new licenses for obfuscated scripts
pack Pack obfuscated scripts to one bundle

hdinfo Show hardware information

runtime Generate runtime package separately

The commands for project:

init Create a project to manage obfuscated scripts
config Update project settings

build Obfuscate all the scripts in the project

info Show project information

check Check consistency of project

The other commands:

benchmark Run benchmark test in current machine
register Make registration file work
download Download platform-dependent dynamic libraries

See pyarmor <command> -h for more information on a specific command.

Note: From v5.7.1, the first character is command alias for most usage commands:

29

PyArmor Documentation, Release 5.7.0

’obfuscate, licenses, pack, init, config, build

For example:

’pyarmor o => pyarmor obfuscate

6.1 obfuscate

Obfuscate python scripts.
SYNOPSIS:

pyarmor obfuscate <options> SCRIPT...

OPTIONS

-0, --output PATH Output path, default is dist

-1, --recursive Search scripts in recursive mode

-s, --src PATH Specify source path if entry script is not in the top most path

--exclude PATH Exclude the path in recusrive mode. Multiple paths are allowed, separated
or use this option multiple times

--exact Only obfuscate list scripts

--no-bootstrap Do not insert bootstrap code to entry script

--no-cross-protection Do not insert protection code to entry script
--plugin NAME Insert extra code to entry script, it could be used multiple times
--platform NAME Distribute obfuscated scripts to other platform
--advanced <0,1> Disable or enable advanced mode
--restrict <0,1,2,3,4> Set restrict mode
--package-runtime <0,1,2> Save the runtime files as a package or not
-n, --no-runtime DO NOT generate runtime files
DESCRIPTION
PyArmor first checks whether Global Capsule exists in the HOME path. If not, make it.
Then find all the scripts to be obfuscated. There are 3 modes to search the scripts:
e Normal: find all the .py files in the same path of entry script
* Recursive: find all the .py files in the path of entry script recursively
» Exact: only these scripts list in the command line
If there is an entry script, PyArmor will modify it, insert cross protection code into the entry script.
Next obfuscate all these scripts in the default output path dist.
After that make the Runtime Package in the dist path.

Finally insert the Bootstrap Code into entry script.

154
by “”,

30 Chapter 6

. Man Page

PyArmor Documentation, Release 5.7.0

The entry script is only the first script if there are more than one script in command line.

Option ——src used to specify source path if entry script is not in the top most path. For example:

if no option —--src, the "./mysite" is the source path
pyarmor obfuscate --src "." —--recursive mysite/wsgi.py

Option ——plugin is used to extend license type of obfuscated scripts, it will inject the content of plugin into the
obfuscated scripts. The corresponding filename of plugin is NAME.py. Name may be absolute path if it’s not in the
current path, or specify plugin path by environment variable PYARMOR_PLUGIN.

More information about plugin, refer to How to Deal With Plugins, and here is a real example to show usage of plugin
Using Plugin to Extend License Type

Option ——platform is used to specify the target platform of obfuscated scripts if target platform is different from
build platform. Use this option multiple times if the obfuscated scripts are being to run many platforms. From v5.7.5,
the platform names are standardized, command download could list all the available platform names.

Option ——restrict is used to set restrict mode, Restrict Mode

By default the runtime files will be saved in the separated folder pyt ransform as package:

pytransform/
__init__ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

If ——package—-runtime is 0, they will be saved in the same path with obfuscated scripts as four separated files:

pytransform.py

_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key

license.lic

If ——package-runtime is set to 2, it means the Runtime Package will be in other path, so the Bootstrap Code
always makes absolute import without leading dots.

Otherwise when the entry script is __init__.py, it will make a relative import by using leading dots like this:

from .pytransform import pyarmor_runtime
pyarmor_runtime ()

EXAMPLES

» Obfuscate all the .py only in the current path:

’pyarmor obfuscate foo.py

* Obfuscate all the .py in the current path recursively:

’pyarmor obfuscate —--recursive foo.py

» Obfuscate all the .py in the current path recursively, but entry script not in top most path:

’pyarmor obfuscate —-src "." —-recursive mysite/wsgi.py

» Obfuscate a script foo.py only, no runtime files:

6.1. obfuscate 31

PyArmor Documentation, Release 5.7.0

pyarmor obfuscate —--no-runtime --exact foo.py

* Obfuscate all the .py in a path recursive, no entry script, no generate runtime package:

pyarmor obfuscate —-recursive —-no-runtime
pyarmor obfuscate --recursive —-no-runtime src/

* Obfuscate all the .py in the current path recursively, exclude all the .py in the path build and tests:

pyarmor obfuscate --recursive --exclude build,tests foo.py
pyarmor obfuscate --recursive —-—-exclude build --exclude tests foo.py

* Obfuscate only two scripts foo.py, moda.py exactly:

’pyarmor obfuscate —--exact foo.py moda.py

* Obfuscate all the .py file in the path mypkg/:

’pyarmor obfuscate ——-output dist/mypkg mypkg/__init__ .py

» Obfuscate all the .py files in the current path, but do not insert cross protection code into obfuscated script

dist/foo.py:

’pyarmor obfuscate --no-cross-protection foo.py

* Obfuscate all the .py files in the current path, but do not insert bootstrap code at the beginning
script dist/foo.py:

of obfuscated

’pyarmor obfuscate no-bootstrap foo.py

* Insert the content of check_ntp_time. py into foo.py, then obfuscating foo.py:

’pyarmor obfuscate plugin check_ntp_time foo.py

* Only plugin assert_armored is called then inject it into the foo.py:

’pyarmor obfuscate plugin @assert_armored foo.py

» Obfuscate the scripts in Macos and run obfuscated scripts in Ubuntu:

pyarmor download
pyarmor download linux.x86_64

pyarmor obfuscate —--platform linux.x86_64 foo.py

* Obfuscate the scripts in advanced mode:

’pyarmor obfuscate —--advanced 1 foo.py

* Obfuscate the scripts with restrict mode 2:

’pyarmor obfuscate —-restrict 2 foo.py

¢ Obfuscate all the .py files in the current path except __inif__.py with restrice mode 4:

’pyarmor obfuscate —--restrict 4 —--exclude __init___.py —--recursive

32 Chapter 6

. Man Page

PyArmor Documentation, Release 5.7.0

* Obfuscate a package and generate runtime files as package:

cd /path/to/mypkg
pyarmor obfuscate -r —--package-runtime 2 —-output dist/mypkg __init__ .py

6.2 licenses

Generate new licenses for obfuscated scripts.

SYNOPSIS:

pyarmor licenses <options> CODE

OPTIONS

-0, --output OUTPUT Output path

-e, --expired YYYY-MM-DD Expired date for this license

-d, --bind-disk SN Bind license to serial number of harddisk

-4, --bind-ipv4 IPV4 Bind license to ipv4 addr

-m, --bind-mac MACADDR Bind license to mac addr

-X, --bind-data DATA Pass extra data to license, used to extend license type
DESCRIPTION

In order to run obfuscated scripts, it’s necessarey to hava a license.lic. As obfuscating the scripts, there is a default
license.lic created at the same time. In this license the obfuscated scripts can run on any machine and never expired.

This command is used to generate new licenses for obfuscated scripts. For example:

’pyarmor licenses —--expired 2019-10-10 mycode

An expired license will be generated in the default output path plus code name licenses/mycode, then overwrite the old
one in the same path of obfuscated script:

’cp licenses/mycode/license.lic dist/pytransform/

Another example, bind obfuscated scripts in mac address and expired on 2019-10-10:

pyarmor licenses ——expired 2019-10-10 --bind-mac 2a:33:50:46:8f tom
cp licenses/tom/license.lic dist/pytransform/

Before this, run command /dinfo to get hardware information:

’pyarmor hdinfo

By option -x any data could be saved into the license file, it’s mainly used to extend license tyoe. For example:

’pyarmor licenses —-x "2019-02-15" tom

In the obfuscated scripts, the data passed by -x could be got by this way:

from pytransfrom import get_license_info
info = get_license_info()
print (info['DATA'])

6.2. licenses 33

PyArmor Documentation, Release 5.7.0

Note: Here is a real example Using Plugin to Extend License Type

6.3 pack

Obfuscate the scripts and pack them into one bundle.

SYNOPSIS:

pyarmor pack <options> SCRIPT

OPTIONS
-0, --output PATH Directory to put final built distributions in.
-e, --options OPTIONS Pass these extra options to pyinstaller

-X, --xoptions OPTIONS Pass these extra options to pyarmor obfuscate

-s FILE Specify .spec file used by pyinstaller

--without-license Do not generate license for obfuscated scripts

--clean Remove cached .spec file before packing

--debug Do not remove build files after packing
DESCRIPTION

The command pack first calls Pylnstaller to generate .spec file which name is same as entry script. The options
specified by ——opt ions will be pass to PyInstaller to generate .spec file. It could any option accepted by PylInstaller
except ——distpath.

Note: If there is one .spec file exists, PyArmor uses this cached one. If option ——clean is set, PyArmor will always
generate a new one and overrite the old one.

If there is in trouble, make sure this .spec works with Pylnstaller. For example:

’pyinstaller myscript.spec

If you have a .spec file worked, specified by —s, thus pack will use it other than generate new one

’pyarmor pack —-s /path/to/myself.spec foo.py

Then pack will obfuscates all the .py files in the same path of entry script. It will call pyarmor obfuscate with options
-r, ——output, and the extra options specified by ——xoptions.

Next pack patches the .spec file so that the original scripts could be replaced with the obfuscated ones.
Finally pack call Pylnstaller with this pacthed .spec file to generate the final distributions.

For more information, refer to How To Pack Obfuscated Scripts.

Important: The command pack will obfuscate the scripts automatically, do not try to pack the obfuscated the scripts.

EXAMPLES

34 Chapter 6. Man Page

http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/

PyArmor Documentation, Release 5.7.0

* Obfuscate foo.py and pack them into the bundle dist/foo:

’pyarmor pack foo.py

* Remove the cached foo.spec, and start a clean pack:

’pyarmor pack —-clean foo.py

* Pack the obfuscated scripts by an exists myfoo.spec:

’pyarmor pack —-s myfoo.spec foo.py

* Pass extra options to run Pylnstaller:

’pyarmor pack -e " -w ——icon app.ico" foo.py

* Pass extra options to obfuscate scripts:

’pyarmor pack —-x " ——exclude venv —--exclude test" foo.py

* Pack the obfuscated script to one file and in advanced mode:

’pyarmor pack —e " ——onefile" -x " ——advanced" foo.py

* If the application name is changed by option -n of Pylnstaller, the option -s must be specified at the same time.
For example:

’pyarmor pack -e -n my_app" -s "my_app.spec" foo.py

6.4 hdinfo

Show hardware information of this machine, such as serial number of hard disk, mac address of network card etc. The
information got here could be as input data to generate license file for obfuscated scripts.

SYNOPSIS:

pyarmor hdinfo

If pyarmor isn’t installed, downlad this tool hdinfo
https://github.com/dashingsoft/pyarmor-core/tree/master/#hdinfo

And run it directly:

’hdinfo

It will print the same hardware information as pyarmor hdinfo

6.5 init

Create a project to manage obfuscated scripts.

SYNOPSIS:

6.4. hdinfo 35

https://github.com/dashingsoft/pyarmor-core/tree/master/#hdinfo

PyArmor Documentation, Release 5.7.0

pyarmor init <options> PATH

OPTIONS
-t, --type <auto,app,pkg> Project type, default value is auto
-s, --sr¢ SRC Base path of python scripts, default is current path
-e, --entry ENTRY Entry script of this project

DESCRIPTION

This command will create a project in the specify PATH, and a file .pyarmor_config will be created at the same time,
which is project configuration of JSON format.

If the option ——type is set to auto, which is the default value, the project type will set to pkg if the entry script is
__init__.py, otherwise to app.

The init command will set is_package to 1 if the new project is configured as pkg, otherwise it’s set to 0.
After project is created, use command config to change the project settings.

EXAMPLES

* Create a project in the current path:

’pyarmor init —--entry foo.py

* Create a project in the build path obf":

’pyarmor init entry foo.py obf

* Create a project for package:

’pyarmor init entry __init__ .py

* Create a project in the path obf, manage the scripts in the path /path/to/src:

’pyarmor init src /path/to/src entry foo.py obf

6.6 config

Update project settings.
SYNOPSIS:

pyvarmor config <options> [PATH]

OPTIONS
--name NAME Project name
--title TITLE Project title
--src SRC Project src, base path for matching scripts
--output PATH Output path for obfuscated scripts

--manifest TEMPLATE Manifest template string
--entry SCRIPT Entry script of this project

36 Chapter 6. Man Page

PyArmor Documentation, Release 5.7.0

--is-package <0,1> Set project as package or not

--restrict-mode <0,1,2,3,4> Set restrict mode

--obf-mod <0,1> Disable or enable to obfuscate module

--obf-code <0,1,2> Disable or enable to obfuscate function

--wrap-mode <0,1> Disable or enable wrap mode

--advanced-mode <0,1> Disable or enable advanced mode

--cross-protection <0,1> Disable or enable to insert cross protection code into entry script

--runtime-path RPATH Set the path of runtime files in target machine

--plugin NAME Insert extra code to entry script, it could be used multiple times

--package-runtime <0,1,2> Save the runtime files as a package or not
DESCRIPTION

Run this command in project path to change project settings:

’pyarmor config ——option new-value

Or specify the project path at the end:

’pyarmor config --option new-value /path/to/project

Option ——manifest is comma-separated list of manifest template command, same as MANIFEST.in of Python
Distutils.

Option ——ent ry is comma-separated list of entry scripts, relative to src path of project.
There is a special value clear for ——plugin which used to clear all the plugins.
EXAMPLES

» Change project name and title:

’pyarmor config ——name "project-1" -—-title "My PyArmor Project"

» Change project entries:

’pyarmor config ——-entry foo.py,hello.py

» Exclude path build and dist, do not search .py file from these paths:

’pyarmor config manifest "global-include *.py, prune build, prune dist"

* Obfuscate script with wrap mode off:

’pyarmor config wrap-mode 0

* Set plugin for entry script. The content of check_ntp_time.py will be insert into entry script as building project:

’pyarmor config plugin check_ntp_time.py

¢ Clear all plugins:

’pyarmor config —-plugin clear

6.6. config 37

PyArmor Documentation, Release 5.7.0

6.7 build

Build project, obfuscate all scripts in the project.

SYNOPSIS:

pyarmor config <options> [PATH]

OPTIONS
-B, --force Force to obfuscate all scripts
-1, --only-runtime Generate extra runtime files only
-n, --no-runtime DO NOT generate runtime files
-0, --output OUTPUT Output path, override project configuration
--platform NAME Distribute obfuscated scripts to other platform
--package-runtime <0,1,2> Save the runtime files as a package or not
DESCRIPTION

Run this command in project path:

’pyarmor build

Or specify the project path at the end:

’pyarmor build /path/to/project

About option ——platformand -—package-runt ime, refer to command obfuscate
EXAMPLES

¢ Only obfuscate the scripts which have been changed since last build:

’pyarmor build

¢ Force build all the scripts:

’pyarmor build -B

* Generate runtime files only, do not try to obfuscate any script:

’pyarmor build -r

* Obfuscate the scripts only, do not generate runtime files:

’pyarmor build -n

 Save the obfuscated scripts to other path, it doesn’t change the output path of project settings:

’pyarmor build -B -O /path/to/other

¢ Build project in Macos and run obfuscated scripts in Ubuntu:

38 Chapter 6

. Man Page

PyArmor Documentation, Release 5.7.0

pyarmor download
pyarmor download linux.x86_64

pyarmor build -B --platform linux.x86_64

6.8 info

Show project information.

SYNOPSIS:

’pyarmor info [PATH]

DESCRIPTION

Run this command in project path:

’pyarmor info

Or specify the project path at the end:

’pyarmor info /path/to/project

6.9 check

Check consistency of project.

SYNOPSIS:

’pyarmor check [PATH]

DESCRIPTION

Run this command in project path:

’pyarmor check

Or specify the project path at the end:

’pyarmor check /path/to/project

6.10 banchmark

Check the performance of obfuscated scripts.

SYNOPSIS:

pyarmor benchmark <options>

OPTIONS:

-m, --obf-mode <0,1> Whether to obfuscate the whole module

6.8. info 39

PyArmor Documentation, Release 5.7.0

-c, --obf-code <0,1,2> Whether to obfuscate each function
-w, --wrap-mode <0,1> Whether to obfuscate each function with wrap mode
--debug Do not remove test path

DESCRIPTION

This command will generate a test script, obfuscate it and run it, then output the elapsed time to initialize, import

obfuscated module, run obfuscated functions etc.
EXAMPLES

¢ Test performance with default mode:

’pyarmor benchmark

¢ Test performance with no wrap mode:

’pyarmor benchmark —-wrap-mode 0

* Check the test scripts which saved in the path .benchtest:

’pyarmor benchmark —--debug

6.11 register

Make registration keyfile effect, or show registration information.

SYNOPSIS:

’pyarmor register [KEYFILE]

DESCRIPTION

This command is used to register the purchased keyfile to take it effects:

’pyarmor register /path/to/pyarmor-regfile-1.zip

Show registration information:

’pyarmor register

6.12 download

List and download platform-dependent dynamic libraries.

SYNOPSIS:

pyarmor download <options> NAME

OPTIONS:
--help-platform Display all available standard platform names
-L, --list FILTER List available dynamic libraries in different platforms
-0, --output PATH Save downloaded library to this path

40 Chapter 6

. Man Page

PyArmor Documentation, Release 5.7.0

--update
DESCRIPTION

Update all the downloaded dynamic libraries

This command mainly used to download available dynamic libraries for cross platform.

List all available standard platform names. For examples:

pyarmor
pyarmor
pyarmor
pyarmor

download
download
download
download

——help-platform
——~help-platform windows
—~help-platform linux.x86_64

Then download one from the list. For example:

pyarmor download linux.armv7
pyarmor download linux.x86_64

By default the download file will be saved in the path ~/ .pyarmor/plat forms with different platform names.

Option ——11st could filter the platform by name, arch, features, and display the information in details. For examples:

pyarmor
pyarmor
pyarmor
pyarmor
pyarmor

download
download
download
download
download

--list

——1list windows

——1list windows.x86_64
--list JIT

——1list armv7

After pyarmor is upgraded, however these downloaded dynamic libraries won’t be upgraded. The option ——update
used to update all these files. For example:

’pyarmor download —-update

6.13 runtime

Geneate Runtime Package separately.

SYNOPSIS:

pyarmor runtime <options>

OPTIONS:
-0, --output PATH Output path, default is dist

-n, --no-package Generate runtime files without package

-L, --with-license FILE Replace default license with this file

--platform NAME Generate runtime package for specified platform
DESCRIPTION

This command is used to generate the runtime package separately.

The runtiem package could be shared if the scripts are obufscated by same Global Capsule. So generate it once, then
need not generate the runtime files when obfuscating the scripts later.

About option ——plat form, refer to command obfuscate

EXAMPLES

6.13. runtime

41

PyArmor Documentation, Release 5.7.0

» Generate Runtime Package pytransform in the default path dist:

’pyarmor runtime

* Not generate a package, but four separate files Runtime Files:

’pyarmor runtime -n

* Generate Runtime Package for platform armv7 with expired license:

pyarmor licenses ——expired 2020-01-01 code-001

—armv’/

pyarmor runtime —--with-license licenses/code-001/license.lic —--platform linux.

42

Chapter 6. Man Page

CHAPTER /

Understanding Obfuscated Scripts

7.1 Global Capsule

The .pyarmor_capsule.zip in the HOME path called Global Capsule. PyArmor will read data from Global
Capsule when obfuscating scripts or generating licenses for obfuscated scripts.

All the trial version of PyArmor shares one same .pyarmor_capsule.zip, which is created implicitly when
executing command pyarmor obfuscate. It uses 1024 bits RSA keys, called public capsule.

For purchased version, each user will receive one exclusive private capsule, which use 2048 bits RSA key.

The capsule can’t help restoring the obfuscated scripts at all. If your private capsuel got by someone else, the risk is
that he/she may generate new license for your obfuscated scripts.

Generally this capsule is only in the build machine, it’s not used by the obfuscated scripts, and should not be distributed
to the end users.

7.2 Obfuscated Scripts

After the scripts are obfuscated by PyArmor, in the dist folder you find all the required files to run obfuscated scripts:

dist/
myscript.py
mymodule.py

pytransform/
__init__ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

The obfuscated scripts are normal Python scripts. The module dist/mymodule.py would be like this:

43

PyArmor Documentation, Release 5.7.0

__pyarmor___ (__name__, file. , b'\x06\x0£...', 1)

The entry script dist/myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ (__name__, _ file_, b'\x0a\x02...', 1)

7.2.1 Entry Script

In PyArmor, entry script is the first obfuscated script to be run or to be imported in a python interpreter process. For
example, __init__.py is entry script if only one single python package is obfuscated.

7.3 Bootstrap Code

The first 2 lines in the entry script called Bootstrap Code. It’s only in the entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

For the obfuscated package which entry script is __init__.py. The bootstrap code may make a relateive import by
leading ““.”:

from .pytransform import pyarmor_runtime
pyarmor_runtime ()

And there is another form if the runtime path is specified as obfuscating scripts:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/runtime')

7.4 Runtime Package

The package pytransform which is in the same folder with obfuscated scripts called Runtime Packge. 1t’s required to
run the obfuscated script, and it’s the only dependency of obfuscated scripts.

Generally this package is in the same folder with obfuscated scripts, but it can be moved anywhere. Only this package
in any Python Path, the obfuscated scripts can be run as normal scripts. And all the scripts obfuscated by the same
Global Capsule could share this package.

There are 4 files in this package:

pytransform/
__init___.py A normal python module
_pytransform.so/.dl11/.1ib A dynamic library implements core functions
pytransform. key Data file
license.lic The license file for obfuscated scripts

Before v5.7.0, the runtime package has another form Runtime Files

44 Chapter 7. Understanding Obfuscated Scripts

PyArmor Documentation, Release 5.7.0

7.4.1 Runtime Files

They’re not in one package, but as four separated files:

pytransform.py A normal python module
_pytransform.so/.dl1l/.1ib A dynamic library implements core functions
pytransform.key Data file

license.lic The license file for obfuscated scripts

Obviously Runtime Package is more clear than Runtime Files.

7.5 The License File for Obfuscated Script

There is a special runtime file license.lic, it’s required to run the obfuscated scripts.

When executing pyarmor obfuscate, a default one will be generated, which allows obfuscated scripts run in any
machine and never expired.

In order to bind obfuscated scripts to fix machine, or expire the obfuscated scripts, use command pyarmor
licenses to generate a new license.lic and overwrite the default one.

Note: In PyArmor, there is another license.lic, which locates in the source path of PyArmor. It’s required to run
pyarmor, and issued by me, :)

7.6 Key Points to Use Obfuscated Scripts

» The obfuscated scripts are normal python scripts, so they can be seamless to replace original scripts.

 There is only one thing changed, the bootstrap code must be executed before running or importing any obfus-
cated scripts.

* The runtime package must be in any Python Path, so that the bootstrap code can run correctly.

* The bootstrap code will load dynamic library _pytransform.so/.dll/.dylib by ctypes. This file is dependent-
platform, all the prebuilt dynamic libraries list here Support Platfroms

* By default the bootstrap code searchs dynamic library _pytransform in the runtime package. Check pytrans-
form._load_library to find the details.

* If the dynamic library _pytransform isn’t within the runtime package, change the bootstrap code:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/runtime’)

Both of runtime files license.lic and pytransform.key should be in this path either.

* When starts a fresh python interpreter process by multiprocssing.Process, os.exec, subprocess.Popen etc., make
sure the bootstrap code are called in new process before running any obfuscated script.

More information, refer to How to Obfuscate Python Scripts and How to Run Obfuscated Script

7.5. The License File for Obfuscated Script 45

PyArmor Documentation, Release 5.7.0

7.7 The Differences of Obfuscated Scripts

There are something changed after Python scripts are obfuscated:

¢ The major version of Python in build machine should be same as in target machine. Because the scripts will

be compiled to byte-code before they’re obfuscated, so the obfuscated scripts can’t be run by all the Python
versions as the original scripts could. Especially for Python 3.6, it introduces word size instructions, and it’s
totally different from Python 3.5 and before. It’s recommeded to run the obfuscated scripts with same major
version of Python.

If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it will crash to run obfuscated scripts.

The callback function set by sys.settrace, sys.setprofile, threading.settrace and
threading.setprofile will be ignored by obfuscated scripts.

The attribute ___file__ of code object in the obfuscated scripts will be <frozen name> other than real
filename. So in the traceback, the filename is shown as <frozen name>.

Note that ___file__ of moudle is still filename. For example, obfuscate the script foo . py and run it:

def hello(msgqg) :
print (msg)

The output will be 'foo.py'
print (_ file)

The output will be '<frozen foo>'
print (hello. file)

46

Chapter 7. Understanding Obfuscated Scripts

CHAPTER 8

How PyArmor Does It

Look at what happened after foo . py is obfuscated by PyArmor. Here are the files list in the output path dist:

foo.py

pytransform/
__init_ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

dist/foo.py is obfuscated script, the content is:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor___(__name__, file. , b'\x06\x0£f...")

There is an extra folder pytransform called Runtime Package, which are the only required to run or import obfuscated
scripts. So long as this package is in any Python Path, the obfuscated script dist/foo.py can be used as normal Python
script. That is to say:

The original python scripts can be replaced with obfuscated scripts seamlessly.

8.1 How to Obfuscate Python Scripts

How to obfuscate python scripts by PyArmor?

First compile python script to code object:

char xfilename = "foo.py";
char *source = read_file(filename);
PyCodeObject xco = Py_CompileString(source, "<frozen foo>", Py_file_input);

Then change code object as the following way

47

PyArmor Documentation, Release 5.7.0

* Wrap byte code co_code withinatry...finally block:

wrap header:

LOAD_GLOBALS N (__armor_enter_) N = length of co_consts
CALL_FUNCTION 0
POP_TOP

SETUP_FINALLY X (Jump to wrap footer) X = size of original byte code

changed original byte code:

Increase oparg of each absolute jump instruction by the size of wrap,,
—header

Obfuscate original byte code

wrap footer:

LOAD_GLOBALS N + 1 (__armor_exit_)
CALL_FUNCTION 0
POP_TOP

END_FINALLY

* Append function names __armor_enter, __armor_exit__ to co_consts
* Increase co_stacksize by 2

¢ Set CO_OBFUSCAED (0x80000000) flag in co_flags

* Change all code objects in the co_const s recursively

Next serializing reformed code object and obfuscate it to protect constants and literal strings:

char *string_code = marshal.dumps(co);
char xobfuscated_code = obfuscate_algorithm(string_code);

Finally generate obfuscated script:

sprintf (buf, "__ _pyarmor__ (_ _name__, __ file_ _, b' ')", obfuscated_code);
save_file("dist/foo.py", buf);

The obfuscated script is a normal Python script, it looks like this:

’__pyarmor__(;ﬁﬁane;ﬁ, _file , b'\x01\x0a...'")

8.2 How to Deal With Plugins

In PyArmor, the plugin is used to inject python code into the obfuscted scripts. For example:

’pyarmor obfuscate —--plugin check_multi_mac --plugin @Rassert_armored foo.py

It also could include path:

’pyarmor obfuscate --plugin /path/to/check_ntp_time foo.py

48 Chapter 8. How PyArmor Does It

PyArmor Documentation, Release 5.7.0

Each plugin is a normal Python script, PyArmor searches it by this way:
* If the plugin has absolute path, then find the corresponding .py file exactly.

« If it has relative path, first search the related .py file in the current path, then in the path specified by environment
variable PYARMOR_PLGUIN

* Raise exception if not found

When there is plugin specified as obfuscating the script, each comment line will be scanned to find any plugin marker.
There are 2 types of plugin marker:

¢ Plguin Definition Marker
¢ Plugin Call Marker

The plugin definition marker has this form:

{PyArmor Plugins}

It must be one leading comment line, no indentation. Generally there is only one in a script, all the plugins will be
injected here.

The plugin call maker has 3 forms, any comment line starts with these patterns is call marker:

PyArmor Plugin:
pyarmor.
@pyarmor._

They could appear many times, any indentation, but have to behind plugin definition marker.

For the first form # PyArmor Plugin:, PyArmor just remove this pattern and one following whitespace exactly,
and leave the rest part of this line as it is. For example:

PyArmor Plugin: check_ntp_time () ==> check_ntp_time()

So long as there is any plugin specified to obfuscate the script, these replacements will be taken place. The rest part
could be any valid Python code. For examples:

PyArmor Plugin: print ('This is plugin code') ==> print('This is plugin code')
PyArmor Plugin: 1f sys.flags.debug: ==> 1f sys.flags.debug:
PyArmor Plugin: check_something() : ==> check_something()

For the second form # pyarmor_, it’s only used to call plugin function. And if this function name is not specified
as plugin name, PyArmor doesn’t touch this markd. For example, obfuscating a script with plugin check_multi_mac,
the first marker is replaced, the second not:

pyarmor_check_multi_mac () ==> check _multi_mac ()
pyarmor_check_code () ==> # pyarmor_check_code ()

The last form is almost same as the second, but # Q@pyarmor_ will be replaced with @, it’s mainly used to inject a
decorator. For example:

’# @pyarmor._assert_obfuscated(foo.connect) ==> (@assert_obfuscated (foo.connect)

When obfuscating the scripts in command line, if the plugin doesn’t include a leading @, it will be always injected into
the obfuscated scripts. For example:

’pyarmor obfuscate —-plugin check_multi_mac —-plugin assert_armored foo.py

8.2. How to Deal With Plugins 49

PyArmor Documentation, Release 5.7.0

However, if there is a leading @, it couldn’t be injected into the obfuscated scripts, until this plugin name appears in
any plugin call marker or plugin decorator marker. For examples, if there is no any plugin call marker or decorator
marker in the foo.py, both of plugins will be ignored:

pyarmor obfuscate --plugin @assert_armored foo.py
pyarmor obfuscate --plugin @/path/to/check_ntp_time foo.py

And in any case, if there is no plugin definition marker, none of plugin code will be injected.

8.3 Special Handling of Entry Script

There are 2 extra changes for entry script:
» Before obfuscating, insert protection code to entry script.
» After obfuscated, insert bootstrap code to obfuscated script.

Before obfuscating entry scipt, PyArmor will search the content line by line. If there is line like this:

’# {PyArmor Protection Code} ‘

PyArmor will replace this line with protection code.

If there is line like this:

’# {No PyArmor Protection Code} ‘

PyArmor will not patch this script.

If both of lines aren’t found, insert protection code before the line:

’if name == '_ _main_ ' ‘

Do nothing if no __main__ line found.

Here it’s the default template of protection code:

def protect_pytransform() :
import pytransform

def check_obfuscated_script():

CO_SIZES = 49, 46, 38, 36

CO_NAMES = set (['pytransform', 'pyarmor_runtime', '__ _pyarmor__ "',

' _name_ ', '_ _file_ '1])
co = pytransform.sys._getframe (3) .f_code
if not ((set (co.co_names) <= CO_NAMES)
and (len(co.co_code) in CO_SIZES)) :
raise RuntimeError ('Unexpected obfuscated script')

def check_mod_pytransform() :
def _check_co_key(co, Vv):
return (len(co.co_names), len(co.co_consts), len(co.co_code))
for k, (vl, v2, v3) in {keylist}:
co = getattr(pytransform, k) .{code}
if not _check_co_key(co, vl):
raise RuntimeError ('unexpected pytransform.py')
if v2:

Il
Il
<

(continues on next page)

50 Chapter 8. How PyArmor Does It

PyArmor Documentation, Release 5.7.0

(continued from previous page)

if not _check_co_key(co.co_consts[1l], v2):
raise RuntimeError ('unexpected pytransform.py')
if v3:
if not _check_co_key(co.{closure}[0].cell_contents.{code}, v3):
raise RuntimeError ('unexpected pytransform.py')

def check_lib_pytransform() :
filename = pytransform.os.path.join ({rpath}, {filename})

size = {size}
n = size >> 2
with open(filename, 'rb') as f:
buf = f.read(size)
fmt = '"I' % n
checksum = sum(pytransform.struct.unpack (fmt, buf)) & OxFFFFFFFF
if not checksum == {checksum}:
raise RuntimeError ("Unexpected " % filename)

try:
check_obfuscated_script ()
check_mod_pytransform()
check_1lib_pytransform()
except Exception as e:
print ("Protection Fault:
pytransform.sys.exit (1)

"

o\
D

protect_pytransform()

All the string template { xxx} will be replaced with real value by Py Armor.

To prevent PyArmor from inserting this protection code, pass ——no-cross-protection as obfuscating the
scripts:

’pyarmor obfuscate —-—no-cross-protection foo.py

After the entry script is obfuscated, the Bootstrap Code will be inserted at the beginning of the obfuscated script.

8.4 How to Run Obfuscated Script

How to run obfuscated script dist/foo.py by Python Interpreter?

The first 2 lines, which called Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

It will fulfil the following tasks
* Load dynamic library _pytransformby ctypes
e Check license.lic is valid or not
¢ Add 3 cfunctions to module builtins: _ _pyarmor_ ,__armor_enter_ ,_ _armor_exit_

The next code line in dist /foo.py is:

__pyarmor__ (__name__, _ file_, b'\x01\x0a...")

__pyarmor___is called, it will import original module from obfuscated code:

8.4. How to Run Obfuscated Script 51

PyArmor Documentation, Release 5.7.0

static PyObject =*
__pyarmor__ (char +#name, char spathname, unsigned char =xobfuscated_code)
{
char xstring_code = restore_obfuscated_code(obfuscated_code);
PyCodeObject #co = marshal.loads(string_code);
return PyImport_ExecCodeModuleEx (name, co, pathname);

After that, in the runtime of this python interpreter

e __armor_enter__ iscalled as soon as code object is executed, it will restore byte-code of this code object:

static PyObject =
__armor_enter__ (PyObject xself, PyObject *args)
{
// Got code object
PyFrameObject *frame = PyEval_GetFrame () ;
PyCodeObject «f_code = frame->f_code;

// Increase refcalls of this code object

// Borrow co_names—>ob_refcnt as call counter

// Generally it will not increased by Python Interpreter
PyObject xrefcalls = f_code->co_names;
refcalls—->ob_refcnt ++;

// Restore byte code if it's obfuscated

if (IS_OBFUSCATED (f_code->co_flags)) {
restore_byte_code (f_code->co_code) ;
clear_obfuscated_flag(f_code);

Py_RETURN_NONE;

e __armor_exit__ iscalled so long as code object completed execution, it will obfuscate byte-code again:

static PyObject =
__armor_exit__ (PyObject *self, PyObject *args)
{
// Got code object
PyFrameObject *frame = PyEval_GetFrame ();
PyCodeObject xf_code = frame->f_code;

// Decrease refcalls of this code object
PyObject xrefcalls = f_code->co_names;
refcalls—>ob_refcnt ——;

// Obfuscate byte code only if this code object isn't used by any function
// In multi-threads or recursive call, one code object may be referenced
// by many functions at the same time
if (refcalls->ob_refcnt == 1) {

obfuscate_byte_code (f_code->co_code) ;

set_obfuscated_flag(f_code);

// Clear f_locals in this frame
clear_frame_locals (frame) ;

(continues on next page)

52 Chapter 8. How PyArmor Does It

PyArmor Documentation, Release 5.7.0

(continued from previous page)

Py_RETURN_NONE;

8.5 How To Pack Obfuscated Scripts

The obfuscated scripts generated by Py Armor can replace Python scripts seamlessly, but there is an issue when packing
them into one bundle by PylInstaller:

All the dependencies of obfuscated scripts CAN NOT be found at all
To solve this problem, the common solution is

1. Find all the dependenices by original scripts.

2. Add runtimes files required by obfuscated scripts to the bundle

3. Replace original scipts with obfuscated in the bundle

4. Replace entry scrirpt with obfuscated one

PyArmor provides command pack to achieve this. But in some cases maybe it doesn’t work. This document describes
what the command pack does, and also could be as a guide to bundle the obfuscated scripts by yourself.

Firstinstall pyinstaller:

’pip install pyinstaller

Then obfuscate scripts to dist/obf:

’pyarmor obfuscate —--output dist/obf hello.py

Next generate specfile, add the obfuscated entry script and data files required by obfuscated scripts:

pyinstaller --add-data dist/obf/license.lic
—-—add-data dist/obf/pytransform.key
-—add-data dist/obf/_pytransform.
hello.py dist/obf/hello.py

And patch specfile hello. spec, insert the following lines after the Analysis object. The purpose is to replace all
the original scripts with obfuscated ones:

a.scripts[-1] = 'hello', r'dist/obf/hello.py', 'PYSOURCE'
for i in range(len(a.pure)):
if a.pure[i][1l].startswith(a.pathex[0]):
x = a.pure[i] [1].replace(a.pathex[0], os.path.abspath('dist/obf'))
if os.path.exists(x):
if hasattr(a.pure, '_code_cache'):
with open(x) as f:
a.pure._code_cachela.pure[i] [0]] = compile(f.read(), a.pureli][1l],
— 'exec')
a.pure[i] = a.pure[i] [0], x, a.pureli][2]

Run patched specfile to build final distribution:

pyinstaller —--clean -y hello.spec

8.5. How To Pack Obfuscated Scripts 53

PyArmor Documentation, Release 5.7.0

Note: Option ——clean is required, otherwise the obfuscated scripts will not be replaced because the cached .pyz
will be used.

Check obfuscated scripts work:

It works
dist/hello/hello.exe

rm dist/hello/license.lic

It should not work
dist/hello/hello.exe

54 Chapter 8. How PyArmor Does It

CHAPTER 9

Runtime Module pytransform

If you have realized that the obfuscated scripts are black box for end users, you can do more in your own Python
scripts.In these cases, pyt rans form would be useful.

The pytransform module is distributed with obfuscated scripts, and must be imported before running any obfus-
cated scripts. It also can be used in your python scripts.

9.1 Contents

exception PytransformError

This is raised when any pytransform api failed. The argument to the exception is a string indicating the cause of
the error.

get_expired _days ()
Return how many days left for time limitation license.

>0: valid in these days

-1: never expired

Note: If the obfuscated script has been expired, it will raise exception and quit directly. All the code in the obfuscated
script will not run, so this function will never return 0.

get_license_info ()
Get license information of obfuscated scripts.

It returns a dict with keys:
* expired: Expired date
* IFMAC: mac address bind to this license
* HARDDISK: serial number of harddisk bind to this license
* IPV4: ipv4 address bind to this license

55

PyArmor Documentation, Release 5.7.0

* DATA: any data stored in this licese, used by extending license type
* CODE: registration code of this license
The value None means no this key in the license.
Raise Pyt ransformError if license is invalid, for example, it has been expired.

get_license_code ()
Return a string, which is specified as generating the licenses for obfucated scripts.

Raise Pyt ransformError if license is invalid.

get_hd_info (hdtype, size=256)
Get hardware information by hdtype, hdtype could one of

HT _HARDDISK return the serial number of first harddisk
HT_IFMAC return mac address of first network card
Raise Pyt ransformError if something is wrong.

HT_ HARDDISK, HT IFMAC
Constant for hdtype when calling get_hd_info ()

9.2 Examples

Copy those example code to any script, for example foo.py, obfuscate it, then run the obfuscated script.

Show left days of license

from pytransform import PytransformError, get_license_info, get_expired_days
try:
code = get_license_info () ['CODE"]
left_days = get_expired_days()
if left_days == -1:
print ('This license for is never expired' % code)
else:
print ('This license for will be expired in days' % (code, left_days))
except PytransformError as e:
print (e)

More usage refer to Using Plugin to Extend License Type

Note: Though pytransform.py is not obfuscated when running the obfuscated script, it’s also protected by PyArmor.
If it’s changed, the obfuscated script will raise protection exception.

Refer to Special Handling of Entry Script

56 Chapter 9. Runtime Module pytransform

cHAaPTER 10

Support Platfroms

The core of PyArmor is written by C, the prebuilt dynamic libraries include the common platforms and some embeded
platforms.

Some of them are distributed with PyArmor source package, in these platforms, pyarmor could run without down-
loading anything. Refer to Prebuilt Libraries Distributed with PyArmor.

For the other platforms, pyarmor first searches path ~/ . pyarmor/plat forms/SYSTEM/ARCH, SYSTEM.ARCH
is one of Standard Platform Names. If there is none, download it from remote server. Refer to The Others Prebuilt
Libraries For PyArmor.

In some platforms, pyarmor doesn’t know it but there is available dynamic library in the table 7he Others Prebuilt
Libraries For PyArmor. Just download it and save it in the path ~/.pyarmor/platforms/SYSTEM/ARCH,
this command pyarmor -d download will also display this path at the beginning. It’s appreicated to send this
platform information to jondy.zhao @gmail.com so that it could be recognized by pyarmor automatically. This script
will display the required information by pyarmor:

from platform import =

print ('system name: ' % system())
print ('machine: ' % machine())
print ('processor: ' % processor())
print ('aliased terse platform: ' % platform(aliased=1, terse=1))
if system().lower () .startswith('linux"):
print ('libc: ' % libc_ver())
print ('distribution: " % linux_distribution())

Contact jondy.zhao @ gmail.com if you’d like to run PyArmor in other platform.

10.1 Standard Platform Names

These names are used in the command obfuscate, build, runtime, download to specify platform.

¢ windows.x86

57

mailto:jondy.zhao@gmail.com
mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.7.0

¢ windows.x86_64
* linux.x86

* linux.x86_64

¢ darwin.x86_64
* vs2015.x86

* vs2015.x86_64
* linux.arm

* linux.armv?7

* linux.aarch32

* linux.aarch64

* android.aarch64
¢ linux.ppc64

* darwin.arm64

¢ freebsd.x86_64
* alpine.x86_64
e alpine.arm

* poky.x86

10.2 Platform Tables

Table 1: Table-1. Prebuilt Libraries Distributed with Py Armor
Name Platform | Arch Features Download Description
windows.x8&indows | 1686 Anti-Debug, JIT, | _pytransfgr@rdls compile by 1686-pc-mingw32-gcc in
ADV cygwin
windows.x8@/i6dows | AMD64 | Anti-Debug, JIT, | _pytransfor@rols compile by x86_64-w64-mingw32-
ADV gcc in cygwin
linux.x86 | Linux 1686 Anti-Debug, JIT, | _pytransforBuwdt by GCC
ADV
linux.x86 | Glinux x86_64 Anti-Debug, JIT, | _pytransforBuidt by GCC
ADV
darwin.x86 M4cOSX | x86_64, | Anti-Debug, JIT, | _pytransforBuiltiby CLang with MacOSX10.11
intel ADV

58

Chapter 10. Support Platfroms

http://pyarmor.dashingsoft.com/downloads/latest/win32/_pytransform.dll
http://pyarmor.dashingsoft.com/downloads/latest/win_amd64/_pytransform.dll
http://pyarmor.dashingsoft.com/downloads/latest/linux_i386/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/linux_x86_64/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/macosx_x86_64/_pytransform.dylib

PyArmor Documentation, Release 5.7.0

Table 2: Table-2. The Others Prebuilt Libraries For Py Armor

Name Platform | Arch Features Download Description
vs2015.x86Windows | x86 _pytransforBudlt by VS2015
vs2015.x86 Wothdows | x64 _pytransforBuilt by VS2015
linxu.arm| Linux armv5S _pytransford2sbit ArmvS (arm926ej-s)
linux.army7Linux armv’7 Anti-Debug, JIT _pytransfor32sbit Armv7 Cortex-A, hard-float, little-
endian
linux.aarchI2inux aarch32 | Anti-Debug, JIT _pytransfordlsbit Armv8 Cortex-A, hard-float, little-
endian
linux.aarch@4inux aarch64 | Anti-Debug, JIT _pytransforodsbit Armv8 Cortex-A, little-endian
linux.ppc64Linux ppcbdle _pytransforifosdPOWERS
darwin.armé®S arm64 _pytransforBudltlby CLang with iPhoneOS9.3.sdk
freebsd.x§6F6deBSD | x86_64 _pytransforiNopsupport harddisk serial number
alpine.x8G_6dpine x86_64 _pytransforiBwidt with musl-1.1.21 for Docker
Linux
alpine.arm Alpine arm _pytransforBudt with musl-1.1.21, 32-bit ArmvS5T,
Linux hard-float, little-endian
poky.x86 | Inel 1586 _pytransfor@iress compile by i586-poky-linux
Quark
android.agrohbdroid | aarch64 _pytransforiBuidd by android-ndk-

r20/toolchains/llvm/prebuilt/linux-
x86_64/bin/aarch64-linux-android21-clang

10.2. Platform Tables

59

http://pyarmor.dashingsoft.com/downloads/latest/vs2015/x86/_pytransform.dll
http://pyarmor.dashingsoft.com/downloads/latest/vs2015/x64/_pytransform.dll
http://pyarmor.dashingsoft.com/downloads/latest/armv5/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/armv7/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/armv8.32-bit/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/armv8.64-bit/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/ppc64le/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/ios.arm64/_pytransform.dylib
http://pyarmor.dashingsoft.com/downloads/latest/freebsd/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/alpine/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/alpine.arm/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/intel-quark/_pytransform.so
http://pyarmor.dashingsoft.com/downloads/latest/android.aarch64/_pytransform.so

PyArmor Documentation, Release 5.7.0

60

Chapter 10. Support Platfroms

cHAPTER 11

The Modes of Obfuscated Scripts

PyArmor could obfuscate the scripts in many modes in order to balance the security and performance. In most of
cases, the default mode works fine. But if the performace is to be bottle-block or in some special cases, maybe you
need understand what the differents of these modes and obfuscate the scripts in different mode so that they could work
as desired.

11.1 Advanced Mode

This feature Advanced Mode is introduced from PyArmor 5.5.0.In this mode the structure of PyCode_Type is changed
a little to improve the security. And a hook also is injected into Python interpreter so that the modified code objects
could run normally. Besides if some core Python C APIs are changed unexpectedly, the obfuscated scripts in advanced
mode won’t work. Because this feature is highly depended on the machine instruction set, it’s only available for
x86/x64 arch now. And pyarmor maybe makes mistake if Python interpreter is compiled by old gcc or some other C
compiles. It’s welcome to report the issue if Python interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to enable it, pass option ——advanced to
command obfuscate:

pyarmor obfuscate ——advanced 1 foo.py

In next minor version, this mode may be enabled by default.
Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to be sure it works in advanced mode.
Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

Note: In trial version if there are more than about 30 functions in one module, this module could not be obfuscated
by advanced mdoe (It still could be obfuscated by non-advanced mode).

61

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

PyArmor Documentation, Release 5.7.0

11.2 Obfuscating Code Mode

In a python module file, generally there are many functions, each function has its code object.
e obf code ==

The code object of each function will keep it as it is.
¢ obf_code == 1 (Default)

In this case, the code object of each function will be obfuscated in different ways depending on wrap mode.
e obf code==2

Almost same as obf_mode 1, but obfuscating bytecode by more complex algorithm, and so slower than the former.

11.3 Wrap Mode

e wrap_mode == 0

When wrap mode is off, the code object of each function will be obfuscated as this form:

0 JUMP_ABSOLUTE n = 3 + len(bytecode)

3 .
. Here it's obfuscated bytecode of original function

n LOAD_GLOBAL ? (__armor_)
n+3 CALL_FUNCTION 0

n+6 POP_TOP

n+7 JUMP_ABSOLUTE 0

When this code object is called first time
1. First op is JUMP_ABSOLUTE, it will jump to offset n

2. At offset n, the instruction is to call PyCFunction __armor__. This function will restore those obfuscated
bytecode between offset 3 and n, and move the original bytecode at offset 0

3. After function call, the last instruction is to jump to offset 0. The really bytecode now is executed.
After the first call, this function is same as the original one.
e wrap_mode == 1 (Default)

When wrap mode is on, the code object of each function will be wrapped with try. . . finally block:

LOAD_GLOBALS N (__armor_enter_) N = length of co_consts
CALL_FUNCTION 0
POP_TOP

SETUP_FINALLY X (Jump to wrap footer) X = size of original byte code

Here it's obfuscated bytecode of original function

LOAD_GLOBALS N + 1 (__armor_exit_)
CALL_FUNCTION 0
POP_TOP

END_FINALLY

62 Chapter 11. The Modes of Obfuscated Scripts

PyArmor Documentation, Release 5.7.0

When this code object is called each time
1. __armor_enter__ will restore the obfuscated bytecode
2. Execute the real function code

3. In the final block, __armor_exit__ will obfuscate bytecode again.

11.4 Obfuscating module Mode

¢ obf_mod == 1 (Default)

The final obfuscated scripts would like this:

__pyarmor___(__name__, file. , b'\x02\x0a...', 1)

The third parameter is serialized code object of the Python script. It’s generated by this way:

PyObject *co = Py_CompileString(source, filename, Py_file_input);
obfuscate_each_function_in_module(co, obf_mode);
char xoriginal_code = marshal.dumps(co);

char xobfuscated_code = obfuscate_whole_module(original_code);
sprintf (buffer, "__pyarmor__ (__name__, _ file_, Db’ ', 1)", obfuscated_code);
e obf mod==0

In this mode, the last statement would be like this to keep the serialized module as it is:

’sprintf(buffer, "__pyarmor__ (__name__, __ file_, Db’ ', 0)", original_code);

And the final obfuscated scripts would be:

’__pyarmor__(;ﬁﬁﬁne;ﬁ, file_ , b'\x02\x0a...', 0)

All of these modes only could be changed in the project for now, refer to Obfuscating Scripts With Different Modes

11.5 Restrict Mode

From PyArmor 5.7.0, the Bootstrap Code must be in the obfuscated scripts and must be specified as entry script. For
example, there are 2 scripts foo.py and test.py in the same folder, obfuscated by this command:

’pyarmor obfuscate foo.py

Inserting the bootstrap code into obfuscated script dist/test.py by manual doesn’t work, because it’s not specified as
entry script. It must be run this command to insert the Bootstrap Code:

’pyarmor obfuscate —--no-runtime --exact test.py

If you need insert the Bootstrap Code into plain script, first obfuscate an empty script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate —--no-runtime --exact pytransform_bootstrap.py

Then import pytransform_bootstrap in the plain script.

From PyArmor 5.5.6, there are 4 restrice modes:

11.4. Obfuscating module Mode 63

PyArmor Documentation, Release 5.7.0

e Mode 1

In this mode, obfuscated scripts must be one of the following formats:

__pyarmor__ (__name__, file_ , b'...")

Or

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ (name_ , _ file , b'...")

Or
from pytransform import pyarmor_runtime

pyarmor_runtime('...")
__pyarmor__ (__name_, _ file , b'...")

No any other statement can be inserted into obfuscated scripts.

For examples, the obfuscate scirpt b.py doesn’t work, because there is an extra code “print”:

$ cat b.py

from pytransform import pyarmor_runtime
pyarmor_runtime ()

__pyarmor__ (__name__, _ file_ , b'...")
print (__name_)

$ python b.py

* Mode 2
In this mode, except that the obfuscated can’t changed, there are 2 restricts:
* The entry script must be obfuscated
* The obfuscated scripts could not be imported out of the obfuscated script

For example, this command will raise error if the foo.py is obfuscated by restrict mode 2:

$ python -c'import foo'

* Mode 3
In this mode, there is another restrict base on Mode 2:
 All the functions in the obfuscated script cound not be called out of the obfuscated scripts.
* Mode 4
It’s similar with Mode 3, but there is a exception:
* The entry script could be plain script

It’s mainly used for obfuscating Python package. The __init__.py is obfuscated by restrict mode 1, all the other scripts
are obfuscated by restrict mode 4.

For example, it’s the content of mypkg/__init__.py

mypkg/
__1init__.py 1s obfuscated by restrict mode 1
foo.py 1is obfuscated by restrict mode 4

(continues on next page)

64 Chapter 11. The Modes of Obfuscated Scripts

PyArmor Documentation, Release 5.7.0

(continued from previous page)

The "foo.hello" could not be called by plain script directly
from .foo import hello

The "open_hello" could be called by plain scirpt
def open_hello (msg) :
print ('This is public hello: $s' % msgq)

The "proxy_hello" could be called by plain scirpt
def proxy_hello(msg) :

print ('This is proxy hello: %s' % msg)
The "foo.hello" could be called by obfuscated "__init__ .py"
hello (msg)

Note: Mode 2 and 3 could not be used to obfuscate the Python package, because it will be imported from other plain
scripts.

Note: Restrict mode is applied to one single script, different scripts could be obfuscated by different restrict mode.

From PyArmor 5.2, Restrict Mode 1 is default.

Obfuscating the scripts by other restrict mode:

pyarmor obfuscate --restrict=2 foo.py
pyarmor obfuscate —--restrict=4 foo.py

For project
pyarmor config —--restrict=2
pyarmor build -B

All the above restricts could be disabled by this way if required:

pyarmor obfuscate —--restrict=0 foo.py

For project
pyarmor config —--restrict=0
pyarmor build -B

For more examples, refer to Improving The Security By Restrict Mode

11.5. Restrict Mode 65

PyArmor Documentation, Release 5.7.0

66

Chapter 11. The Modes of Obfuscated Scripts

cHAPTER 12

The Performance of Obfuscated Scripts

Run command banchmark to check the performance of obfuscated scripts:

pyarmor benchmark

Here it’s sample output:

INFO Start benchmark test
INFO Obfuscate module mode: 1
INFO Obfuscate code mode: 1
INFO Obfuscate wrap mode: 1
INFO Benchmark bootstrap

INFO Benchmark bootstrap OK.
INFO Run benchmark test

Test script: bfoo.py
Obfuscated script: obfoo.py

load_pytransform: 28.429590911694085 ms
init_pytransform: 10.701080723946758 ms
verify license: 0.515428636879825 ms
total_extra_init_time: 40.34842417122847 ms

import_no_obfuscated_module: 9.601499631936461 ms
import_obfuscated_module: 6.858413569322354 ms

re_import_no_obfuscated_module: 0.007263492985840059 ms
re_import_obfuscated_module: 0.0058666674116400475 ms

run_empty_no_obfuscated_code_object: 0.015085716201360122 ms
run_empty_obfuscated_code_object: 0.0058666674116400475 ms

run_one_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_one_thousand_obfuscated_bytecode: 0.005307937181960043 ms

(continues on next page)

67

PyArmor Documentation, Release 5.7.0

(continued from previous page)

run_ten_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_ten_thousand_obfuscated_bytecode: 0.005587302296800045 ms

INFO Remove test path: .\.benchtest
INFO Finish benchmark test.

The total extra init time is about 40ms. It includes the time of loading dynamic library, initialzing it and verifing
license.

Note that the time of importing obfuscated module is less than of importing no obfuscated module, because the
obfuscated scripts has been compiled as byte-code, the original scripts need extra time to compile.

List all available options:

’pyarmor benchmark -h ‘

Specify other options to check the performance in different mode. For example:

’pyarmor benchmark —--wrap-mode 0 ‘

Look at the scripts used to run benchmark test:

’pyarmor benchmark —--debug ‘

All the used files are saved in the folder .benchtest

68 Chapter 12. The Performance of Obfuscated Scripts

cHAPTER 13

The Security of PyArmor

PyArmor will obfuscate python module in two levels. First obfucate each function in module, then obfuscate the whole
module file. For example, there is a file foo.py:

def hello():
print ('Hello world!")

def sum(a, b):
return a + b

if _ name == '_ _main__ ':
hello ()
print ('l + 1 = "% sum(1l, 1))

PyArmor first obfuscates the function hello and sum, then obfuscates the whole moudle foo. In the runtime, only
current called function is restored and it will be obfuscated as soon as code object completed execution. So even trace
code in any c debugger, only a piece of code object could be got one time.

13.1 Cross Protection for _pytransform

The core functions of PyArmor are written by ¢ in the dynamic library _pytransform. _pytransform protects itself
by JIT technical, and the obfuscated scripts is protected by _pytransform. On the other hand, the dynamic library
_pytransform is checked in the obfuscated script to be sure it’s not changed. This is called Cross Protection.

The dynamic library _pytransform.so uses JIT technical to achieve two tasks:
» Keep the des key used to encrypt python scripts from tracing by any ¢ debugger

* The code segment can’t be changed any more. For example, change instruction JZ to JNZ, so that _pytrans-
form.so can execute even if checking license failed

How JIT works?
First PyArmor defines an instruction set based on GNU lightning.

Then write some core functions by this instruction set in c file, maybe like this:

69

PyArmor Documentation, Release 5.7.0

t_instruction protect_set_key_iv = {
// function 1

0x80001,

0x50020,

// function 2
0x80001,
0xAQF80,

t_instruction protect_decrypt_buffer = {
// function 1
0x80021,
0x52029,

// function 2
0x80001,
0xC0901,

Build _pytransform.so, calculate the codesum of code segment of _pytransform.so

Replace the related instructions with real codesum got before, and obfuscate all the instructions except “function 1” in
c file. The updated file maybe likes this:

t_instruction protect_set_key_ iv = {
// plain function 1
0x80001,
0x50020,

// obfuscated function 2
0XXXXXX,
0xXXXXXX,

t_instruction protect_decrypt_buffer = {
// plain function 1
0x80021,
0x52029,

// obfuscated function 2
0XXXKXX,
0xXXXXXX,

Finally build _pytransform.so with this changed c file.

When running obfuscated script, _pytransform.so loaded. Once a proected function is called, it will

1. Generate code from function 1

70 Chapter 13. The Security of PyArmor

PyArmor Documentation, Release 5.7.0

2. Run function I:
* check codesum of code segment, if not expected, quit
* check tickcount, if too long, quit
* check there is any debugger, if found, quit
¢ clear hardware breakpoints if possible
* restore next function function 2

3. Generate code from function 2

4. Run function 2, do same thing as function 1

After repeat some times, the real code is called. All of that is to be sure there is no breakpoint in protection code.

In order to protect _pytransform in Python script, some extra code will be inserted into the entry script, refer to Special
Handling of Entry Script

13.1. Cross Protection for _pytransform 71

PyArmor Documentation, Release 5.7.0

72

Chapter 13. The Security of PyArmor

cHAPTER 14

When Things Go Wrong

When there is in trouble, try to solve it by these ways.
As running pyarmor:
* Check the console output, is there any wrong path, or any odd information

* Run pyarmor with debug option —d to get more information. For example:

’pyarmor -d obfuscate --recurisve foo.py ‘

As running the obfuscated scripts:

 Turn on Python debug option by —d to print more information. For example:

’python -d obf_foo.py ‘

 After debug option is on, there will be a log file pytransform.log generated in the current path. Check its content
to find where the problem is.

14.1 Segment fault

In the following cases, obfuscated scripts will crash
* Running obfuscated script by the debug version Python
* Obfuscating scripts by Python 2.6 but running the obfuscated scripts by Python 2.7

After PyArmor 5.5.0, some machines may be crashed because of advanced mode. A quick workaround is to disable
advanced mode by editing the file pytransform.py which locates in the installed path of pyarmor , in the
function _load_library, uncomment about line 202. The final code looks like this:

Disable advanced mode 1if required
m.set_option (5, c_char_p (1))

73

PyArmor Documentation, Release 5.7.0

14.2 Could not find _pytransform

Generally, the dynamic library _pytransform is in the Runtime Package, before v5.7.0, it’s in the same path of obfus-
cated scripts. It may be:

e _pytransform.so in Linux
e _pytransform.dll in Windows
* _pytransform.dylib in MacOS
First check whether the file exists. If it exists:
* Check the permissions of dynamic library
If there is no execute permissions in Windows, it will complain: [Error 5] Access is denied

* Check whether ctypes could load _pytransform:

from pytransform import _load_library
m = _load_library(path="'/path/to/dist")

Try to set the runtime path in the Bootstrap Code of entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/dist")

Still doesn’t work, report an issue

14.3 The license.lic generated doesn’t work

The key is that the capsule used to obfuscate scripts must be same as the capsule used to generate licenses.

The Global Capsule will be changed if the trial license file of PyArmor is replaced with normal one, or it’s deleted
occasionally (which will be generated implicitly as running command pyarmor obfuscate next time).

In any cases, generating new license file with the different capsule will not work for the obfuscated scripts before. If
the old capsule is gone, one solution is to obfuscate these scripts by the new capsule again.

14.4 NameError: name ‘°__pyarmor__’ is not defined

No Bootstrap Code are executed before importing obfuscated scripts.

When creating new process by Popen or Process in mod subprocess or multiprocessing, to be sure that Bootstrap Code
will be called before importing any obfuscated code in sub-process. Otherwise it will raise this exception.

14.5 Marshal loads failed when running xxx.py

1. Check whether the version of Python to run obfuscated scripts is same as the version of Python to obfuscate
script

2. Run obfuscated script by python -d to show more error message.

3. Be sure the capsule used to generated the license file is same as the capsule used to obfuscate the scripts. The
filename of the capsule will be shown in the console when the command is running.

74 Chapter 14. When Things Go Wrong

https://github.com/dashingsoft/pyarmor/issues/

PyArmor Documentation, Release 5.7.0

14.6 _pytransform can not be loaded twice

When the function pyarmor_runtime is called twice, it will complaint _pytransform can not be loaded twice

For example, if an obfuscated module includes the following lines:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__(....)

When importing this module from entry script, it will report this error. The first 2 lines should be in the entry script
only, not in the other module.

This limitation is introduced from v5.1, to disable this check, just edit pytransform.py and comment these lines in
function pyarmor_runtime:

if _pytransform is not None:
raise PytransformError ('_pytransform can not be loaded twice')

Note: This limitation has been removed from v5.3.5.

14.7 Check restrict mode failed

Use obfuscated scripts in wrong way, by default all the obfuscated scripts can’t be changed any more.

Besides packing the obfuscated scripts will report this error either. Do not pack the obfuscated scripts, but pack the
plain scripts directly.

For more information, refer to Restrict Mode

14.8 Protection Fault: unexpected xxx

Use obfuscated scripts in wrong way, by default, all the runtime files can’t be changed any more. Do not touch the
following files

* pytransform.py
» _pytransform.so/.dll/.dylib

For more information, refer to Special Handling of Entry Script

14.9 Warning: code object xxxx isn’t wrapped

It means this function isn’t been obfuscated, because it includes some special instructions.

For example, there is 2-bytes instruction JMP 255, after the code object is obfuscated, the operand is increased to 267,
and the instructions will be changed to:

EXTEND 1
JMP 11

14.6. _pytransform can not be loaded twice 75

PyArmor Documentation, Release 5.7.0

In this case, it’s complex to obfuscate the code object with wrap mode. So the code object is left as it’s, but all the
other code objects still are obfuscated.

In later version, it will be obfuscated with non wrap mode.

In current version add some unused code in this function so that the operand isn’t the critical value may avoid this
warning.

Note: This has been fixed in v5.5.0.

14.10 Error: Try to run unauthorized function

If there is any file license.lic or pytransform.key in the current path, pyarmor maybe reports this error. One solution is
to remove all of that files, the other solution to upgrade PyArmor to v5.4.5 later.

14.11 Run obfuscated scripts reports: Invalid input packet

If the scripts are obfuscated in different platform, check the notes in Distributing Obfuscated Scripts To Other Platform

Before v5.7.0, check if there is any of license.lic or pytransform.key in the current path. Make sure they’re generated
for the obfuscated scripts. If not, rename them or move them to other path.

Because the obfuscated scripts will first search the current path, then search the path of runtime module pytransform.py
to find the file license.lic and pytransform.key. If they’re not generated for the obfuscated script, this error will be
reported.

14.12 ‘XXX’ codec can’t decode byte 0xXX

Add the exact source encode at the begin of the script. For example:

’# —#— coding: utf-8 —#-—

Refer to https://docs.python.org/2.7/tutorial/interpreter.html#source-code-encoding

14.13 /lib64/libc.s0.6: version ‘GLIBC_ 2.14’ not found

In some machines there is no GLIBC_2.14, it will raise this exception.
One solution is patching _pytransform.so by the following way.

First check version information:

readelf -V /path/to/_pytransform.so

Version needs section '.gnu.version_ r' contains 2 entries:
Addr: 0x00000000000056e8 Offset: 0x0056e8 Link: 4 (.dynstr)
000000: Version: 1 File: libdl.so.2 Cnt: 1
0x0010: Name: GLIBC_2.2.5 Flags: none Version: 7

(continues on next page)

76 Chapter 14. When Things Go Wrong

https://docs.python.org/2.7/tutorial/interpreter.html#source-code-encoding

PyArmor Documentation, Release 5.7.0

(continued from previous page)

0x0020: Version: 1 File: libc.so.6 Cnt: 6

0x0030: Name: GLIBC_2.7 Flags: none Version: 8
0x0040: Name: GLIBC_2.14 Flags: none Version: 6
0x0050: Name: GLIBC_2.4 Flags: none Version: 5
0x0060: Name: GLIBC_2.3.4 Flags: none Version: 4
0x0070: Name: GLIBC_2.2.5 Flags: none Version: 3
0x0080: Name: GLIBC_2.3 Flags: none Version: 2

Then replace the entry of GLIBC_2.14 with GLIBC_2.2.5:
* Copy 4 bytes at 0x56e8+0x10=0x56f8 to 0x56e8+0x40=0x5728
» Copy 4 bytes at 0x56e8+0x18=0x5700 to 0x56e8+0x48=0x5730

Here are sample commands:

xxd —-s 0x56f8 -1 4 _pytransform.so | sed "s/56f8/5728/" | xxd -r - _pytransform.so
xxd -s 0x5700 -1 4 _pytransform.so | sed "s/5700/5730/" | xxd -r - _pytransform.so

14.14 Purchased pyarmor is not private

Even obfuscated with purchased version, license from trial version works:
¢ Make sure command pyarmor register shows correct registration information
* Make sure Global Capsule file ~/.pyarmor_capsule.zip is same as the one in the keyfile pyarmor-regfile-1.zip

* Try to reboot system.

14.15 No module name pytransform

If report this error as running command pyarmor pack:
* Make sure the script specified in the command line is not obfuscated

* Run pack with extra option ——clean to remove cached myscript.spec:

’pyarmor pack —-clean foo.py

14.16 ERROR: Unsupport platform linux.xxx

In some machines pyarmor could not recognize the platform and raise error. If there is available dynamic library
in the table Table-2. The Others Prebuilt Libraries For PyArmor. Just download it and save it in the path ~/.
pyarmor/platforms/SYSTEM/ARCH, this command pyarmor —-d download will also display this path at
the beginning.

If there is no any available one, contact jondy.zhao @ gmail.com if you’d like to run pyarmor in this platform.

14.14. Purchased pyarmor is not private 77

mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.7.0

78

Chapter 14. When Things Go Wrong

cHAPTER 15

License

The software is distributed as Free To Use But Restricted. Free trial version never expires, the limitations are
* The maximum size of code object is 35728 bytes in trial version

» The scripts obfuscated by trial version are not private. It means anyone could generate the license file which
works for these obfuscated scripts.

* Without permission the trial version may not be used for the Python scripts of any commercial product.
About the license file of obfuscated scripts, refer to The License File for Obfuscated Script
A registration code is required to obfuscate big code object or generate private obfuscated scripts.
There are 2 basic types of licenses issued for the software. These are:

* A personal license for home users. The user purchases one license to use the software on his own computer.

Home users may use their personal license to obfuscate all the python scripts which are property of the license
owner, to generate private license files for the obfuscated scripts and distribute them and all the required files to
any other machine or device.

A enterprise license for business users. The user purchases one license to use the software for one product serials
of an organization.

Business users may use their enterprise license on all computers and embedded devices to obfuscate all the
python scripts of this product serials, to generate private license files for these obfuscated scripts and distribute
them and all the required files to any other machine and device.

Without permission of the software owner the license purchased for one product serials should not be used for
other product serials. Business users should purchase new license for different product serials.

15.1 Purchase

To buy a license, please visit the following url

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT{[}300871197{]}=1

79

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT{[}300871197{]}=1

PyArmor Documentation, Release 5.7.0

A registration keyfile generally named “pyarmor-regfile-1.zip” will be sent to your email immediately after payment

is completed successfully. There are 3 files in the archive:
 REAME.txt
¢ license.lic (registration code)
* .pyarmor_capsule.zip (private capsule)
Run the following command to take this keyfile effects:
pyarmor register /path/to/pyarmor-regfile-1.zip
Check the registeration information:
pyarmor register
If the version of PyArmor < 5.6, unzip this registration file, then
¢ Copy “license.lic” in the archive to the installed path of PyArmor

* Copy “.pyarmor_capsule.zip” in the archive to user HOME path

After the registration keyfile takes effect, you need obfuscate the scripts again.

The registration code is valid forever, it can be used permanently.

80

Chapter 15. License

cHAPTER 16

Change Logs

16.1 5.7.6

* Add option —update for command download to update all the downloaded dynamic libraries automatically

* Fix issue: the obfuscated script raises unexpected exception when the license is expired

16.2 5.7.5

e Standardize platform names, refer to https://pyarmor.readthedocs.io/en/v5.7.5/platforms.html#
standard-platform-names

* Run obfuscated scripts in multiple platforms, refer to https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#
running-obfuscated-scripts-in-multiple-platforms

* Downloaded dynamic library files by command command will be saved in the ~/.pyarmor/platforms other than
the installed path of pyarmor package.

* Refine platforms folder structure according to new standard platform name

* In command obfuscate, build, runtime, specify the option —platform multiple times, so that the obfuscated scripts
could run in these platforms

16.3 5.7.4

* Fix issue: command obfuscate fails if the option —src is specifed

16.4 5.7.3

* Refine pytransform to handle error message of core library

81

https://pyarmor.readthedocs.io/en/v5.7.5/platforms.html#standard-platform-names
https://pyarmor.readthedocs.io/en/v5.7.5/platforms.html#standard-platform-names
https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#running-obfuscated-scripts-in-multiple-platforms
https://pyarmor.readthedocs.io/en/v5.7.5/advanced.html#running-obfuscated-scripts-in-multiple-platforms

PyArmor Documentation, Release 5.7.0

* Refine command online help message
* Sort the scripts being to obfuscated to fix some random errors (#143)
* Raise exception other than call sys.exit if pyarmor is called from another Python script directly
¢ In the function get_license_info of module pytransform
— Change the value to None if there is no corresponding information

— Change the key name expired to upper case EXPIRED

16.5 5.7.2

* Fix plugin codec issue (#138): ‘gbk’ codec can’t decode byte 0x82 in position 590: illegal multibyte sequence
* Project src may be relative path base on project path

e Refine plugin and document it in details: https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#
how-to-deal-with-plugins

* Add common option —debug for pyarmor to show more information in the console

* Project commands, for examples build, cofig, the last argument supports any valid project configuration file

16.6 5.7.1

* Add command runtime to generate runtime package separately
* Add the first character as alias for command obfuscate, licenses, pack, init, config, build

* Fix cross platform obfuscating scripts don’t work issue (#136). This bug should be exists from v5.6.0 to v5.7.0
Related target platforms armv5, android.aarch64, ppc64le, ios.arm64, freebsd, alpine, alpine.arm, poky-i586

16.7 5.7.0

There are 2 major changes in this version:

1. The runtime files are saved in the separated folder pytransform as package:

dist/
obf_foo.py

pytransform/
__init_ .py
license.lic
pytransform.key

Upgrade notes:
* If you have generated new runtime file “license.lic”, it should be copied to dist/pytransform other than dist/

* If you’d like to save the runtime files in the same folder with obfuscated scripts as before, obfuscating the scripts
with option package-runtime like this:

82 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#how-to-deal-with-plugins
https://pyarmor.readthedocs.io/en/v5.7.2/how-to-do.html#how-to-deal-with-plugins

PyArmor Documentation, Release 5.7.0

pyarmor obfuscate --package-runtime=0 foo.py
pyarmor build --package-runtime=0

2. The bootstrap code must be in the obfuscated scripts, and it must be entry script as obfuscating.

Upgrade notes:

* If you have inserted bootstrap code into the obfuscated script dist/foo.py which is obfuscated but not as entry

script manually. Do it by this command after v5.7.0:

pyarmor obfuscate --no-runtime --exact foo.py

* If you need insert bootstrap code into plain script, first obfuscate an empty script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate —--no-runtime --exact pytransform bootstrap.py

Then import pytransform_bootstrap in the plain script.
Other changes:
* Change default value of project attribute package_runtime from 0 to 1
* Change default value of option —package-runtime from O to 1 in command obfuscate
* Add option —no-runtime for command obfuscate

* Add optioin —disable-restrict-mode for command licenses

16.8 5.6.8

* Add option —package-runtime in command obfuscate, config and build
* Add attribute package_runtime for project

* Refine default cross protection code

* Remove deprecated flag for option —src in command obfuscate

* Fix help message errors in command obfuscate

16.9 5.6.7

* Fix issue (#129): “Invalid input packet” on raspberry pi (armv7)

¢ Add new obfuscation mode: obf_code ==

16.10 5.6.6

* Remove unused exported symbols from core libraries

16.8. 5.6.8

83

PyArmor Documentation, Release 5.7.0

16.11 5.6.5

 Fix win32 issue: verify license failed in some cases

 Refine core library to improve security

16.12 5.6.4

* Fix segmentation fault issue for Python 3.8

16.13 5.6.3

* Add option -x in command licenses to save extra data in the license file. It’s mainly used to extend license type.

16.14 5.6.2

* Fix pyarmor-webui start issue in some cases: can’t import name ‘_project’

16.15 5.6.1

* The command download will check the version of dynamic library to be sure it works with the current Py Armor.

16.16 5.6.0

In this version, new private capsule, which use 2048 bits RSA key to improve security for obfucated scripts, is
introduced for purchased users. All the trial versions still use one same public capsule which use 1024 bits RSA keys.
After purchasing PyArmor, a keyfile which includes license key and private capsule will be sent to customer by email.

For the previous purchased user, the old private capsules which are generated implicitly by PyArmor after registered
PyArmor still work, but maybe not supported later. Contact jondy.zhao@ gmail.com if you’d like to use new private
capsule.

The other changes:

* Command register are refined according to new private capsule
Upgrade Note for Previous Users
There are 2 solutions:

1. Still use old license code.

It’s recommanded that you have generated some customized “license.lic” for the obfuscated scrips and these “li-
cense.lic” files have been issued to your customers. If use new key file, all the previous “license.lic” does not work,
you need generate new one and resend to your customers.

Actually the command pip install —upgrade pyarmor does not overwrite the purchased license code, you need not run
command pyarmor register again. It should still work, you can check it by run pyarmor -v.

84 Chapter 16. Change Logs

mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.7.0

Or in any machine in which old version pyarmor is running, compress the following 2 files to one archive “pyarmor-
regfile.zip”:

* license.lic, which locates in the installed path of pyarmor
e .pyarmor_capsule.zip, which locates in the user HOME path
Then register this keyfile in the new version of pyarmor
pyarmor register pyarmor-regfile.zip
2. Use new key file.
It’s recommanded that you have not yet issued any customized “license.lic” to your customers.

Forward the purchased email received from MyCommerce to jondy.zhao@gmail.com, and the new key file will be
sent to the registration email, no fee for this upgrading.

16.17 5.5.7

* Fix webui bug: raise “name ‘output’ is not defined” as running packer

16.18 5.5.6

* Add new restrict mode 2, 3 and 4 to improve security of the obfuscated scripts, refer to Restrict Mode
* In command obfuscate, option —restrict supports new value 2, 3 and 4

* In command config, option —disable-restrict-mode is deprecrated

* In command config, add new option —restrict

¢ In command obfuscate the last argument could be a directory

16.19 5.5.5

e Win32 issue: the obfuscated scripts will print extra message.

16.20 5.5.4

* Fix issue: the output path isn’t correct when building a package with multiple entries

 Fix issue: the obfuscated scripts raise SystemError “unknown opcode” if advanced mode is enabled in some
MacOS machines

16.21 5.5.3

* Fix issue: it will raise error “Invalid input packet” to import 2 independent obfuscated packages in 64-bit
Windows.

16.17. 5.5.7 85

mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.7.0

16.22 5.5.2

* Fix bug of command pack: the obfuscated modules aren’t packed into the bundle if there is an attribute
_code_cache in the a.pure

16.23 5.5.1

* Fix bug: it could not obfuscate more than 32 functions in advanced mode even pyarmor isn’t trial version.

* In command licenses, the output path of generated license file is truncated if the registration code is too long,
and all the invalid characters for path are removed.

16.24 5.5.0

* Fix issue: Warning: code object xxxx isn’t wrapped (#59)

¢ Refine command download, fix some users could not download library file from pyarmor.dashingsoft.com
¢ Introduce advanced mode for x86/x64 arch, it has some limitations in trial version

* Add option —advanced for command obfuscate

* Add new property advanced_mode for project

A new feature Advanced Mode is introduced in this version. In this mode the structure of PyCode_Type is changed a
little to improve the security. And a hook also is injected into Python interpreter so that the modified code objects could
run normally. Besides if some core Python C APIs are changed unexpectedly, the obfuscated scripts in advanced mode
won’t work. Because this feature is highly depended on the machine instruction set, it’s only available for x86/x64
arch now. And pyarmor maybe makes mistake if Python interpreter is compiled by old gcc or some other C compiles.
It’s welcome to report the issue if Python interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to enable it, pass option —advanced to
command obfuscate. But in next minor version, this mode may be enable by default.

Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to be sure it works in advanced mode.
Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

16.25 5.4.6

* Add option —without-license for command pack. Sample usage refer to https://pyarmor.readthedocs.io/en/latest/
advanced.html#bundle-obfuscated-scripts-to-one-executable-file

* Add option —debug for command pack. If this option isn’t set, all the build files will be removed after packing.

86 Chapter 16. Change Logs

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-to-one-executable-file
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-to-one-executable-file

PyArmor Documentation, Release 5.7.0

16.26 5.4.5

* Enhancement: In Linux support to get the serial number of NVME harddisk

* Fix issue: After run command register, pyarmor could not generate capsule if there is license.lic in the current
path

16.27 5.4.4

* Fix issue: In Linux could not get the serial number of SCSI harddisk

* Fix issuse: In Windows the serial number is not right if the leading character is alpha number

16.28 5.4.3

* Add function get_license_code in runtime module pytransform, which mainly used in plugin to extend license
type. Refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

¢ Fix issue: the command download always shows trial version

16.29 5.4.2

* Option —exclude can use multiple times in command obfuscate

¢ Exclude build path automatically in command pack

16.30 5.4.1

¢ New feature: do not obfuscate functions which name starts with lambda_

 Fix issue: it will raise Protection Fault as packing obfuscated scripts to one file

16.31 5.4.0

* Do not obfuscate lambda functions by default

* Fix issue: local variable platname referenced before assignment

16.32 5.3.13

* Add option —ur/ for command download

16.33 5.3.12

* Add integrity checks for the downloaded binaries (#85)

16.26. 5.4.5 87

https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

PyArmor Documentation, Release 5.7.0

16.34 5.3.11

* Fix issue: get wrong harddisk’s serial number for some special cases in Windows

16.35 5.3.10

* Query harddisk’s serial number without administrator in Windows

16.36 5.3.9

* Remove the leading and trailing whitespace of harddisk’s serial number

16.37 5.3.8

* Fix non-ascii path issue in Windows

16.38 5.3.7

* Fix bug: the bootstrap code isn’t inserted correctly if the path of entry script is absolute path.

16.39 5.3.6

* Fix bug: protection code can’t find the correct dynamic library if distributing obfuscated scripts to other plat-
forms.

* Document how to distribute obfuscated scripts to other platforms https://pyarmor.readthedocs.io/en/latest/
advanced.html#distributing-obfuscated-scripts-to-other-platform

16.40 5.3.5

* The bootstrap code could run many times in same Python interpreter.

* Remove extra. from the bootstrap code of __init__.py as building project without runtime files.

16.41 5.3.4

¢ Add command download used to download platform-dependent dynamic libraries
» Keep shell line for obfuscated entry scripts if there is first line starts with #/

* Fix issue: if entry script is not in the src path, bootstrap code will not be inserted.

88 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/advanced.html#distributing-obfuscated-scripts-to-other-platform
https://pyarmor.readthedocs.io/en/latest/advanced.html#distributing-obfuscated-scripts-to-other-platform

PyArmor Documentation, Release 5.7.0

16.42 5.3.3

* Refine benchmark command
* Document the performance of obfuscated scripts https://pyarmor.readthedocs.io/en/latest/performance.html
* Add command register to take registration code effects

¢ Rename trial license file license.lic to license.tri

16.43 5.3.2

* Fix bug: if there is only one comment line in the script it will raise IndexError as obfuscating this script.

16.44 5.3.1

* Refine pack command, and make output clear.

* Document plugin usage to extend license type for obufscated scripts. Refer to https://pyarmor.readthedocs.io/
en/latest/advanced.html#using-plugin-to-extend-license-type

16.45 5.3.0

¢ In the trial version of PyArmor, it will raise error as obfuscating the code object which size is greater than 32768
bytes.

* Add option —plugin in command obfuscate
* Add property plugins for Project, and add option —plugin in command config

* Change default build path for command pack, and do not remove it after command finished.

16.46 5.2.9

 Fix segmentation fault issue for python3.5 and before: run too big obfuscated code object (>65536 bytes) will
crash (#67)

* Fix issue: missing bootstrap code for command pack (#68)

* Fix issue: the output script is same as original script if obfuscating scripts with option —exact

16.47 5.2.8

* Fix issue: pyarmor -v complains not enough arguments for format string

16.42. 5.3.3 89

https://pyarmor.readthedocs.io/en/latest/performance.html
https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type
https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

PyArmor Documentation, Release 5.7.0

16.48 5.2.7

* In command obfuscate add new options —exclude, —exact, —no-bootstrap, —no-cross-protection.
* In command obfuscate deprecate the options —src, —entry, —cross-protection.

* In command licenses deprecate the option —bind-file.

16.49 5.2.6

* Fix issue: raise codec exception as obfuscating the script of utf-8 with BOM
* Change the default path to user home for command capsule
* Disable restrict mode by default as obfuscating special script __init__.py

* Refine log message

16.50 5.2.5

¢ Fix issue: raise IndexError if output path is ‘.’ as building project
» For Python3 convert error message from bytes to string as checking license failed

¢ Refine version information

16.51 5.2.4

 Fix arm64 issue: verify rsa key failed when running the obufscated scripts(#63)

 Support ios (arm64) and ppc64le for linux

16.52 5.2.3

* Refine error message when checking license failed

» Fix issue: protection code raises ImportError in the package file __init.py__

16.53 5.2.2

* Improve the security of dynamic library.

16.54 5.2.1

« Fix issue: in restrict mode the bootstrap code in __init__.py will raise exception.

* Add option —cross-protection in command obfuscate

920 Chapter 16. Change Logs

PyArmor Documentation, Release 5.7.0

16.55 5.2.0

» Use global capsule as default capsule for project, other than creating new one for each project

* Add option —obf-code, —obf-mod, —wrap-mode, —cross-protection in command config

* Add new attributes for project: obf_code, obf_mod, wrap_mode, cross_protection

» Deprecrated project attributes obf_code_mode, obf_module_mode, use obf_code, obf_mod, wrap_mode instead

e Change the behaviours of restrict mode, refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#
restrict-mode

» Change option —restrict in command obfuscate and licenses
* Remove option —no-restrict in command obfuscate

* Remove option —clone in command init

16.56 5.1.2

 Improve the security of PyArmor self

16.57 5.1.1

* Refine the procedure of encrypt script

* Reform module pytransform.py

* Fix issue: it will raise exception if no entry script when obfuscating scripts

* Fix issue: ‘gbk’ codec can’t decode byte Oxal in position 28 (#51)

* Add option —upgrade for command capsule

* Merge runtime files pyshield.key, pyshield.lic and product.key into pytransform.key
Upgrade notes

The capsule created in this version will include a new file pytransform.key which is a replacement for 3 old runtime
files: pyshield.key, pyshield.lic and product.key.

The old capsule which created in the earlier version still works, it stills use the old runtime files. But it’s recommended
to upgrade the old capsule to new version. Just run this command:

pyarmor capsule ——-upgrade

All the license files generated for obfuscated scripts by old capsule still work, but all the scripts need to be obfuscated
again to take new capsule effects.

16.58 5.1.0

* Add extra code to protect dynamic library _pytransform when obfuscating entry script

* Fix compling error when obfuscating scripts in windows for Python 26/30/31 (newline issue)

16.55. 5.2.0 91

https://pyarmor.readthedocs.io/en/latest/advanced.html#restrict-mode
https://pyarmor.readthedocs.io/en/latest/advanced.html#restrict-mode

PyArmor Documentation, Release 5.7.0

16.59 5.0.5

* Refine protect_pytransform to improve security, refer to https://pyarmor.readthedocs.io/en/latest/security.html

16.60 5.0.4

* Fix get_expired_days issue, remove decorator dllmethod

* Refine output message of pyarmor -v

16.61 5.0.3

* Add option -g, —silent, suppress all normal output when running any PyArmor command

* Refine runtime error message, make it clear and more helpful

* Add new function get_hd_info in module pytransform to get hardware information

¢ Remove function ger_hd_sn from module pytransform, use get_hd_info instead

* Remove useless function version_info, get_trial_days from module pytransform

* Remove attribute lib_filename from module pytransform, use _pytransform._name instead
* Add document https://pyarmor.readthedocs.io/en/latest/pytransform.html

¢ Refine document https://pyarmor.readthedocs.io/en/latest/security.html

16.62 5.0.2

» Export lib_filename in the module pytransform in order to protect dynamic library _pytransform. Refer to

https://pyarmor.readthedocs.io/en/latest/security.html

16.63 5.0.1

Thanks to GNU lightning, from this version, the core routines are protected by JIT technicals. That is to say, there is
no binary code in static file for core routines, they’re generated in runtime.

Besides, the pre-built dynamic library for linux arm32/64 are packed into the source package.
Fixed issues:
* The module multiprocessing starts new process failed in obfuscated script:

AttributeError: ‘__main__’ object has no attribute ‘f’

16.64 4.6.3

* Fix backslash issue when running pack command with Pylnstaller

* When PyArmor fails, if sys.flags.debug is not set, only print error message, no traceback printed

92 Chapter 16. Change Logs

https://pyarmor.readthedocs.io/en/latest/security.html
https://pyarmor.readthedocs.io/en/latest/pytransform.html
https://pyarmor.readthedocs.io/en/latest/security.html
https://pyarmor.readthedocs.io/en/latest/security.html

PyArmor Documentation, Release 5.7.0

16.65 4.6.2

* Add option —options for command pack

* For Python 3, there is no new line in the output when pack command fails

16.66 4.6.1

* Fix license issue in 64-bit embedded platform

16.67 4.6.0

* Fix crash issue for special code object in Python 3.6

16.68 4.5.5

¢ Fix stack overflow issue

16.69 4.5.4

* Refine platform name to search dynamic library _pytransform

16.70 4.5.3

* Print the exact message when checking license failed to run obfuscated scripts.

16.71 4.5.2

* Add documentation https://pyarmor.readthedocs.io/en/latest/

» Exclude dist, build folder when executing pyarmor obfuscate —recursive

16.72 4.5.1

* Fix #41: can not find dynamic library _pytransform

16.73 4.5.0

* Add anti-debug code for dynamic library _pytransform

16.65. 4.6.2

93

https://pyarmor.readthedocs.io/en/latest/

PyArmor Documentation, Release 5.7.0

16.74 4.4.2

» Change default capsule to user home other than the source path of pyarmor

16.75 4.4.2

This patch mainly changes webui, make it simple more:
* WebUI : remove source field in tab Obfuscate, and remove ipv4 field in tab Licenses

* WebUI Packer: remove setup script, add output path, only support PyInstaller

16.76 4.4.1

* Support Py2Installer by a simple way
* For command obfuscate, get default src and entry from first argument, —src is not required.

* Set no restrict mode as default for new project and command obfuscate, licenses

16.77 4.4.0

* Pack obfuscated scripts by command pack

In this version, introduces a new command pack used to pack obfuscated scripts with py2exe and cx_Freeze. Once
the setup script of py2exe or cx_Freeze can bundle clear python scripts, pack could pack obfuscated scripts by single
command: pyarmor pack —type cx_Freeze /path/to/src/main.py

 Pack obfuscated scripts by WebUI packer
WebUI is well reformed, simple and easy to use.

http://pyarmor.dashingsoft.com/demo/index.html

16.78 4.3.4

* Fix start pyarmor issue for pip install in Python 2

16.79 4.3.3

* Fix issue: missing file in wheel

16.80 4.3.2

¢ Fix pip install issue in MacOS

* Refine sample scripts to make workaround for py2exe/cx_Freeze simple

94 Chapter 16. Change Logs

http://pyarmor.dashingsoft.com/demo/index.html

PyArmor Documentation, Release 5.7.0

16.81 4.3.1

* Fix typos in examples

* Fix bugs in sample scripts

16.82 4.3.0

In this version, there are three significant changes:

[Simplified WebUI](http://pyarmor.dashingsoft.com/demo/index.html) [Clear Exam-
ples](src/exampless/README.md), quickly wunderstand the most features of Pyarmor [Sample Shell
Scripts](src/examples), template scripts to obfuscate python source files

» Simply webui, easy to use, only input one filed to obfuscate python scripts
* The runtime files will be always saved in the same path with obfuscated scripts

* Add shell scripts obfuscate-app, obfuscate-pkg, build-with-project, build-for-2exe in src/examples, so that users
can quickly obfuscate their python scripts by these template scripts.

o If entry script is __init__.py, change the first line of bootstrap code from pytransform import pyarmor runtime
to from .pytransform import pyarmor runtime

* Rewrite examples’/README.md, make it clear and easy to understand
* Do not generate entry scripts if only runtime files are generated

* Remove choice package for option —type in command init, only pkg reserved.

16.83 4.2.3

* Fix pyarmor-webui can not start issue
* Fix runtime-path issue in webui

¢ Rename platform name macosx_intel to macosx_x86_64 (#36)

16.84 4.2.2

* Fix webui import error.

16.85 4.2.1

* Add option —recursive for command obfuscate

16.86 4.1.4

* Rewrite project long description.

16.81. 4.3.1 95

http://pyarmor.dashingsoft.com/demo/index.html

PyArmor Documentation, Release 5.7.0

16.87 4.1.3

* Fix Python3 issue for get_license_info

16.88 4.1.2

* Add function get_license_info in pytransform.py to show license information

16.89 4.1.1

* Fix import main from pyarmor issue

16.90 4.0.3

¢ Add command capsule
* Find default capsule in the current path other than —src in command obfuscate

* Fix pip install issue #30

16.91 4.0.2

* Rename pyarmor.py to pyarmor-depreted.py
* Rename pyarmor2.py to pyarmor.py

* Add option —capsule, -disable-restrict-mode and —output for command licenses

16.92 4.0.1

* Add option —capsule for command init, config and obfuscate
* Deprecate option —clone for command init, use —capsule instead

¢ Fix sys.settrace and sys.setprofile issues for auto-wrap mode

16.93 3.9.9

* Fix segmentation fault issues for asyncio, typing modules

16.94 3.9.8

* Add documentation for examples (examples/README.md)

96 Chapter 16

. Change Logs

PyArmor Documentation, Release 5.7.0

16.95 3.9.7

* Fix windows 10 issue: access violation reading 0x000001ED00000000

16.96 3.9.6

* Fix the generated license bind to fixed machine in webui is not correct

* Fix extra output path issue in webui

16.97 3.9.5

» Show registration code when printing version information

16.98 3.9.4

» Rewrite long description of package in pypi

16.99 3.9.3

* Fix issue: __file__is not really path in main code of module when import obfuscated module

16.100 3.9.2

* Replace option —disable-restrict-mode with —no-restrict in command obfuscate
* Add option —title in command config
» Change the output path of entry scripts when entry scripts belong to package

* Refine document user-guide.md and mechanism.md

16.101 3.9.1

* Add option —type for command init

* Refine document user-guide.md and mechanism.md

16.102 3.9.0

This version introduces a new way aufo-wrap to protect python code when it’s imported by outer scripts.
Refer to [Mechanism Without Restrict Mode](src/mechanism.md#mechanism-without-restrict-mode)

* Add new mode wrap for —obf-code-mode

16.95. 3.9.7 97

PyArmor Documentation, Release 5.7.0

e Remove func.__refcalls__in __wraparmor__

* Add new project attribute is_package

* Add option —is-package in command config

* Add option —disable-restrict-mode in command obfuscate

* Reset build_time when project configuration is changed

* Change output path when is_package is set in command build

¢ Change default value of project when find __init__.py in comand init

* Project attribute entry supports absolute path

16.103 3.8.10

* Fix shared code object issue in __wraparmor__

16.104 3.8.9

* Clear frame as long as tb is not Py_None when call __wraparmor__

* Generator will not be obfucated in __wraparmor__

16.105 3.8.8

» Fix bug: the frame.f locals still can be accessed in callback function

16.106 3.8.7

e The frame.f locals of wrapper and wrapped function will return an empty dictionary once __wraparmor__ is
called.

16.107 3.8.6

* The frame.f_locals of wrapper and wrapped function return an empty dictionary, all the other frames still return
original value.

16.108 3.8.5

* The frame.f _locals of all frames will always return an empty dictionary to protect runtime data.

* Add extra argument tb when call __wraparmor__ in decorator wraparmor, pass None if no exception.

98 Chapter 16. Change Logs

PyArmor Documentation, Release 5.7.0

16.109 3.8.4

* Do not touch frame.f _locals when raise exception, let decorator wraparmor to control everything.

16.110 3.8.3

* Fix issue: option —disable-restrict-mode doesn’t work in command licenses

* Remove freevar func from frame.f_locals when raise exception in decorator wraparmor

16.111 3.8.2

¢ Change module filename to <frozen modname> in traceback, set attribute __file__to real filename when running
obfuscated scripts.

16.112 3.8.1

* Try to access original func_code out of decorator wraparmor is forbidden.

16.113 3.8.0

* Add option —output for command build, it will override the value in project configuration file.
* Fix issue: defalut project output path isn’t relative to project path.

* Remove extra file “product.key” after obfuscating scripts.

16.114 3.7.5

* Remove dotted name from filename in traceback, if it’s not a package.

16.115 3.7.4

 Strip __init__ from filename in traceback, replace it with package name.

16.116 3.7.3

* Remove brackets from filename in traceback, and add dotted prefix.

16.117 3.7.2

» Change filename in traceback to <frozen [modname]>, other than original filename

16.109. 3.8.4 99

PyArmor Documentation, Release 5.7.0

16.118 3.7.1

* Fix issue #12: module attribute __file__is filename in build machine other than filename in target machine.

* Builtins function __wraparmor__ only can be used in the decorator wraparmor

16.119 3.7.0

* Fix issue #11: use decorator “wraparmor” to obfuscate func_code as soon as function returns.

¢ Document usage of decorator “wraparmor”, refer to src/user-guide.md#use-decorator-to-protect-code-
objects-when-disable-restrict-mode

16.120 3.6.2

* Fix issue #8 (Linux): option —manifest broken in shell script

16.121 3.6.1

* Add option “Restrict Mode” in web ui

* Document restrict mode in details (user-guide.md)

16.122 3.6.0

* Introduce restrict mode to avoid obfuscated scripts observed from no obfuscated scripts

* Add option —disable-restrict-mode for command “config”

16.123 3.5.1

* Support pip install pyarmor

16.124 3.5.0

Fix Python3.6 issue: can not run obfuscated scripts, because it uses a 16-bit wordcode instead of bytecode

Fix Python3.7 issue: it adds a flag in pyc header
* Fix option —obf-module-mode=none failed
* Add option —clone for command “init”

* Generate runtime files to separate path “runtimes” when project runtime-path is set

Add advanced usages in user-guide

100 Chapter 16. Change Logs

PyArmor Documentation, Release 5.7.0

16.125 3.4.3

* Fix issue: raise exception when project entry isn’t obfuscated

16.126 3.4.2

* Add webui to manage project

16.127 3.4.1

¢ Fix README .rst format error.
* Add title attribute to project

* Print new command help when option is -h, —help

16.128 3.4.0

Pyarmor v3.4 introduces a group new commands. For a simple package, use command obfuscate to obfuscate scripts
directly. For complicated package, use Project to manage obfuscated scripts.

Project includes 2 files, one configure file and one project capsule. Use manifest template string, same as MANI-
FEST.in of Python Distutils, to specify the files to be obfuscated.

To create a project, use command init, use command info to show project information. config to update project
settings, and build to obfuscate the scripts in the project.

Other commands, benchmark to metric performance, hdinfo to show hardware information, so that command licenses
can generate license bind to fixed machine.

All the old commands capsule, encrypt, license are deprecated, and will be removed from v4.

A new document src/user-guide.md is written for this new version.

16.129 3.3.1

* Remove unused files in distribute package

16.130 3.3.0

In this version, new obfuscate mode 7 and 8 are introduced. The main difference is that obfuscated script now is a
normal python file (.py) other than compiled script (.pyc), so it can be used as common way.

Refer to https://github.com/dashingsoft/pyarmor/blob/v3.3.0/src/mechanism.md
* Introduce new mode: 7, 8
* Change default mode from 3 to 8

* Change benchmark.py to test new mode

16.125. 3.4.3 101

https://github.com/dashingsoft/pyarmor/blob/v3.3.0/src/mechanism.md

PyArmor Documentation, Release 5.7.0

» Update webapp and tutorial
e Update usage
* Fix issue of py2exe, now py2exe can work with python scripts obfuscated by pyarmor

* Fix issue of odoo, now odoo can load python modules obfuscated by pyarmor

16.131 3.2.1

* Fix issue: the traceback of an exception contains the name “<pytransform>" instead of the correct module name

¢ Fix issue: All the constant, co_names include function name, variable name etc still are in clear text. Refer to
https://github.com/dashingsoft/pyarmor/issues/5

16.132 3.2.0

From this version, a new obfuscation mode is introduced. By this way, no import hooker, no setprofile, no settrace
required. The performance of running or importing obfuscation python scripts has been remarkably improved. It’s
significant for Pyarmor.

» Use this new mode as default way to obfuscate python scripts.
* Add new script “benchmark.py” to check performance in target machine: python benchmark.py

» Change option “~bind-disk” in command “license”, now it must be have a value

16.133 3.1.7

* Add option “~bind-mac”, “~bind-ip”, “~bind-domain” for command “license”’
¢ Command “hdinfo” show more information(serial number of hdd, mac address, ip address, domain name)

¢ Fix the issue of dev name of hdd for Banana Pi

16.134 3.1.6

¢ Fix serial number of harddisk doesn’t work in mac osx.

16.135 3.1.5

* Support MACOS

16.136 3.1.4

* Fix issue: load _pytransfrom failed in linux x86_64 by subprocess.Popen

* Fix typo in error messge when load _pytransfrom failed.

102 Chapter 16. Change Logs

https://github.com/dashingsoft/pyarmor/issues/5

PyArmor Documentation, Release 5.7.0

16.137 3.1.3

A web gui interface is introduced as Pyarmor WebApp and support MANIFEST.in
¢ In encrypt command, save encrypted scripts with same file structure of source.
* Add a web gui interface for pyarmor.
* Support MANIFEST.in to list files for command encrypt
* Add option —manifest, file list will be written here
e DO NOT support absolute path in file list for command encrypt
* Option —main support format “NAME:ALIAS.py”

16.138 3.1.2

* Refine decrypted mechanism to improve performance
* Fix unknown opcode problem in recursion call
* Fix wrapper scripts generated by -m in command ‘encrypt’ doesn’t work

* Raise ImportError other than PytransformError when import encrypted module failed

16.139 3.1.1

In this version, introduce 2 extra encrypt modes to improve performance of encrypted scripts.
* Fix issue when import encrypted package
¢ Add encrypted mode 2 and 3 to improve performance

 Refine module pyimcore to improve performance

16.140 3.0.1

It’s a milestone for Pyarmor, from this version, use ctypes import dynamic library of core functions, other than by
python extensions which need to be built with every python version.
Besides, in this version, a big change which make Pyarmor could avoid soure script got by ¢ debugger.

 Use ctypes load core library other than python extentions which need built for each python version.

e “__main__" block not running in encrypted script.

* Avoid source code got by ¢ debugger.

¢ Change default outoupt path to “build” in command “encrypt”
* Change option “-~bind” to “~bind-disk” in command “license”’

* Document usages in details

16.137. 3.1.3 103

PyArmor Documentation, Release 5.7.0

16.141 2.6.1

* Fix encrypted scripts don’t work in multi-thread framework (Django).

16.142 2.5.5

* Add option ‘-1’ for command ‘encrypt’ so that the encrypted scripts will be saved in the original path.

16.143 2.5.4

* Verbose tracelog when checking license in trace mode.
* In license command, change default output filename to “license.lic.txt”.

* Read bind file when generate license in binary mode other than text mode.

16.144 2.5.3

* Fix problem when script has line “from __future__ import with_statement”
* Fix error when running pyarmor by 32bit python on the 64bits Windows.

 (Experimental)Support darwin_15-x86_64 platform by adding
2.3.3.darwin_15.x86_64-py2.7.s0

16.145 2.5.2

* License file can mix expire-date with fix file or fix key.

* Fix log error: not enough arguments for format string

16.146 2.5.1

¢ License file can bind to ssh private key file or any other fixed file.

16.147 2.4.1

* Change default extension “.pyx” to “.pye”, because it confilcted with CPython.

extensions/pytransform-

* Custom the extension of encrypted scripts by os environment variable: PYARMOR_EXTRA_CHAR

* Block the hole by which to get bytescode of functions.

104 Chapter 16. Change Logs

PyArmor Documentation, Release 5.7.0

16.148 2.3.4

e The trial license will never be expired (But in trial version, the key used to encrypt scripts is fixed).

16.149 2.3.3

¢ Refine the document

16.150 2.3.2

* Fix error data in examples of wizard

16.151 2.3.1

* Implement Run function in the GUI wizard

¢ Make license works in trial version

16.152 2.2.1

¢ Add a GUI wizard

* Add examples to show how to use pyarmor

16.153 2.1.2

* Fix syntax-error when run/import encrypted scripts in linux x86_64

16.154 2.1.1

* Support armv6

16.155 2.0.1

* Add option ‘—path’ for command ‘encrypt’
* Support script list in the file for command ‘encrypt’

* Fix issue to encrypt an empty file result in pytransform crash

16.148. 2.3.4 105

PyArmor Documentation, Release 5.7.0

16.156 1.7.7

* Add option ‘—expired-date’ for command ‘license’
¢ Fix undefined ‘tfm_desc’ for arm-linux

» Enhance security level of scripts

16.157 1.7.6

* Print exactaly message when pyarmor couldn’t load extension “pytransform”
* Fix problem “version ‘GLIBC_2.14" not found”

¢ Generate “license.lic” which could be bind to fixed machine.

16.158 1.7.5

* Add missing extensions for linux x86_64.

16.159 1.7.4

* Add command “licene” to generate more “license.lic” by project capsule.

16.160 1.7.3

* Add information for using registration code

16.161 1.7.2

* Add option —with-extension to support cross-platform publish.
* Implement command “capsule” and add option —with-capsule so that we can encrypt scripts with same capsule.

* Remove command “convert” and option “-K/-key”

16.162 1.7.1

 Encrypt pyshield.lic when distributing source code.

106 Chapter 16. Change Logs

PyArmor Documentation, Release 5.7.0

16.163 1.7.0

* Enhance encrypt algorithm to protect source code.

* Developer can use custom key/iv to encrypt source code

» Compiled scripts (.pyc, .pyo) could be encrypted by pyshield

» Extension modules (.dll, .so, .pyd) could be encrypted by pyshield

16.163. 1.7.0 107

PyArmor Documentation, Release 5.7.0

108 Chapter 16. Change Logs

cHAPTER 17

Indices and tables

* genindex
* modindex

e search

109

PyArmor Documentation, Release 5.7.0

110 Chapter 17. Indices and tables

Index

G

get_expired_days () (built-in function), 55
get_hd_info () (built-in function), 56

get_license_code () (built-in function), 56
get_license_info () (built-in function), 55

P

PytransformError, 55

111

	Installation
	Verifying the installation
	Installed commands
	Clean uninstallation

	Using PyArmor
	Obfuscating Python Scripts
	Distributing Obfuscated Scripts
	Generating License For Obfuscated Scripts
	Extending License Type
	Obfuscating Single Module
	Obfuscating Whole Package
	Packing Obfuscated Scripts

	Advanced Topics
	Obfuscating Many Packages
	Distributing Obfuscated Scripts To Other Platform
	Obfuscating Scripts By Other Version Of Python
	Let Python Interpreter Recognize Obfuscated Scripts Automatically
	Obfuscating Python Scripts In Different Modes
	Using Plugin to Extend License Type
	Bundle Obfuscated Scripts To One Executable File
	Improving The Security By Restrict Mode
	Checking Imported Function Is Obfuscated
	About Third-Party Interpreter
	Call pyarmor From Python Script

	Examples
	Obfuscating and Packing PyQt Application
	Running obfuscated Django site with Apache and mod_wsgi

	Using Project
	Managing Obfuscated Scripts With Project
	Obfuscating Scripts With Different Modes
	Project Configuration File

	Man Page
	obfuscate
	licenses
	pack
	hdinfo
	init
	config
	build
	info
	check
	banchmark
	register
	download
	runtime

	Understanding Obfuscated Scripts
	Global Capsule
	Obfuscated Scripts
	Bootstrap Code
	Runtime Package
	The License File for Obfuscated Script
	Key Points to Use Obfuscated Scripts
	The Differences of Obfuscated Scripts

	How PyArmor Does It
	How to Obfuscate Python Scripts
	How to Deal With Plugins
	Special Handling of Entry Script
	How to Run Obfuscated Script
	How To Pack Obfuscated Scripts

	Runtime Module pytransform
	Contents
	Examples

	Support Platfroms
	Standard Platform Names
	Platform Tables

	The Modes of Obfuscated Scripts
	Advanced Mode
	Obfuscating Code Mode
	Wrap Mode
	Obfuscating module Mode
	Restrict Mode

	The Performance of Obfuscated Scripts
	The Security of PyArmor
	Cross Protection for _pytransform

	When Things Go Wrong
	Segment fault
	Could not find _pytransform
	The license.lic generated doesn’t work
	NameError: name ‘__pyarmor__’ is not defined
	Marshal loads failed when running xxx.py
	_pytransform can not be loaded twice
	Check restrict mode failed
	Protection Fault: unexpected xxx
	Warning: code object xxxx isn’t wrapped
	Error: Try to run unauthorized function
	Run obfuscated scripts reports: Invalid input packet
	‘XXX’ codec can’t decode byte 0xXX
	/lib64/libc.so.6: version ‘GLIBC_2.14’ not found
	Purchased pyarmor is not private
	No module name pytransform
	ERROR: Unsupport platform linux.xxx

	License
	Purchase

	Change Logs
	5.7.6
	5.7.5
	5.7.4
	5.7.3
	5.7.2
	5.7.1
	5.7.0
	5.6.8
	5.6.7
	5.6.6
	5.6.5
	5.6.4
	5.6.3
	5.6.2
	5.6.1
	5.6.0
	5.5.7
	5.5.6
	5.5.5
	5.5.4
	5.5.3
	5.5.2
	5.5.1
	5.5.0
	5.4.6
	5.4.5
	5.4.4
	5.4.3
	5.4.2
	5.4.1
	5.4.0
	5.3.13
	5.3.12
	5.3.11
	5.3.10
	5.3.9
	5.3.8
	5.3.7
	5.3.6
	5.3.5
	5.3.4
	5.3.3
	5.3.2
	5.3.1
	5.3.0
	5.2.9
	5.2.8
	5.2.7
	5.2.6
	5.2.5
	5.2.4
	5.2.3
	5.2.2
	5.2.1
	5.2.0
	5.1.2
	5.1.1
	5.1.0
	5.0.5
	5.0.4
	5.0.3
	5.0.2
	5.0.1
	4.6.3
	4.6.2
	4.6.1
	4.6.0
	4.5.5
	4.5.4
	4.5.3
	4.5.2
	4.5.1
	4.5.0
	4.4.2
	4.4.2
	4.4.1
	4.4.0
	4.3.4
	4.3.3
	4.3.2
	4.3.1
	4.3.0
	4.2.3
	4.2.2
	4.2.1
	4.1.4
	4.1.3
	4.1.2
	4.1.1
	4.0.3
	4.0.2
	4.0.1
	3.9.9
	3.9.8
	3.9.7
	3.9.6
	3.9.5
	3.9.4
	3.9.3
	3.9.2
	3.9.1
	3.9.0
	3.8.10
	3.8.9
	3.8.8
	3.8.7
	3.8.6
	3.8.5
	3.8.4
	3.8.3
	3.8.2
	3.8.1
	3.8.0
	3.7.5
	3.7.4
	3.7.3
	3.7.2
	3.7.1
	3.7.0
	3.6.2
	3.6.1
	3.6.0
	3.5.1
	3.5.0
	3.4.3
	3.4.2
	3.4.1
	3.4.0
	3.3.1
	3.3.0
	3.2.1
	3.2.0
	3.1.7
	3.1.6
	3.1.5
	3.1.4
	3.1.3
	3.1.2
	3.1.1
	3.0.1
	2.6.1
	2.5.5
	2.5.4
	2.5.3
	2.5.2
	2.5.1
	2.4.1
	2.3.4
	2.3.3
	2.3.2
	2.3.1
	2.2.1
	2.1.2
	2.1.1
	2.0.1
	1.7.7
	1.7.6
	1.7.5
	1.7.4
	1.7.3
	1.7.2
	1.7.1
	1.7.0

	Indices and tables
	Index

