PyArmor Documentation
Release 5.7.0

Jondy Zhao

Nov 16, 2019






Contents

Installation

1.1

1.2 Installed commands

Using PyArmor

2.1 Obfuscating Python Scripts

2.2 Distributing Obfuscated Scripts
23

2.4  Extending License Type

2.5  Obfuscating Single Module

2.6 Obfuscating Whole Package
2.7  Packing Obfuscated Scripts

Runtime Module pytransform
Contents . . . ... ... ..
Examples . . . . .. ... ... ... 0.

3.1
32

Understanding Obfuscated Scripts

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The Modes of Obfuscated Scripts
Advanced Mode
Obfuscating Code Mode
WrapMode . . . .. ... .. L.
Obfuscating module Mode

5.1
52
53
54
5.5

The Performance of Obfuscated Scripts

The Security of PyArmor
Cross Protection for _pytransform

7.1

Verifying the installation

Global Capsule

Obfuscated Scripts

Bootstrap Code

Runtime Package
The License File for Obfuscated Script
Key Points to Use Obfuscated Scripts

The Differences of Obfuscated Scripts

Restrict Mode

Generating License For Obfuscated Scripts . . . . . . . . . . . .. .. e

w W W

[elie SREN IR o NNe NV Y |




8 How PyArmor Does It

9

8.1
8.2
8.3
8.4
8.5

How to Obfuscate Python Scripts . . . . . . . . . . . e e e e
How to Deal With Plugins . . . . . . . . . . . e e e
Special Handling of Entry Script . . . . . . . . . . . . e
How to Run Obfuscated Script . . . . . . . . . . . . . e
How To Pack Obfuscated Scripts . . . . . . . . . . . o o et e

Using Project

9.1
9.2
9.3

Managing Obfuscated Scripts With Project . . . . . . .. . . . ... .. oo
Obfuscating Scripts With Different Modes . . . . . . . . . . .. L
Project Configuration File . . . . . . . . . . . . . e e

10 Advanced Topics

11

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Obfuscating Many Packages . . . . . . . . . . . e
Distributing Obfuscated Scripts To Other Platform . . . . . . ... ... ... ... ... .....
Obfuscating Scripts By Other Version Of Python . . . . . . . ... ... ... ... ... ...
Let Python Interpreter Recognize Obfuscated Scripts Automatically . . . . .. ... ... ... ...
Obfuscating Python Scripts In Different Modes . . . . . . . . . ... ... .. ... ...
Using Plugin to Extend License Type . . . . . . . . . . . i it i
Bundle Obfuscated Scripts To One Executable File . . . . . .. ... ... ... ... ........
Improving The Security By Restrict Mode . . . . . . . . . ... . i
Checking Imported Function Is Obfuscated . . . . . . .. .. ... ... .. ... ... ... ....

10.10 About Third-Party Interpreter . . . . . . . . . . . . . . o e e e e e
10.11 Call pyarmor From Python Script . . . . . . . . . . . o e

Support Platfroms

11.1
11.2

Standard Platform Names . . . . . . . . . . e e e e e e
Platform Tables . . . . . . . . . . e e e e

12 Man Page

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

ObfUSCALE . . . . . . e e e e

Config . . . . L e
build . . . . e e e
INFO . . o e e e e e e
checK . . . o e e e e e e e e

12.10 banchmark . . . . . . . . e e e e e e e e e
12,11 1egISIEr . . . o o o o o e e e e e e e e e e e e e e e
12.12 download . . . . . . . . e e e e e
1213 runtime . . . . . o o e e e e e e e e e e e e e e e e e e e

13 Examples

13.1
13.2

Obfuscating and Packing PyQt Application . . . . . . . . . . .. .
Running obfuscated Django site with Apache and mod_wsgi . . . . . . .. .. ... ... .. ....

14 When Things Go Wrong

14.1
14.2
14.3
14.4
14.5
14.6

Segment fault . . . . . . . L. e e e
Could not find _pytransform . . . . . . . . . e e e e e e e e e
The license.lic generated doesn’twork . . . . . . . . ... L L e
NameError: name °__pyarmor_ " isnotdefined . . ... ... ... ... . ... ... ...
Marshal loads failed when running XXX.py . . .« . o o v v v v bt e e e e e e e e e
_pytransform can not be loaded twice . . . . . . . ... oL

27
27
28
30
31
33

35
35
36
36

41
41
42
43
43
44
45
47
47
48
50
50

51
51
52

55
56
59
60
61
61
62
64
65
65
65
66
66
67

69
69
70




14.7 Checkrestrictmode failed . . . . . . .. .. ...
14.8 Protection Fault: unexpected XXX . . . . . . o 0 v i i e e e e e e e e e e
14.9 Warning: code object xxxx isn’t wrapped . . . . . . ... oL e
14.10 Error: Try to run unauthorized function . . . . . . . . . . ... ... L o o
14.11 Run obfuscated scripts reports: Invalid input packet. . . . . . . ... ... .. oL,
14.12 *XXX’ codec can’tdecode byte OXXX . . . . . . . . ..
14.13 /1ib64/libc.s0.6: version ‘GLIBC_2.14’ notfound . . . . . . . . . . . . . . . . o o v i
14.14 Purchased pyarmor iS DOt Private . . . . . v v v v v v v e e e e e e e e e e e e e e e e e
14.15 No module name pytransform . . . . . . . ... ... L
14.16 ERROR: Unsupport platform Hnux.XXx . . . . . . . . . oo o oot e e e e e e e

15 License
15.1 Purchase . . . . . . . . e e e e

16 Change Logs
16.1 5.7.5 e e e
16.2 5774 e e
16.3 573 e
16.4 572 e e e e
16.5 S5.7.1 o e e e e
16.6 5.7.0 . . e e e
16.7 5.6.8 o o e e e e
16.8 5.6.7 . .
16.9 5.6.6 . . e e
16.10 5.6.5 . . o e e e
16.11 5.6.4 e e e
16.12 563 . o o e e e e
16.13 5.6.2 . . o e e e
16.14 5.6.1 . . . e
16.15 5.6.0 . . . . e
16.16 5.5.7 o e e e e
16.17 5.5.6 o o o e e e e
16.18 5.5.5 . o o
16.19 5.5.4 .
16.20 5.5.3 . o o e e e e
16.21 5.5.2 e e
16.22 5.5.1 e e e
16.23 550 . o oo e e e
16.24 5.4.6 . . . e
16.25 5.4.5 e
16.26 5.4.4 e e e e
16.27 5.4.3 o e e e e
16.28 5.4.2 e e e
16.29 5.4.1 . . . e
16.30 5.4.0 .« . . L
16.31 5.3.13 « o o o
16.32 53,12 . o o e e e e
16.33 5.3.11 ¢ o o o e e
1634 53,10 . . . o o o e
16.35 5.3.9 L e
16.36 5.3.8 . o L e e e
16.37 5.3.7 e e e e
16.38 5.3.60 . o e e e e
16.39 5.3.5 o e e e

81
81
81
81
82
82
82
83
83
83
83
84
84
84
84
84
85
85
85
85
85
85
86
86
86
86
87
87
87
87
87
87
87
87
88
88
88
88
88
88




16.40 5.3.4 o 88

16.41 5.3.3 . . 88
1642 532 . 89
16.43 53,1 . o e e 89
1644 53.0 . . L L e 89
16.45 5.2.9 L 89
16,46 5.2.8 . . 89
L6.47 5277 o o 89
1648 5.2.6 . . . 90
16.49 5.2.5 . o e e 90
16.50 5.2.4 . . L e 90
16.51 5.2.3 90
16.52 5.2.2 . o 90
16.53 5.2.1 . o 90
16.54 5.2.0 . o o e 90
16.55 5.1.2 L o o e 91
16.56 5.1.1 o o 91
16.57 5.1.0 « . 91
16.58 5.0.5 .« . 91
16.59 5.0.4 . o e 92
16.60 5.0.3 . . . . 92
16.61 5.0.2 . . . . e 92
16.62 5.0.1 . . . 92
16.63 4.6.3 . . . 92
16.64 4.6.2 . . . 93
16.65 4.6.1 . . . . e 93
16.66 4.6.0 . . . . e e 93
16.67 4.5.5 o 93
16.68 4.5.4 . . 93
16.69 4.5.3 . . 93
1670 4.5.2 L o o e e 93
1671 4.5.1 .« o o o e 93
16.72 4.5.0 « . 93
16.73 4.4.2 . o 94
16.74 442 . . o L 94
1675 4.4.1 L o e e e 94
1676 4.4.0 . . . . e 94
1677 434 . o o e 94
16.78 4.3.3 94
16.79 4.3.2 94
16.80 4.3.1 . . . 95
16.81 4.3.0 . . . . e 95
16.82 423 . . L e 95
16.83 4.2.2 95
16.84 4.2.1 . . o o 95
16.85 4.1.4 . . 95
16.86 4.1.3 . . e 96
16.87 4.1.2 . L L e 96
16.88 4.1.1 .« o o o 96
16.89 4.0.3 . . 96
16.90 4.0.2 . . 96
1691 4.0.1 . o o o 96
1692 3.9.9 . . L e 96

1693 3.9.8 . . L e 96




16.94 3.9.7 . 97

16.953.9.6 . . . 97
16.96 3.9.5 . . 97
16.97 3.94 . . e 97
16.98 3.9.3 . . L 97
16.99 3.9.2 L 97
16.100B.9.1 . . . 97
16.1013.9.0 . . . . 97
16.1023.8.10 . . . o o o o 98
16.1033.8.9 . . . e 98
16.1043.8.8 . . . o e e 98
16.1053.8.7 .« o o 98
16.1063.8.6 . . . . 98
16.1073.8.5 .« . o 98
16.108.8.4 . o o e 99
16.109.8.3 . o o o e 99
I6.110B.8.2 . o o o 99
L6.1113.8.1 « o o 99
L16.1123.8.0 . . . o 99
L16.1133.7.5 o o e e 99
16.1143.7.4 . L o o e 99
16115373 o o o e 99
L6.1163.7.2 . o o 99
6. 1171 o o 100
LI6.118.7.0 . . . 100
I6.1193.6.2 . . . . e e 100
16.120B.6.1 . . . . e e 100
16.1213.6.0 . . . . 100
16.1223.5.1 . . o 100
16.1233.5.0 . . . L 100
16.1243.4.3 L o e 101
16.1253.4.2 . L L o e 101
16.1263.4.1 . . o 101
16.1273.4.0 . . o 101
16.128.3.1 . . 101
16.129.3.0 . . o e e e 101
16.13M.2.1 . . o o e 102
16.1313.2.0 . . . o e 102
L6.132B.1.7 102
16.133.1.6 . . . 102
16.1343.1.5 . . o o 102
16.1353.1.4 . o o e 102
16.13@.1.3 . . o e 103
16.1373.1.2 103
L6.138.1.1 . o 103
16.13DB.0.1 . . . 103
16.14M.6.1 . o o e 104
16.1412.5.5 . . o o e 104
16.1422.5.4 . o 104
16.1432.5.3 . 104
16.1442.5.2 . . . o o 104
L16.1452.5.1 .« o o o o 104
16.14R2.4.1 . . . . e 104
16147234 . L L L e 105




16.1482.3.3 o 105

16.1492.3.2 . o e e e 105
16.1502.3.1 . o o o e e e e 105
16.1512.2.1 . . e e 105
T6.1522.1.2 . . o e e 105
T6.1532. 1.1 . o e 105
16.1542.0.1 . . o o e e e e 105
L6.1551.7.7 o o o e e e e e e e e 106
16.1561.7.6 . . o e e e e e e 106
16.1571.7.5 o o o e e e 106
16.1581.7.4 . . o e e 106
16.1591.7.3 . . o e e 106
16.1601.7.2 . . o o e e e e e 106
T6.1611.7.1 . e e e e e e e e 106
16.1621.7.0 . . . e e e e 107
17 Indices and tables 109
Index 111

vi



PyArmor Documentation, Release 5.7.0

Version PyArmor 5.7

Homepage http://pyarmor.dashingsoft.com/

Contact jondy.zhao@gmail.com

Authors Jondy Zhao

Copyright This document has been placed in the public domain.

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts. It protects Python scripts by the following ways:

* Obfuscate code object to protect constants and literal strings.
» Obfuscate co_code of each function (code object) in runtime.
* Clear f_locals of frame as soon as code object completed execution.
* Verify the license file of obfuscated scripts while running it.
PyArmor supports Python 2.6, 2.7 and Python 3.
PyArmor is tested against Windows, Mac OS X, and Linux.

PyArmor has been used successfully with FreeBSD and embedded platform such as Raspberry Pi, Banana
Pi,Orange Pi,TS-4600 / TS-7600 etc. butis not fullly tested against them.

Contents:

Contents 1


http://pyarmor.dashingsoft.com/
mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.7.0

2 Contents



CHAPTER 1

Installation

PyArmor is a normal Python package. You can download the archive from PyPi, but it is easier to install using pip
where is available, for example:

’pip install pyarmor

or upgrade to a newer version:

’pip install --upgrade pyarmor

1.1 Verifying the installation

On all platforms, the command pyarmor should now exist on the execution path. To verify this, enter the command:

’pyarmor —-—version

The result should show PyArmor Version X.Y.ZorPyArmor Trial Version X.Y.Z.

If the command is not found, make sure the execution path includes the proper directory.

1.2 Installed commands

The complete installation places these commands on the execution path:
* pyarmor is the main command. See Using PyArmor.
* pyarmor-webui is used to open a simple web ui of PyArmor.

If you do not perform a complete installation (installing via pip), these commands will not be installed as commands.
However, you can still execute all the functions documented below by running Python scripts found in the distribution
folder. The equivalent of the pyarmor command is pyarmor—folder/pyarmor.py, and of pyarmor-webui
is pyarmor—folder/pyarmor-webui.py.



https://pypi.python.org/pypi/pyarmor/
http://www.pip-installer.org/

PyArmor Documentation, Release 5.7.0

4 Chapter 1. Installation



CHAPTER 2

Using PyArmor

The syntax of the pyarmor command is:

pyarmor [command] [options]

2.1 Obfuscating Python Scripts

Use command obfuscate to obfuscate python scripts. In the most simple case, set the current directory to the location
of your program myscript . py and execute:

’pyarmor obfuscate myscript.py

PyArmor obfuscates myscript .py and all the = . py in the same folder:
e Create .pyarmor_capsule.zip in the HOME folder if it doesn’t exists.
* Creates a folder dist in the same folder as the script if it does not exist.
e Writes the obfuscated myscript .py in the dist folder.
* Writes all the obfuscated * . py in the same folder as the script in the dist folder.
» Copy runtime files used to run obfuscated scripts to the dist folder.

In the dist folder the obfuscated scripts and all the required files are generated:

dist/
myscript.py

pytransform/
__init__ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic




PyArmor Documentation, Release 5.7.0

The extra folder pytransform called Runtime Package, it’s required to run the obfuscated script.

Normally you name one script on the command line. It’s entry script. The content of myscript .py would be like
this:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ (__name__, file. , b'\x06\x0£f...")

The first 2 lines called Bootstrap Code, are only in the entry script. They must be run before using any obfuscated file.
For all the other obfuscated « . py, there is only last line:

__pyarmor__ (__name__, _ file__, b'\x0a\x02...")

Run the obfuscated script:

cd dist
python myscript.py

By default, only the » .py in the same path as the entry script are obfuscated. To obfuscate all the % .py in the
sub-folder recursively, execute this command:

’pyarmor obfuscate —-recursive myscript.py

2.2 Distributing Obfuscated Scripts

Just copy all the files in the output path dist to end users. Note that except the obfuscated scripts, the Runtime Package
need to be distributed to end users too.

The Runtime Package may not with the obfuscated scripts, it could be moved to any Python path, only if import
pytransform works.

About the security of obfuscated scripts, refer to The Security of PyArmor

Note: PyArmor need NOT be installed in the runtime machine

2.3 Generating License For Obfuscated Scripts

Use command licenses to generate new 1icense. lic for obfuscated scripts.

By default there is dist /pytransform/license.lic generated by command obfuscate. It allows obfuscated
scripts run in any machine and never expired.

Generate an expired license for obfuscated script:

pyarmor licenses —--expired 2019-01-01 product-001

PyArmor generates new license file:
* Read data from .pyarmor_capsule.zip in the HOME folder
¢ Create l1icense.licinthe licenses/product—-001 folder

* Create license.lic.txt inthe licenses/product-001 folder

6 Chapter 2. Using PyArmor



PyArmor Documentation, Release 5.7.0

Overwrite default license with new one:

cp licenses/code-001/license.lic dist/pytransform/

Run obfuscated script with new license, It will report error after Jan. 1, 2019:

cd dist
python myscript.py

Generate license to bind obfuscated scripts to fixed machine, first get hardware information:

pyarmor hdinfo

Then generate new license bind to harddisk serial number and mac address:

pyarmor licenses —-bind-disk "100304PBN2081SF3NJS5T" —-bind-mac "20:cl:d2:2f:a0:96"
—~code-002

Run obfuscated script with new license:

cp licenses/code-002/license.lic dist/pytransform/

cd dist/
python myscript.py

Note: Before v5.7.0, the default 1icense. 1ic locates in the path dist other than dist/pytransform

2.4 Extending License Type

It’s easy to extend any other licese type for obfuscated scripts: just add authentication code in the entry script.
The script can’t be changed any more after it is obfuscated, so do whatever you want in your script. In this case the
Runtime Module pytransform would be useful.

The prefer way is Using Plugin to Extend License Type. The advantage is that your scripts needn’t be changed at all.
Just write authentication code in a separated script, and inject it in the obfuscated scripts as obfuscating. For more
information, refer to How to Deal With Plugins

Here are some plugin examples

https://github.com/dashingsoft/pyarmor/tree/master/plugins

2.5 Obfuscating Single Module

To obfuscate one module exactly, use option ——exact:

’pyarmor obfuscate —-exact foo.py

Only foo.py is obfuscated, now import this obfuscated module:

cd dist
python -c¢ "import foo"

2.4. Extending License Type 7


https://github.com/dashingsoft/pyarmor/tree/master/plugins

PyArmor Documentation, Release 5.7.0

2.6 Obfuscating Whole Package

Run the following command to obfuscate a package:

’pyarmor obfuscate —--recursive --output dist/mypkg mykpg/__init__ .py

To import the obfuscated package:

cd dist
python -c¢ "import mypkg"

2.7 Packing Obfuscated Scripts

Use command pack to pack obfuscated scripts into the bundle.

First install PyInstaller:

’pip install pyinstaller

Set the current directory to the location of your program myscript . py and execute:

’pyarmor pack myscript.py

PyArmor packs myscript.py:

¢ Execute pyarmor obfuscate to obfuscate myscript.py

* Execute pyinstaller myscipt.py tocreate myscript.spec

* Update myscript . spec, replace original scripts with obfuscated ones

e Execute pyinstaller myscript.spec to bundle the obfuscated scripts
In the dist /myscript folder you find the bundled app you distribute to your users.

Run the final executeable file:

dist/myscript/myscript

Check the scripts have been obfuscated. It should return error:

rm dist/myscript/license.lic
dist/myscript/myscript

Generate an expired license for the bundle:

pyarmor licenses --expired 2019-01-01 code-003
cp licenses/code-003/license.lic dist/myscript

dist/myscript/myscript

For complicated cases, refer to command pack and How To Pack Obfuscated Scripts.

8 Chapter 2

. Using PyArmor




CHAPTER 3

Runtime Module pytransform

If you have realized that the obfuscated scripts are black box for end users, you can do more in your own Python
scripts.In these cases, pyt rans form would be useful.

The pytransform module is distributed with obfuscated scripts, and must be imported before running any obfus-
cated scripts. It also can be used in your python scripts.

3.1 Contents

exception PytransformError

This is raised when any pytransform api failed. The argument to the exception is a string indicating the cause of
the error.

get_expired _days ()
Return how many days left for time limitation license.

>0: valid in these days

-1: never expired

Note: If the obfuscated script has been expired, it will raise exception and quit directly. All the code in the obfuscated
script will not run, so this function will never return 0.

get_license_info ()
Get license information of obfuscated scripts.

It returns a dict with keys:
* expired: Expired date
* IFMAC: mac address bind to this license
* HARDDISK: serial number of harddisk bind to this license
* IPV4: ipv4 address bind to this license




PyArmor Documentation, Release 5.7.0

* DATA: any data stored in this licese, used by extending license type
* CODE: registration code of this license
The value None means no this key in the license.
Raise Pyt ransformError if license is invalid, for example, it has been expired.

get_license_code ()
Return a string, which is specified as generating the licenses for obfucated scripts.

Raise Pyt ransformError if license is invalid.

get_hd_info (hdtype, size=256)
Get hardware information by hdtype, hdtype could one of

HT _HARDDISK return the serial number of first harddisk
HT_IFMAC return mac address of first network card
Raise Pyt ransformError if something is wrong.

HT_ HARDDISK, HT IFMAC
Constant for hdtype when calling get_hd_info ()

3.2 Examples

Copy those example code to any script, for example foo.py, obfuscate it, then run the obfuscated script.

Show left days of license

from pytransform import PytransformError, get_license_info, get_expired_days
try:
code = get_license_info () ['CODE"]
left_days = get_expired_days()
if left_days == -1:
print ('This license for is never expired' % code)
else:
print ('This license for will be expired in days' % (code, left_days))
except PytransformError as e:
print (e)

More usage refer to Using Plugin to Extend License Type

Note: Though pytransform.py is not obfuscated when running the obfuscated script, it’s also protected by PyArmor.
If it’s changed, the obfuscated script will raise protection exception.

Refer to Special Handling of Entry Script

10 Chapter 3. Runtime Module pytransform




CHAPTER 4

Understanding Obfuscated Scripts

4.1 Global Capsule

The .pyarmor_capsule.zip in the HOME path called Global Capsule. PyArmor will read data from Global
Capsule when obfuscating scripts or generating licenses for obfuscated scripts.

All the trial version of PyArmor shares one same .pyarmor_capsule.zip, which is created implicitly when
executing command pyarmor obfuscate. It uses 1024 bits RSA keys, called public capsule.

For purchased version, each user will receive one exclusive private capsule, which use 2048 bits RSA key.

The capsule can’t help restoring the obfuscated scripts at all. If your private capsuel got by someone else, the risk is
that he/she may generate new license for your obfuscated scripts.

Generally this capsule is only in the build machine, it’s not used by the obfuscated scripts, and should not be distributed
to the end users.

4.2 Obfuscated Scripts

After the scripts are obfuscated by PyArmor, in the dist folder you find all the required files to run obfuscated scripts:

dist/
myscript.py
mymodule.py

pytransform/
__init__ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

The obfuscated scripts are normal Python scripts. The module dist/mymodule.py would be like this:

11




PyArmor Documentation, Release 5.7.0

__pyarmor___ (__name__, file. , b'\x06\x0£...', 1)

The entry script dist/myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ (__name__, _ file_, b'\x0a\x02...', 1)

4.2.1 Entry Script

In PyArmor, entry script is the first obfuscated script to be run or to be imported in a python interpreter process. For
example, __init__.py is entry script if only one single python package is obfuscated.

4.3 Bootstrap Code

The first 2 lines in the entry script called Bootstrap Code. It’s only in the entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

For the obfuscated package which entry script is __init__.py. The bootstrap code may make a relateive import by
leading ““.”:

from .pytransform import pyarmor_runtime
pyarmor_runtime ()

And there is another form if the runtime path is specified as obfuscating scripts:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/runtime')

4.4 Runtime Package

The package pytransform which is in the same folder with obfuscated scripts called Runtime Packge. 1t’s required to
run the obfuscated script, and it’s the only dependency of obfuscated scripts.

Generally this package is in the same folder with obfuscated scripts, but it can be moved anywhere. Only this package
in any Python Path, the obfuscated scripts can be run as normal scripts. And all the scripts obfuscated by the same
Global Capsule could share this package.

There are 4 files in this package:

pytransform/
__init___.py A normal python module
_pytransform.so/.dl11/.1ib A dynamic library implements core functions
pytransform. key Data file
license.lic The license file for obfuscated scripts

Before v5.7.0, the runtime package has another form Runtime Files

12 Chapter 4. Understanding Obfuscated Scripts




PyArmor Documentation, Release 5.7.0

4.4.1 Runtime Files

They’re not in one package, but as four separated files:

pytransform.py A normal python module
_pytransform.so/.dl1l/.1ib A dynamic library implements core functions
pytransform.key Data file

license.lic The license file for obfuscated scripts

Obviously Runtime Package is more clear than Runtime Files.

4.5 The License File for Obfuscated Script

There is a special runtime file license.lic, it’s required to run the obfuscated scripts.

When executing pyarmor obfuscate, a default one will be generated, which allows obfuscated scripts run in any
machine and never expired.

In order to bind obfuscated scripts to fix machine, or expire the obfuscated scripts, use command pyarmor
licenses to generate a new license.lic and overwrite the default one.

Note: In PyArmor, there is another license.lic, which locates in the source path of PyArmor. It’s required to run
pyarmor, and issued by me, :)

4.6 Key Points to Use Obfuscated Scripts

» The obfuscated scripts are normal python scripts, so they can be seamless to replace original scripts.

 There is only one thing changed, the bootstrap code must be executed before running or importing any obfus-
cated scripts.

* The runtime package must be in any Python Path, so that the bootstrap code can run correctly.

* The bootstrap code will load dynamic library _pytransform.so/.dll/.dylib by ctypes. This file is dependent-
platform, all the prebuilt dynamic libraries list here Support Platfroms

* By default the bootstrap code searchs dynamic library _pytransform in the runtime package. Check pytrans-
form._load_library to find the details.

* If the dynamic library _pytransform isn’t within the runtime package, change the bootstrap code:

from pytransform import pyarmor_runtime
pyarmor_runtime ('/path/to/runtime’)

Both of runtime files license.lic and pytransform.key should be in this path either.

* When starts a fresh python interpreter process by multiprocssing.Process, os.exec, subprocess.Popen etc., make
sure the bootstrap code are called in new process before running any obfuscated script.

More information, refer to How to Obfuscate Python Scripts and How to Run Obfuscated Script

4.5. The License File for Obfuscated Script 13



PyArmor Documentation, Release 5.7.0

4.7 The Differences of Obfuscated Scripts

There are something changed after Python scripts are obfuscated:

¢ The major version of Python in build machine should be same as in target machine. Because the scripts will

be compiled to byte-code before they’re obfuscated, so the obfuscated scripts can’t be run by all the Python
versions as the original scripts could. Especially for Python 3.6, it introduces word size instructions, and it’s
totally different from Python 3.5 and before. It’s recommeded to run the obfuscated scripts with same major
version of Python.

If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it will crash to run obfuscated scripts.

The callback function set by sys.settrace, sys.setprofile, threading.settrace and
threading.setprofile will be ignored by obfuscated scripts.

The attribute ___file__ of code object in the obfuscated scripts will be <frozen name> other than real
filename. So in the traceback, the filename is shown as <frozen name>.

Note that ___file__ of moudle is still filename. For example, obfuscate the script foo . py and run it:

def hello(msgqg) :
print (msg)

# The output will be 'foo.py'
print (_ file )

# The output will be '<frozen foo>'
print (hello. file )

14

Chapter 4. Understanding Obfuscated Scripts




CHAPTER B

The Modes of Obfuscated Scripts

PyArmor could obfuscate the scripts in many modes in order to balance the security and performance. In most of
cases, the default mode works fine. But if the performace is to be bottle-block or in some special cases, maybe you
need understand what the differents of these modes and obfuscate the scripts in different mode so that they could work
as desired.

5.1 Advanced Mode

This feature Advanced Mode is introduced from PyArmor 5.5.0.In this mode the structure of PyCode_Type is changed
a little to improve the security. And a hook also is injected into Python interpreter so that the modified code objects
could run normally. Besides if some core Python C APIs are changed unexpectedly, the obfuscated scripts in advanced
mode won’t work. Because this feature is highly depended on the machine instruction set, it’s only available for
x86/x64 arch now. And pyarmor maybe makes mistake if Python interpreter is compiled by old gcc or some other C
compiles. It’s welcome to report the issue if Python interpreter doesn’t work in advanced mode.

Take this into account, the advanced mode is disabled by default. In order to enable it, pass option ——advanced to
command obfuscate:

pyarmor obfuscate ——advanced 1 foo.py

In next minor version, this mode may be enabled by default.
Upgrade Notes:

Before upgrading, please estimate Python interpreter in product environments to be sure it works in advanced mode.
Here is the guide

https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

It is recommended to upgrade in the next minor version.

Note: In trial version if there are more than about 30 functions in one module, this module could not be obfuscated
by advanced mdoe (It still could be obfuscated by non-advanced mode).

15


https://github.com/dashingsoft/pyarmor-core/tree/v5.3.0/tests/advanced_mode/README.md

PyArmor Documentation, Release 5.7.0

5.2 Obfuscating Code Mode

In a python module file, generally there are many functions, each function has its code object.
e obf code ==

The code object of each function will keep it as it is.
¢ obf_code == 1 (Default)

In this case, the code object of each function will be obfuscated in different ways depending on wrap mode.
e obf code==2

Almost same as obf_mode 1, but obfuscating bytecode by more complex algorithm, and so slower than the former.

5.3 Wrap Mode

e wrap_mode ==

When wrap mode is off, the code object of each function will be obfuscated as this form:

0 JUMP_ABSOLUTE n = 3 + len(bytecode)

. Here it's obfuscated bytecode of original function

n LOAD_GLOBAL ? (__armor_ )
n+3 CALL_FUNCTION 0

n+6 POP_TOP

n+7 JUMP_ABSOLUTE 0

When this code object is called first time
1. First op is JUMP_ABSOLUTE, it will jump to offset n

2. At offset n, the instruction is to call PyCFunction __armor__. This function will restore those obfuscated
bytecode between offset 3 and n, and move the original bytecode at offset 0

3. After function call, the last instruction is to jump to offset 0. The really bytecode now is executed.
After the first call, this function is same as the original one.
e wrap_mode == 1 (Default)

When wrap mode is on, the code object of each function will be wrapped with try. . . finally block:

LOAD_GLOBALS N (__armor_enter_ ) N = length of co_consts
CALL_FUNCTION 0
POP_TOP

SETUP_FINALLY X (Jump to wrap footer) X = size of original byte code

Here it's obfuscated bytecode of original function

LOAD_GLOBALS N + 1 (__armor_exit_ )
CALL_FUNCTION 0
POP_TOP

END_FINALLY

16 Chapter 5. The Modes of Obfuscated Scripts




PyArmor Documentation, Release 5.7.0

When this code object is called each time
1. __armor_enter__ will restore the obfuscated bytecode
2. Execute the real function code

3. In the final block, __armor_exit__ will obfuscate bytecode again.

5.4 Obfuscating module Mode

¢ obf_mod == 1 (Default)

The final obfuscated scripts would like this:

__pyarmor___(__name__, file. , b'\x02\x0a...', 1)

The third parameter is serialized code object of the Python script. It’s generated by this way:

PyObject *co = Py_CompileString( source, filename, Py_file_input );
obfuscate_each_function_in_module( co, obf_mode );
char xoriginal_code = marshal.dumps( co );

char xobfuscated_code = obfuscate_whole_module( original_code );
sprintf ( buffer, "__pyarmor__ (__name__, _ file_, Db’ ', 1)", obfuscated_code );
e obf mod==0

In this mode, the last statement would be like this to keep the serialized module as it is:

’sprintf( buffer, "__pyarmor__ (__name__, __ file_, Db’ ', 0)", original_code );

And the final obfuscated scripts would be:

’__pyarmor__(;ﬁﬁﬁne;ﬁ, file_ , b'\x02\x0a...', 0)

All of these modes only could be changed in the project for now, refer to Obfuscating Scripts With Different Modes

5.5 Restrict Mode

From PyArmor 5.7.0, the Bootstrap Code must be in the obfuscated scripts and must be specified as entry script. For
example, there are 2 scripts foo.py and test.py in the same folder, obfuscated by this command:

’pyarmor obfuscate foo.py

Inserting the bootstrap code into obfuscated script dist/test.py by manual doesn’t work, because it’s not specified as
entry script. It must be run this command to insert the Bootstrap Code:

’pyarmor obfuscate —--no-runtime --exact test.py

If you need insert the Bootstrap Code into plain script, first obfuscate an empty script like this:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate —--no-runtime --exact pytransform_bootstrap.py

Then import pytransform_bootstrap in the plain script.

From PyArmor 5.5.6, there are 4 restrice modes:

5.4. Obfuscating module Mode 17



PyArmor Documentation, Release 5.7.0

e Mode 1

In this mode, obfuscated scripts must be one of the following formats:

__pyarmor__ (__name__, file_ , b'...")

Or

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor__ ( name_ , _ file , b'...")

Or
from pytransform import pyarmor_runtime

pyarmor_runtime('...")
__pyarmor__ (__name_, _ file , b'...")

No any other statement can be inserted into obfuscated scripts.

For examples, the obfuscate scirpt b.py doesn’t work, because there is an extra code “print”:

$ cat b.py

from pytransform import pyarmor_runtime
pyarmor_runtime ()

__pyarmor__ (__name__, _ file_ , b'...")
print (__name_ )

$ python b.py

* Mode 2
In this mode, except that the obfuscated can’t changed, there are 2 restricts:
* The entry script must be obfuscated
* The obfuscated scripts could not be imported out of the obfuscated script

For example, this command will raise error if the foo.py is obfuscated by restrict mode 2:

$ python -c'import foo'

* Mode 3
In this mode, there is another restrict base on Mode 2:
 All the functions in the obfuscated script cound not be called out of the obfuscated scripts.
* Mode 4
It’s similar with Mode 3, but there is a exception:
* The entry script could be plain script

It’s mainly used for obfuscating Python package. The __init__.py is obfuscated by restrict mode 1, all the other scripts
are obfuscated by restrict mode 4.

For example, it’s the content of mypkg/__init__.py

# mypkg/
# __1init__.py 1s obfuscated by restrict mode 1
# foo.py 1is obfuscated by restrict mode 4

(continues on next page)

18 Chapter 5. The Modes of Obfuscated Scripts




PyArmor Documentation, Release 5.7.0

(continued from previous page)

# The "foo.hello" could not be called by plain script directly
from .foo import hello

# The "open_hello" could be called by plain scirpt
def open_hello (msg) :
print ('This is public hello: $s' % msgq)

# The "proxy_hello" could be called by plain scirpt
def proxy_hello(msg) :

print ('This is proxy hello: %s' % msg)
# The "foo.hello" could be called by obfuscated "__init__ .py"
hello (msg)

Note: Mode 2 and 3 could not be used to obfuscate the Python package, because it will be imported from other plain
scripts.

Note: Restrict mode is applied to one single script, different scripts could be obfuscated by different restrict mode.

From PyArmor 5.2, Restrict Mode 1 is default.

Obfuscating the scripts by other restrict mode:

pyarmor obfuscate --restrict=2 foo.py
pyarmor obfuscate —--restrict=4 foo.py

# For project
pyarmor config —--restrict=2
pyarmor build -B

All the above restricts could be disabled by this way if required:

pyarmor obfuscate —--restrict=0 foo.py

# For project
pyarmor config —--restrict=0
pyarmor build -B

For more examples, refer to Improving The Security By Restrict Mode

5.5. Restrict Mode 19




PyArmor Documentation, Release 5.7.0

20

Chapter 5. The Modes of Obfuscated Scripts



CHAPTER O

The Performance of Obfuscated Scripts

Run command banchmark to check the performance of obfuscated scripts:

pyarmor benchmark

Here it’s sample output:

INFO Start benchmark test
INFO Obfuscate module mode: 1
INFO Obfuscate code mode: 1
INFO Obfuscate wrap mode: 1
INFO Benchmark bootstrap

INFO Benchmark bootstrap OK.
INFO Run benchmark test

Test script: bfoo.py
Obfuscated script: obfoo.py

load_pytransform: 28.429590911694085 ms
init_pytransform: 10.701080723946758 ms
verify license: 0.515428636879825 ms
total_extra_init_time: 40.34842417122847 ms

import_no_obfuscated_module: 9.601499631936461 ms
import_obfuscated_module: 6.858413569322354 ms

re_import_no_obfuscated_module: 0.007263492985840059 ms
re_import_obfuscated_module: 0.0058666674116400475 ms

run_empty_no_obfuscated_code_object: 0.015085716201360122 ms
run_empty_obfuscated_code_object: 0.0058666674116400475 ms

run_one_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_one_thousand_obfuscated_bytecode: 0.005307937181960043 ms

(continues on next page)

21




PyArmor Documentation, Release 5.7.0

(continued from previous page)

run_ten_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_ten_thousand_obfuscated_bytecode: 0.005587302296800045 ms

INFO Remove test path: .\.benchtest
INFO Finish benchmark test.

The total extra init time is about 40ms. It includes the time of loading dynamic library, initialzing it and verifing
license.

Note that the time of importing obfuscated module is less than of importing no obfuscated module, because the
obfuscated scripts has been compiled as byte-code, the original scripts need extra time to compile.

List all available options:

’pyarmor benchmark -h ‘

Specify other options to check the performance in different mode. For example:

’pyarmor benchmark —--wrap-mode 0 ‘

Look at the scripts used to run benchmark test:

’pyarmor benchmark —--debug ‘

All the used files are saved in the folder .benchtest

22 Chapter 6. The Performance of Obfuscated Scripts



CHAPTER /

The Security of PyArmor

PyArmor will obfuscate python module in two levels. First obfucate each function in module, then obfuscate the whole
module file. For example, there is a file foo.py:

def hello():
print ('Hello world!")

def sum(a, b):
return a + b

if _ name == '_ _main__ ':
hello ()
print ('l + 1

PyArmor first obfuscates the function hello and sum, then obfuscates the whole moudle foo. In the runtime, only
current called function is restored and it will be obfuscated as soon as code object completed execution. So even trace
code in any c debugger, only a piece of code object could be got one time.

7.1 Cross Protection for _pytransform

The core functions of PyArmor are written by ¢ in the dynamic library _pytransform. _pytransform protects itself
by JIT technical, and the obfuscated scripts is protected by _pytransform. On the other hand, the dynamic library
_pytransform is checked in the obfuscated script to be sure it’s not changed. This is called Cross Protection.

The dynamic library _pytransform.so uses JIT technical to achieve two tasks:
» Keep the des key used to encrypt python scripts from tracing by any ¢ debugger

* The code segment can’t be changed any more. For example, change instruction JZ to JNZ, so that _pytrans-
form.so can execute even if checking license failed

How JIT works?
First PyArmor defines an instruction set based on GNU lightning.

Then write some core functions by this instruction set in c file, maybe like this:

23




PyArmor Documentation, Release 5.7.0

t_instruction protect_set_key_iv = {
// function 1

0x80001,

0x50020,

// function 2
0x80001,
0xAQF80,

t_instruction protect_decrypt_buffer = {
// function 1
0x80021,
0x52029,

// function 2
0x80001,
0xC0901,

Build _pytransform.so, calculate the codesum of code segment of _pytransform.so

Replace the related instructions with real codesum got before, and obfuscate all the instructions except “function 1” in
c file. The updated file maybe likes this:

t_instruction protect_set_key_ iv = {
// plain function 1
0x80001,
0x50020,

// obfuscated function 2
0XXXXXX,
0xXXXXXX,

t_instruction protect_decrypt_buffer = {
// plain function 1
0x80021,
0x52029,

// obfuscated function 2
0XXXKXX,
0xXXXXXX,

Finally build _pytransform.so with this changed c file.

When running obfuscated script, _pytransform.so loaded. Once a proected function is called, it will

1. Generate code from function 1

24 Chapter 7. The Security of PyArmor



PyArmor Documentation, Release 5.7.0

2. Run function I:
* check codesum of code segment, if not expected, quit
* check tickcount, if too long, quit
* check there is any debugger, if found, quit
¢ clear hardware breakpoints if possible
* restore next function function 2

3. Generate code from function 2

4. Run function 2, do same thing as function 1

After repeat some times, the real code is called. All of that is to be sure there is no breakpoint in protection code.

In order to protect _pytransform in Python script, some extra code will be inserted into the entry script, refer to Special
Handling of Entry Script

7.1. Cross Protection for _pytransform 25



PyArmor Documentation, Release 5.7.0

26

Chapter 7. The Security of PyArmor



CHAPTER 8

How PyArmor Does It

Look at what happened after foo . py is obfuscated by PyArmor. Here are the files list in the output path dist:

foo.py

pytransform/
__init_ .py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

dist/foo.py is obfuscated script, the content is:

from pytransform import pyarmor_runtime
pyarmor_runtime ()
__pyarmor___(__name__, file. , b'\x06\x0£f...")

There is an extra folder pytransform called Runtime Package, which are the only required to run or import obfuscated
scripts. So long as this package is in any Python Path, the obfuscated script dist/foo.py can be used as normal Python
script. That is to say:

The original python scripts can be replaced with obfuscated scripts seamlessly.

8.1 How to Obfuscate Python Scripts

How to obfuscate python scripts by PyArmor?

First compile python script to code object:

char xfilename = "foo.py";
char *source = read_file( filename );
PyCodeObject xco = Py_CompileString( source, "<frozen foo>", Py_file_input );

Then change code object as the following way

27




PyArmor Documentation, Release 5.7.0

* Wrap byte code co_code withinatry...finally block:

wrap header:

LOAD_GLOBALS N (__armor_enter_ ) N = length of co_consts
CALL_FUNCTION 0
POP_TOP

SETUP_FINALLY X (Jump to wrap footer) X = size of original byte code

changed original byte code:

Increase oparg of each absolute jump instruction by the size of wrap,,
—header

Obfuscate original byte code

wrap footer:

LOAD_GLOBALS N + 1 (__armor_exit_ )
CALL_FUNCTION 0
POP_TOP

END_FINALLY

* Append function names __armor_enter, __armor_exit__ to co_consts
* Increase co_stacksize by 2

¢ Set CO_OBFUSCAED (0x80000000) flag in co_flags

* Change all code objects in the co_const s recursively

Next serializing reformed code object and obfuscate it to protect constants and literal strings:

char *string_code = marshal.dumps( co );
char xobfuscated_code = obfuscate_algorithm( string_code );

Finally generate obfuscated script:

sprintf ( buf, "__ _pyarmor__ (_ _name__, __ file_ _, b' ')", obfuscated_code );
save_file( "dist/foo.py", buf );

The obfuscated script is a normal Python script, it looks like this:

’__pyarmor__(;ﬁﬁane;ﬁ, _file , b'\x01\x0a...'")

8.2 How to Deal With Plugins

In PyArmor, the plugin is used to inject python code into the obfuscted scripts. For example:

’pyarmor obfuscate —--plugin check_multi_mac --plugin @Rassert_armored foo.py

It also could include path:

’pyarmor obfuscate --plugin /path/to/check_ntp_time foo.py

28 Chapter 8. How PyArmor Does It



PyArmor Documentation, Release 5.7.0

Each plugin is a normal Python script, PyArmor searches it by this way:
* If the plugin has absolute path, then find the corresponding .py file exactly.

« If it has relative path, first search the related .py file in the current path, then in the path specified by environment
variable PYARMOR_PLGUIN

* Raise exception if not found

When there is plugin specified as obfuscating the script, each comment line will be scanned to find any plugin marker.
There are 2 types of plugin marker:

¢ Plguin Definition Marker
¢ Plugin Call Marker

The plugin definition marker has this form:

# {PyArmor Plugins}

It must be one leading comment line, no indentation. Generally there is only one in a script, all the plugins will be
injected here.

The plugin call maker has 3 forms, any comment line starts with these patterns is call marker:

# PyArmor Plugin:
# pyarmor.
# @pyarmor._

They could appear many times, any indentation, but have to behind plugin definition marker.

For the first form # PyArmor Plugin:, PyArmor just remove this pattern and one following whitespace exactly,
and leave the rest part of this line as it is. For example:

# PyArmor Plugin: check_ntp_time () ==> check_ntp_time()

So long as there is any plugin specified to obfuscate the script, these replacements will be taken place. The rest part
could be any valid Python code. For examples:

# PyArmor Plugin: print ('This is plugin code') ==> print('This is plugin code')
# PyArmor Plugin: 1f sys.flags.debug: ==> 1f sys.flags.debug:
# PyArmor Plugin: check_something() : ==> check_something()

For the second form # pyarmor_, it’s only used to call plugin function. And if this function name is not specified
as plugin name, PyArmor doesn’t touch this markd. For example, obfuscating a script with plugin check_multi_mac,
the first marker is replaced, the second not:

# pyarmor_check_multi_mac () ==> check _multi_mac ()
# pyarmor_check_code () ==> # pyarmor_check_code ()

The last form is almost same as the second, but # Q@pyarmor_ will be replaced with @, it’s mainly used to inject a
decorator. For example:

’# @pyarmor._assert_obfuscated(foo.connect) ==> (@assert_obfuscated (foo.connect)

When obfuscating the scripts in command line, if the plugin doesn’t include a leading @, it will be always injected into
the obfuscated scripts. For example:

’pyarmor obfuscate —-plugin check_multi_mac —-plugin assert_armored foo.py

8.2. How to Deal With Plugins 29



PyArmor Documentation, Release 5.7.0

However, if there is a leading @, it couldn’t be injected into the obfuscated scripts, until this plugin name appears in
any plugin call marker or plugin decorator marker. For examples, if there is no any plugin call marker or decorator
marker in the foo.py, both of plugins will be ignored:

pyarmor obfuscate --plugin @assert_armored foo.py
pyarmor obfuscate --plugin @/path/to/check_ntp_time foo.py

And in any case, if there is no plugin definition marker, none of plugin code will be injected.

8.3 Special Handling of Entry Script

There are 2 extra changes for entry script:
» Before obfuscating, insert protection code to entry script.
» After obfuscated, insert bootstrap code to obfuscated script.

Before obfuscating entry scipt, PyArmor will search the content line by line. If there is line like this:

’# {PyArmor Protection Code} ‘

PyArmor will replace this line with protection code.

If there is line like this:

’# {No PyArmor Protection Code} ‘

PyArmor will not patch this script.

If both of lines aren’t found, insert protection code before the line:

’if name == '_ _main_ ' ‘

Do nothing if no __main__ line found.

Here it’s the default template of protection code:

def protect_pytransform() :
import pytransform

def check_obfuscated_script():

CO_SIZES = 49, 46, 38, 36

CO_NAMES = set (['pytransform', 'pyarmor_runtime', '__ _pyarmor__ "',

' _name_ ', '_ _file_ '1])
co = pytransform.sys._getframe (3) .f_code
if not ((set (co.co_names) <= CO_NAMES)
and (len(co.co_code) in CO_SIZES)) :
raise RuntimeError ('Unexpected obfuscated script')

def check_mod_pytransform() :
def _check_co_key(co, Vv):
return (len(co.co_names), len(co.co_consts), len(co.co_code))
for k, (vl, v2, v3) in {keylist}:
co = getattr(pytransform, k) .{code}
if not _check_co_key(co, vl):
raise RuntimeError ('unexpected pytransform.py')
if v2:

Il
Il
<

(continues on next page)

30 Chapter 8. How PyArmor Does It



PyArmor Documentation, Release 5.7.0

(continued from previous page)

if not _check_co_key(co.co_consts[1l], v2):
raise RuntimeError ('unexpected pytransform.py')
if v3:
if not _check_co_key(co.{closure}[0].cell_contents.{code}, v3):
raise RuntimeError ('unexpected pytransform.py')

def check_lib_pytransform() :
filename = pytransform.os.path.join ({rpath}, {filename})

size = {size}
n = size >> 2
with open(filename, 'rb') as f:
buf = f.read(size)
fmt = '"I' % n
checksum = sum(pytransform.struct.unpack (fmt, buf)) & OxFFFFFFFF
if not checksum == {checksum}:
raise RuntimeError ("Unexpected " % filename)

try:
check_obfuscated_script ()
check_mod_pytransform()
check_1lib_pytransform()
except Exception as e:
print ("Protection Fault:
pytransform.sys.exit (1)

"

o\
D

protect_pytransform()

All the string template { xxx} will be replaced with real value by Py Armor.

To prevent PyArmor from inserting this protection code, pass ——no-cross-protection as obfuscating the
scripts:

’pyarmor obfuscate —-—no-cross-protection foo.py

After the entry script is obfuscated, the Bootstrap Code will be inserted at the beginning of the obfuscated script.

8.4 How to Run Obfuscated Script

How to run obfuscated script dist/foo.py by Python Interpreter?

The first 2 lines, which called Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

It will fulfil the following tasks
* Load dynamic library _pytransformby ctypes
e Check license.lic is valid or not
¢ Add 3 cfunctions to module builtins: _ _pyarmor_ ,__armor_enter_ ,_ _armor_exit_

The next code line in dist /foo.py is:

__pyarmor__ (__name__, _ file_, b'\x01\x0a...")

__pyarmor___is called, it will import original module from obfuscated code:

8.4. How to Run Obfuscated Script 31



PyArmor Documentation, Release 5.7.0

static PyObject =*
__pyarmor__ (char +#name, char spathname, unsigned char =xobfuscated_code)
{
char xstring_code = restore_obfuscated_code( obfuscated_code );
PyCodeObject #co = marshal.loads( string_code );
return PyImport_ExecCodeModuleEx ( name, co, pathname );

After that, in the runtime of this python interpreter

e __armor_enter__ iscalled as soon as code object is executed, it will restore byte-code of this code object:

static PyObject =
__armor_enter__ (PyObject xself, PyObject *args)
{
// Got code object
PyFrameObject *frame = PyEval_GetFrame () ;
PyCodeObject «f_code = frame->f_code;

// Increase refcalls of this code object

// Borrow co_names—>ob_refcnt as call counter

// Generally it will not increased by Python Interpreter
PyObject xrefcalls = f_code->co_names;
refcalls—->ob_refcnt ++;

// Restore byte code if it's obfuscated

if (IS_OBFUSCATED (f_code->co_flags)) {
restore_byte_code (f_code->co_code) ;
clear_obfuscated_flag(f_code);

Py_RETURN_NONE;

e __armor_exit__ iscalled so long as code object completed execution, it will obfuscate byte-code again:

static PyObject =
__armor_exit__ (PyObject *self, PyObject *args)
{
// Got code object
PyFrameObject *frame = PyEval_GetFrame ();
PyCodeObject xf_code = frame->f_code;

// Decrease refcalls of this code object
PyObject xrefcalls = f_code->co_names;
refcalls—>ob_refcnt ——;

// Obfuscate byte code only if this code object isn't used by any function
// In multi-threads or recursive call, one code object may be referenced
// by many functions at the same time
if (refcalls->ob_refcnt == 1) {

obfuscate_byte_code (f_code->co_code) ;

set_obfuscated_flag(f_code);

// Clear f_locals in this frame
clear_frame_locals (frame) ;

(continues on next page)

32 Chapter 8. How PyArmor Does It



PyArmor Documentation, Release 5.7.0

(continued from previous page)

Py_RETURN_NONE;

8.5 How To Pack Obfuscated Scripts

The obfuscated scripts generated by Py Armor can replace Python scripts seamlessly, but there is an issue when packing
them into one bundle by PylInstaller:

All the dependencies of obfuscated scripts CAN NOT be found at all
To solve this problem, the common solution is

1. Find all the dependenices by original scripts.

2. Add runtimes files required by obfuscated scripts to the bundle

3. Replace original scipts with obfuscated in the bundle

4. Replace entry scrirpt with obfuscated one

PyArmor provides command pack to achieve this. But in some cases maybe it doesn’t work. This document describes
what the command pack does, and also could be as a guide to bundle the obfuscated scripts by yourself.

Firstinstall pyinstaller:

’pip install pyinstaller

Then obfuscate scripts to dist/obf:

’pyarmor obfuscate —--output dist/obf hello.py

Next generate specfile, add the obfuscated entry script and data files required by obfuscated scripts:

pyinstaller --add-data dist/obf/license.lic
—-—add-data dist/obf/pytransform.key
-—add-data dist/obf/_pytransform.
hello.py dist/obf/hello.py

And patch specfile hello. spec, insert the following lines after the Analysis object. The purpose is to replace all
the original scripts with obfuscated ones:

a.scripts[-1] = 'hello', r'dist/obf/hello.py', 'PYSOURCE'
for i in range(len(a.pure)):
if a.pure[i][1l].startswith(a.pathex[0]):
x = a.pure[i] [1].replace(a.pathex[0], os.path.abspath('dist/obf'))
if os.path.exists(x):
if hasattr(a.pure, '_code_cache'):
with open(x) as f:
a.pure._code_cachela.pure[i] [0]] = compile(f.read(), a.pureli][1l],
— 'exec')
a.pure[i] = a.pure[i] [0], x, a.pureli][2]

Run patched specfile to build final distribution:

pyinstaller —--clean -y hello.spec

8.5. How To Pack Obfuscated Scripts 33



PyArmor Documentation, Release 5.7.0

Note: Option ——clean is required, otherwise the obfuscated scripts will not be replaced because the cached .pyz
will be used.

Check obfuscated scripts work:

# It works
dist/hello/hello.exe

rm dist/hello/license.lic

# It should not work
dist/hello/hello.exe

34 Chapter 8. How PyArmor Does It




CHAPTER 9

Using Project

Project is a folder include its own configuration file, which used to manage obfuscated scripts.
There are several advantages to manage obfuscated scripts by Project:

* Increment build, only updated scripts are obfuscated since last build

* Filter obfuscated scripts in the project, exclude some scripts

* Obfuscate the scripts with different modes

* More convenient to manage obfuscated scripts

9.1 Managing Obfuscated Scripts With Project

Use command inif to create a project:

cd examples/pybench
pyarmor init —--entry=pybench.py

It will create project configuration file . pyarmor_config in the current path. Or create project in another path:

’pyarmor init --src=examples/pybench —--entry=pybench.py projects/pybench

The project path projects/pybench will be created, and . pyarmor_config will be saved there.

The common usage for project is to do any thing in the project path:

cd projects/pybench

Show project information:

’pyarmor info

Obfuscate all the scripts in this project by command build:

35



PyArmor Documentation, Release 5.7.0

’pyarmor build

Change the project configuration by command config.

For example, exclude the dist, test, the .py files in these folder will not be obfuscated:

’pyarmor config ——manifest "include x.py, prune dist, prune test"

Force rebuild:

’pyarmor build —--force

Run obfuscated script:

cd dist
python pybench.py

After some scripts changed, just run build again:

cd projects/pybench
pyarmor build

9.2 Obfuscating Scripts With Different Modes

First configure the different modes, refer to The Modes of Obfuscated Scripts:

’pyarmor config ——obf-mod=1 —-obf-code=0

Then obfuscating scripts in new mode:

’pyarmor build -B

9.3 Project Configuration File

Each project has a configure file. It’s a json file named .pyarmor_config stored in the project path.
* name
Project name.
* title
Project title.
* src
Base path to match files by manifest template string.
It could be absolute path, or relative path based on project folder.
* manifest

A string specifies files to be obfuscated, same as MANIFEST.in of Python Distutils, default value is:

global-include x*.py

36 Chapter 9. Using Project



PyArmor Documentation, Release 5.7.0

It means all files anywhere in the src tree matching.

Multi manifest template commands are spearated by comma, for example:

global-include *.py, exclude _ _mainfest__ .py, prune test

Refer to https://docs.python.org/2/distutils/sourcedist.html#commands
* is_package
Available values: 0, 1, None

When it’s set to 1, the basename of src will be appended to output as the final path to save obfuscated
scripts, but runtime files are still in the path output

When init a project and no ——t ype specified, it will be set to 1 if there is __iniz__.py in the path src,
otherwise it’s None.

e restrict_mode
Available values: 0, 1, 2, 3, 4
By defaultit’s set to 1.
Refer to Restrict Mode
* entry
A string includes one or many entry scripts.

When build project, insert the following bootstrap code for each entry:

from pytransform import pyarmor_runtime
pyarmor_runtime ()

The entry name is relative to src, or filename with absolute path.

Multi entries are separated by comma, for example:

main.py, another/main.py, /usr/local/myapp/main.py

Note that entry may be NOT obfuscated, if manifest does not specify this entry.
¢ output
A path used to save output of build. It’s relative to project path.
* capsule
Filename of project capsule. It’s relative to project path if it’s not absolute path.
e obf _code
How to obfuscate byte code of each code object:
-0
No obfuscate
-1
Obfuscate each code object by default algorithm
-2
Obfuscate each code object by more complex algorithm

The default value is I, refer to Obfuscating Code Mode

9.3. Project Configuration File 37


https://docs.python.org/2/distutils/sourcedist.html#commands

PyArmor Documentation, Release 5.7.0

e wrap_mode
Auvailable values: 0, 1, None
Whether to wrap code object with zry..final block.
The default value is /, refer to Wrap Mode
e obf_mod
How to obfuscate whole code object of module:
-0
No obfuscate
-1
Obfuscate byte-code by DES algorithm
The default value is I, refer to Obfuscating module Mode
* cross_protection
How to proect dynamic library in obfuscated scripts:
-0
No protection
-1
Insert proection code with default template, refer to Special Handling of Entry Script
— Filename
Read the template of protection code from this file other than default template.
* runtime_path
None or any path.

When run obfuscated scripts, where to find dynamic library _pytransform. The default value is None,
it means it’s within the Runtime Package or in the same path of pytransform.py.

It’s useful when obfuscated scripts are packed into a zip file, for example, use py2exe to package
obfuscated scripts. Set runtime_path to an empty string, and copy Runtime Files to same path of zip
file, will solve this problem.

* package_runtime
How to save the runtime files:
-0
Save them in the same path with the obufscated scripts
— 1 (Default)
Save them in the sub-path pytransform as a package
-2

Same as 1, but the package pytransform may be in other path in runtime. So the bootstrap code will
not be made a relative import when inserting entry script.

* plugins

38 Chapter 9. Using Project



PyArmor Documentation, Release 5.7.0

None or list of string

Extend license type of obfuscated scripts, multi-plugins are supported. For example:

plugins: ["check_ntp_time", "show_license_info"]

About the usage of plugin, refer to Using Plugin to Extend License Type

9.3. Project Configuration File 39



PyArmor Documentation, Release 5.7.0

40

Chapter 9. Using Project



cHAaPTER 10

Advanced Topics

10.1 Obfuscating Many Packages

There are 3 packages: pkgl, pkg2, pkg2. All of them will be obfuscated, and use shared runtime files.

First change to work path, create 3 projects:

mkdir build
cd build

pyarmor init --src /path/to/pkgl --entry _ _init_ .py pkgl
pyarmor init --src /path/to/pkg2 ——-entry __init__ .py pkg2
pyarmor init --src /path/to/pkg3 —--entry __init__ .py pkg3

Then make the Runtime Package, save it in the path dist:

pyarmor build —--output dist —--only-runtime pkgl

Next obfuscate 3 packages, save them in the dist:

pyarmor build —--output dist —--no-runtime pkgl
pyarmor build —--output dist —--no-runtime pkg2
pyarmor build —--output dist —--no-runtime pkg3

Check all the output and test these obfuscated packages:

ls dist/

cd dist

python -c¢ '"import pkgl
import pkg2

import pkg3'

41




PyArmor Documentation, Release 5.7.0

Note: The runtime package pytransform in the output path dist also could be move to any other Python path,
only if it could be imported.

From v5.7.2, the Runtime Package also could be generate by command runtime separately:

’pyarmor runtime

10.2 Distributing Obfuscated Scripts To Other Platform

First list all the avaliable platform names by command download:

pyarmor download
pyarmor download —-help-platform

Display the detials with option ‘‘—list*:

pyarmor download —-list
pyarmor download --list windows
pyarmor download —--list windows.x86_64

If the target platform is one of Table-1. Prebuilt Libraries Distributed with PyArmor, it could be used directly. Other-
wise download it by platform name:

pyarmor download linux.armv7

Then specify platform name when obfuscating the scripts:

pyarmor obfuscate —-platform linux.armv7 foo.py

# For project
pyarmor build —--platform linux.armv7

10.2.1 Running Obfuscated Scripts In Multiple Platforms
From v5.7.5, the platform names are standardized, all the available platform names list here Standard Platform Names.
And the obfuscated scripts could be run in multiple platforms.

In order to support multiple platforms, all the dynamic libraries for these platforms need to be copied to Runtime
Package. For example, obfuscating a script could run in Windows/Linux/MacOS:

pyarmor obfuscate —-platform windows.x86_64 \
——platform linux.x86_64 \
——platform darwin.x86_64 \
foo.py

The Runtime Package also could be generated by command runtime once, then obfuscate the scripts without runtime
files. For examples:

pyarmor runtime —--platform windows.x86_64 —-platform linux.x86_64 —-platform darwin.
—x86_064
pyarmor obfuscate —--no-runtime --recursive foo.py

42 Chapter 10. Advanced Topics



PyArmor Documentation, Release 5.7.0

Note: After pyarmor is upgraded, these downloaded dynamic libraries are still old. If the obfuscated scripts don’t
work in other platforms, run command download again to download the latest dynami.

Note: From v5.6.0 to v5.7.0, there is a bug for cross platform. The scripts obfuscated in linux64/windows64/darwin64
don’t work after copied to one of this target platform:

’armvS, android.aarch64, ppcé6d4le, ios.arm64, freebsd, alpine, alpine.arm, poky-1586

10.3 Obfuscating Scripts By Other Version Of Python

If there are multiple Python versions installed in the machine, the command pyarmor uses default Python. In case the
scripts need to be obfuscated by other Python, run pyarmor by this Python explicitly.

For example, first find pyarmor.py:

’find /usr/local/lib -name pyarmor.py

Generally it should be in the /usr/local/lib/python2.7/dist-packages/pyarmor in most of linux.

Then run pyarmor as the following way:

’/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py

It’s convenient to create a shell script /usr/local/bin/pyarmor3, the content is:

’/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py "S*"

And

’chmod +x /usr/local/bin/pyarmor3

then use pyarmor3 as before.

In the Windows, create a bat file pyarmor3.bat, the content would be like this:

’C:\Python36\python C:\Python27\Lib\site-packages\pyarmor\pyarmor.py %=*

10.4 Let Python Interpreter Recognize Obfuscated Scripts Automati-
cally

In a few cases, if Python Interpreter could recognize obfuscated scripts automatically, it will make everything simple:
* Almost all the obfuscated scripts will be run as main script
¢ In the obfuscated scripts call multiprocessing to create new process
* Or call Popen, os.exec etc. to run any other obfuscated scripts

Here are the base steps:

10.3. Obfuscating Scripts By Other Version Of Python 43



PyArmor Documentation, Release 5.7.0

1. First create the Runtime Package with empty entry script:

echo "" > pytransform_bootstrap.py
pyarmor obfuscate pytransform_bootstrap.py

2. Move the Runtime Package dist/pytransform to Python system library. For example:

# For windows
mv dist/pytransform C:/Python37/Lib/site-packages/

# For linux
mv dist/pytransform /usr/local/lib/python3.5/dist-packages/

3. Move obfuscated bootstrap script dist/pytransform_bootstrap.py to Python system library:

mv dist/pytransform_bootstrap.py C:/Python37/Lib/
mv dist/pytransform_bootstrap.py /usr/lib/python3.5/

4. Edit lib/site.py (on Windows) or lib/pythonX.Y/site.py (on Linux), import pytransform_bootstrap before the line

>

if _name__=="‘_main__":

import pytransform bootstrap

if name == '_ _main '

It also could be inserted into the end of function site.main, or anywhere they could be executed as module sife is
imported.

After that python could run the obfuscated scripts directly, becausee the module site is automatically imported during
Python initialization.

Refer to https://docs.python.org/3/library/site.html

Note: Before v5.7.0, you need create the Runtime Package by the Runtime Files manually.

10.5 Obfuscating Python Scripts In Different Modes

Advanced Mode is introduced from PyArmor 5.5.0, it’s disabled by default. Specify option ——advanced to enable
it:

pyarmor obfuscate ——advanced 1 foo.py

# For project

cd /path/to/project

pyarmor config —--advanced 1
pyarmor build -B

From PyArmor 5.2, the default Restrict Mode is 1. It could be changed by the option ——restrict:

pyarmor obfuscate —--restrict=2 foo.py
pyarmor obfuscate --restrict=3 foo.py

# For project

(continues on next page)

44 Chapter 10. Advanced Topics



https://docs.python.org/3/library/site.html

PyArmor Documentation, Release 5.7.0

(continued from previous page)

cd /path/to/project
pyarmor config —--restrict 4
pyarmor build -B

All the restricts could be disabled by this way if required:

pyarmor obfuscate --restrict=0 foo.py

# For project
pyarmor config —-restrict=0
pyarmor build -B

The modes of Obfuscating Code Mode, Wrap Mode, Obfuscating module Mode could not be changed in command
obfucate. They only could be changed by command config when Using Project. For example:

pyarmor init --src=src --entry=main.py
pyarmor config —-obf-mod=1 --obf-code=1 —--wrap-mode=0
pyarmor build -B

10.6 Using Plugin to Extend License Type

PyArmor could extend license type for obfuscated scripts by plugin. For example, check internet time other than local
time.

First create plugin check_ntp_time.py:

# Uncomment the next 2 lines for debug as the script isn't obfuscated,
# otherwise runtime module "pytransform" isn't available in development
# from pytransform import pyarmor_init

# pyarmor_init ()

from ntplib import NTPClient
from time import mktime, strptime
import sys

def get_license_data():
from ctypes import py_object, PYFUNCTYPE
from pytransform import _pytransform
prototype = PYFUNCTYPE (py_object)

dlfunc = prototype(('get_registration_code', _pytransform))
rcode = dlfunc () .decode ()
index = rcode.find(';', rcode.find('*CODE:"))

return rcode[index+1:]

def check_ntp_time():
NTP_SERVER = 'europe.pool.ntp.org'
EXPIRED_DATE = get_license_data()
c = NTPClient ()
response = c.request (NTP_SERVER, version=3)
if response.tx_time > mktime (strptime (EXPIRED_DATE, '$Y%msd')):
sys.exit (1)

Then insert 2 comments in the entry script foo . py:

10.6. Using Plugin to Extend License Type 45




PyArmor Documentation, Release 5.7.0

# {(PyArmor Plugins}

def main() :
# PyArmor Plugin: check_ntp_time ()

if name == '_main__ ':
logging.basicConfig(level=logging.INFO)
main ()

Now obfuscate entry script:

pyarmor obfuscate —-plugin check_ntp_time foo.py

By this way, the content of check_ntp_time.py will be insert after the first comment:

# {(PyArmor Plugins}

the conent of check_ntp_time.py

At the same time, the prefix of second comment will be stripped:

def main() :
# PyArmor Plugin: check_ntp_ time ()
check_ntp_time ()

So the plugin takes effect.

If the plugin file isn’t in the current path, use absolute path instead:

pyarmor obfuscate --plugin /usr/share/pyarmor/check_ntp_time foo.py

Or set environment variable PYARMOR_PLUGIN. For example:

export PYARMOR_PLUGIN=/usr/share/pyarmor/plugins
pyarmor obfuscate --plugin check_ntp_time foo.py

Finally generate one license file for this obfuscated script:

pyarmor licenses -x 20190501 MYPRODUCT-0001
cp licenses/MYPRODUCT-0001/license.lic dist/

Note: It’s better to insert the content of ntplib.py into the plugin so that NTPClient needn’t be imported out of
obfuscated scripts.

Important: The output function name in the plugin must be same as plugin name, otherwise the plugin will not take
effects.

46 Chapter 10. Advanced Topics




PyArmor Documentation, Release 5.7.0

10.7 Bundle Obfuscated Scripts To One Executable File

Run the following command to pack the script foo.py to one executable file dist/foo.exe. Here foo.py isn’t obfuscated,
it will be obfuscated before packing:

pyarmor pack -e " --onefile" foo.py
dist/foo.exe

If you don’t want to bundle the license.lic of the obfuscated scripts into the executable file, but put it outside of the
executable file. For example:

dist/
foo.exe
license.lic

So that we could generate different licenses for different users later easily. Here are basic steps:

1. First create runtime-hook script copy_licese.py:

import sys
from os.path import join, dirname
with open(join(dirname (sys.executable), 'license.lic'), 'rb') as fs:
with open(join(sys._MEIPASS, 'license.lic'), 'wb') as fd:
fd.write (fs.read())

2. Then pack the scirpt with extra options:

pyarmor pack —--clean —--without-license \

-e ——onefile —-icon logo.ico —-runtime-hook copy_license.py" foo.py

Option ——without-1icense tells pack not to bundle the license.lic of obfuscated scripts to the final
executable file. By option ——runt ime—-hook of Pylnstaller, the specified script copy_licesen.py will be
executed before any obfuscated scripts are imported. It will copy outer license.lic to right path.

Try to run dist/foo.exe, it should report license error.

3. Finally run licenses to generate new license for the obfuscated scripts, and copy new license.lic and dist/foo.exe
to end users:

pyarmor licenses -e 2020-01-01 code-001
cp license/code-001/license.lic dist/

dist/foo.exe

10.8 Improving The Security By Restrict Mode

By default the scripts are obfuscated by restrict mode 1, that is, the obfuscated scripts can’t be changed. In order to
improve the security, obfuscating the scripts by restrict mode 2 so that the obfuscated scripts can’t be imported out of
the obfuscated scripts. For example:

pyarmor obfuscate --restrict 2 foo.py

Or obfuscating the scripts by restrict mode 3 for more security. It will even check each function call to be sure all the
functions are called in the obfuscated scripts. For example:

10.7. Bundle Obfuscated Scripts To One Executable File 47


http://www.pyinstaller.org/

PyArmor Documentation, Release 5.7.0

pyarmor obfuscate --restrict 3 foo.py

However restrict mode 2 and 3 aren’t applied to Python package. There is another solutiion for Python package to
improve the security:

* The .py files which are used by outer scripts are obfuscated by restrice mode 1
* All the other .py files which are used only in the package are obfuscated by restrict mode 4

For example:

cd /path/to/mypkg

pyarmor obfuscate --exact __init__ .py exported_func.py
pyarmor obfuscate --restrict 4 —-recursive \
——exclude __init__ .py —-—exclude exported_func.py

More information about restrict mode, refer to Restrict Mode

10.9 Checking Imported Function Is Obfuscated

Sometimes it need to make sure the imported functions from other module are obfuscated. For example, there are 2
scripts main.py and foo.py:

$ cat main.py
import foo

def start_server():
foo.connect ('root', 'root password')

$ cat foo.py

def connect (username, password) :
mysgl.dbconnect (username, password)

In the obfuscated main.py, it need to be sure foo.connect is obfuscated. Otherwise the end users may replace the
obfuscated foo.py with this plain code:

def connect (username, password) :

print ('password is , password)

One solution is to check imported functions by decorator assert_armored in the main.py. For example:

import foo

def assert_armored (*names) :
def wrapper (func) :
def _execute(xargs, *»xkwargs):
for s in names:
# For Python2
# if not (s.func_code.co_flags & 0x20000000) :
# For Python3
if not (s._code .co_flags & 0x20000000) :
raise RuntimeError ('Access violate')

# Also check a piece of byte code for special function
if s._ name__ == 'connect':

(continues on next page)

48 Chapter 10. Advanced Topics




PyArmor Documentation, Release 5.7.0

(continued from previous page)

if s. code .co_code[10:12] '= b'\x90\xA2':
raise RuntimeError ('Access violate')
return func(xargs, =*xkwargs)
return _execute
return wrapper

@ assert_armored(foo.connect, foo.connect?2)
def start_server():
foo.connect ('root', 'root password')
foo.connect2 ('user', 'user password')

10.9.1 Plugin Implementation

First write a plugin script asser_armored.py:

def assert_armored (*names) :
def wrapper (func) :
def _execute(xargs, »+xkwargs):
for s in names:
# For Python2
# 1f not (s.func_code.co_flags & 0x20000000) :
# For Python3
if not (s.__code_.co_flags & 0x20000000) :
raise RuntimeError ('Access violate')
# Also check a piece of byte code for special function
if s._ name__ == 'connect':
if s. code .co_code[l10:12] '= b'\x90\xA2':
raise RuntimeError ('Access violate')
return func(xargs, xxkwargs)
return _execute
return wrapper

Then edit main.py , insert plugin markers. For examples:

import foo
# {PyArmor Plugins}
# PyArmor Plugin: @assert_armored (foo.connect, foo.connect2)

def start_server () :
foo.connect ('root', 'root password')

So the original script could be run normally when it’s not obfuscated. 