

PyArmor’s Documentation

	Version

	PyArmor 5.4

	Homepage

	http://pyarmor.dashingsoft.com/

	Contact

	jondy.zhao@gmail.com

	Authors

	Jondy Zhao

	Copyright

	This document has been placed in the public domain.

PyArmor is a command line tool used to obfuscate python scripts,
bind obfuscated scripts to fixed machine or expire obfuscated
scripts. It protects Python scripts by the following ways:

	Obfuscate code object to protect constants and literal strings.

	Obfuscate co_code of each function (code object) in runtime.

	Clear f_locals of frame as soon as code object completed execution.

	Verify the license file of obfuscated scripts while running it.

PyArmor supports Python 2.6, 2.7 and Python 3.

PyArmor is tested against Windows, Mac OS X, and Linux.

PyArmor has been used successfully with FreeBSD and embedded
platform such as Raspberry Pi, Banana Pi, Orange Pi, TS-4600 / TS-7600 etc.
but is not fullly tested against them.

Contents:

	Installation
	Verifying the installation

	Installed commands

	Using PyArmor
	Obfuscating Python Scripts

	Distributing Obfuscated Scripts

	Generating License For Obfuscated Scripts

	Extending License Type

	Obfuscating Single Module

	Obfuscating Whole Package

	Packing Obfuscated Scripts

	Runtime Module pytransform
	Contents

	Examples

	The Security of PyArmor
	Cross Protection for _pytransform

	The Performance of Obfuscated Scripts

	Understanding Obfuscated Scripts
	Global Capsule

	Obfuscated Scripts

	Bootstrap Code

	Runtime Files

	The License File for Obfuscated Script

	Key Points to Use Obfuscated Scripts

	Running Obfuscated Scripts

	Search path for license.lic and pytransform.key

	Two types of license.lic

	How PyArmor Does It
	How to Obfuscate Python Scripts

	How to Run Obfuscated Script

	Special Handling of Entry Script

	How To Pack Obfuscated Scripts
	Work with PyInstaller

	Work with py2exe

	Work with cx_Freeze 5

	Using Project
	Managing Obfuscated Scripts With Project

	Obfuscating Scripts With Different Modes

	Project Configuration File

	The Differences of Obfuscated Scripts

	Advanced Topics
	Obfuscating Many Packages

	Distributing Obfuscated Scripts To Other Platform

	Obfuscating Scripts By Other Version Of Python

	Obfuscating Python Scripts In Different Modes

	Restrict Mode

	Using Plugin to Extend License Type

	Bundle Obfuscated Scripts To One Executable File

	Man Page
	obfuscate

	licenses

	pack

	hdinfo

	init

	config

	build

	info

	check

	banchmark

	register

	download

	Examples
	Obfuscating and Packing PyQt Application

	When Things Go Wrong
	Segment fault

	Could not find _pytransform

	The license.lic generated doesn’t work

	NameError: name ‘__pyarmor__’ is not defined

	Marshal loads failed when running xxx.py

	_pytransform can not be loaded twice

	Check restrict mode failed

	Protection Fault: unexpected xxx

	Warning: code object xxxx isn’t wrapped

	Error: Try to run unauthorized function

	Check license failed: Invalid input packet.

	License
	Purchase

	Support Platfroms

	Change Logs
	5.4.6

	5.4.5

	5.4.4

	5.4.3

	5.4.2

	5.4.1

	5.4.0

	5.3.13

	5.3.12

	5.3.11

	5.3.10

	5.3.9

	5.3.8

	5.3.7

	5.3.6

	5.3.5

	5.3.4

	5.3.3

	5.3.2

	5.3.1

	5.3.0

	5.2.9

	5.2.8

	5.2.7

	5.2.6

	5.2.5

	5.2.4

	5.2.3

	5.2.2

	5.2.1

	5.2.0

	5.1.2

	5.1.1

	5.1.0

	5.0.5

	5.0.4

	5.0.3

	5.0.2

	5.0.1

	4.6.3

	4.6.2

	4.6.1

	4.6.0

	4.5.5

	4.5.4

	4.5.3

	4.5.2

	4.5.1

	4.5.0

	4.4.2

	4.4.2

	4.4.1

	4.4.0

	4.3.4

	4.3.3

	4.3.2

	4.3.1

	4.3.0

	4.2.3

	4.2.2

	4.2.1

	4.1.4

	4.1.3

	4.1.2

	4.1.1

	4.0.3

	4.0.2

	4.0.1

	3.9.9

	3.9.8

	3.9.7

	3.9.6

	3.9.5

	3.9.4

	3.9.3

	3.9.2

	3.9.1

	3.9.0

	3.8.10

	3.8.9

	3.8.8

	3.8.7

	3.8.6

	3.8.5

	3.8.4

	3.8.3

	3.8.2

	3.8.1

	3.8.0

	3.7.5

	3.7.4

	3.7.3

	3.7.2

	3.7.1

	3.7.0

	3.6.2

	3.6.1

	3.6.0

	3.5.1

	3.5.0

	3.4.3

	3.4.2

	3.4.1

	3.4.0

	3.3.1

	3.3.0

	3.2.1

	3.2.0

	3.1.7

	3.1.6

	3.1.5

	3.1.4

	3.1.3

	3.1.2

	3.1.1

	3.0.1

	2.6.1

	2.5.5

	2.5.4

	2.5.3

	2.5.2

	2.5.1

	2.4.1

	2.3.4

	2.3.3

	2.3.2

	2.3.1

	2.2.1

	2.1.2

	2.1.1

	2.0.1

	1.7.7

	1.7.6

	1.7.5

	1.7.4

	1.7.3

	1.7.2

	1.7.1

	1.7.0

Indices and tables

	Index

	Module Index

	Search Page

Installation

PyArmor is a normal Python package. You can download the archive
from PyPi [https://pypi.python.org/pypi/pyarmor/], but it is easier to install using pip [http://www.pip-installer.org/] where is is
available, for example:

pip install pyarmor

or upgrade to a newer version:

pip install --upgrade pyarmor

Verifying the installation

On all platforms, the command pyarmor should now exist on the
execution path. To verify this, enter the command:

pyarmor --version

The result should show PyArmor Version X.Y.Z or PyArmor Trial Version X.Y.Z.

If the command is not found, make sure the execution path includes the
proper directory.

Installed commands

The complete installation places these commands on the execution path:

	pyarmor is the main command. See Using PyArmor.

	pyarmor-webui is used to open a simple web ui of PyArmor.

If you do not perform a complete installation (installing via
pip), these commands will not be installed as commands. However,
you can still execute all the functions documented below by running
Python scripts found in the distribution folder. The equivalent of
the pyarmor command is pyarmor-folder/pyarmor.py, and of
pyarmor-webui is pyarmor-folder/pyarmor-webui.py.

Using PyArmor

The syntax of the pyarmor command is:

pyarmor [command] [options]

Obfuscating Python Scripts

Use command obfuscate to obfuscate python scripts. In the most
simple case, set the current directory to the location of your program
myscript.py and execute:

pyarmor obfuscate myscript.py

PyArmor obfuscates myscript.py and all the *.py in the same folder:

	Create .pyarmor_capsule.zip in the HOME folder if it doesn’t exists.

	Creates a folder dist in the same folder as the script if it does not exist.

	Writes the obfuscated myscript.py in the dist folder.

	Writes all the obfuscated *.py in the same folder as the script in the dist folder.

	Copy runtime files used to run obfuscated scripts to the dist folder.

In the dist folder the obfuscated scripts and all the required
files are generated:

myscript.py

pytransform.py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

The rest files called Runtime Files, all of them are required to
run the obfuscated script.

Normally you name one script on the command line. It’s entry
script. The content of myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x06\x0f...')

The first 2 lines called Bootstrap Code, are only in the entry
script. They must be run before using any obfuscated file. For all the
other obfuscated *.py, there is only last line:

__pyarmor__(__name__, __file__, b'\x0a\x02...')

Run the obfuscated script:

cd dist
python myscript.py

By default, only the *.py in the same path as the entry script
are obfuscated. To obfuscate all the *.py in the sub-folder
recursively, execute this command:

pyarmor obfuscate --recursive myscript.py

Distributing Obfuscated Scripts

Just copy all the files in the output path dist to end users. Note
that except the obfuscated scripts, all the Runtime Files need
to be distributed to end users too.

About the security of obfuscated scripts, refer to The Security of PyArmor

Generating License For Obfuscated Scripts

Use command licenses to generate new license.lic for
obfuscated scripts.

By default there is dist/license.lic generated by command
obfuscate. It allows obfuscated scripts run in any machine and
never expired.

Generate an expired license for obfuscated script:

pyarmor licenses --expired 2019-01-01 code-001

PyArmor generates new license file:

	Read data from .pyarmor_capsule.zip in the HOME folder

	Create license.lic in the licenses/code-001 folder

	Create license.lic.txt in the licenses/code-001 folder

Overwrite default license with new one:

cp licenses/code-001/license.lic dist/

Run obfuscated script with new license, It will report error after
Jan. 1, 2019:

cd dist
python myscript.py

Generate license to bind obfuscated scripts to fixed machine, first
get hardware information:

pyarmor hdinfo

Then generate new license bind to harddisk serial number and mac address:

pyarmor licenses --bind-disk "100304PBN2081SF3NJ5T" --bind-mac "20:c1:d2:2f:a0:96" code-002

Run obfuscated script with new license:

cp licenses/code-002/license.lic dist/

cd dist/
python myscript.py

Extending License Type

It’s easy to extend any other licese type for obfuscated scripts: just
add authentication code in the entry script. The script can’t be
changed any more after it is obfuscated, so write what ever you want
by Python. Refer to Runtime Module pytransform for more information.

Obfuscating Single Module

To obfuscate one module exactly, use option –exact:

pyarmor obfuscate --exact foo.py

Only foo.py is obfuscated, now import this obfuscated module:

cd dist
python -c "import foo"

Obfuscating Whole Package

Run the following command to obfuscate a package:

pyarmor obfuscate --recursive --output dist/mypkg mykpg/__init__.py

To import the obfuscated package:

cd dist
python -c "import mypkg"

Packing Obfuscated Scripts

Use command pack to pack obfuscated scripts into the bundle.

First install PyInstaller:

pip install pyinstaller

Set the current directory to the location of your program
myscript.py and execute:

pyarmor pack myscript.py

PyArmor packs myscript.py:

	Execute pyarmor obfuscate to obfuscate myscript.py

	Execute pyinstaller myscipt.py to create myscript.spec

	Update myscript.spec, replace original scripts with obfuscated ones

	Execute pyinstaller myscript.spec to bundle the obfuscated scripts

In the dist/myscript folder you find the bundled app you
distribute to your users.

Run the final executeable file:

dist/myscript/myscript

Check the scripts have been obfuscated. It should return error:

rm dist/myscript/license.lic
dist/myscript/myscript

Generate an expired license for the bundle:

pyarmor licenses --expired 2019-01-01 code-003
cp licenses/code-003/license.lic dist/myscript

dist/myscript/myscript

For complicated cases, refer to command pack and How To Pack Obfuscated Scripts.

Runtime Module pytransform

If you have realized that the obfuscated scripts are black box for end
users, you can do more in your own Python scripts.In these cases,
pytransform would be useful.

The pytransform module is distributed with obfuscated scripts,
and must be imported before running any obfuscated scripts. It also
can be used in your python scripts.

Contents

	
exception PytransformError

	This is raised when any pytransform api failed. The argument to the
exception is a string indicating the cause of the error.

	
get_expired_days()

	Return how many days left for time limitation license.

>0: valid in these days

-1: never expired

Note

If the obfuscated script has been expired, it will raise exception
and quit directly. All the code in the obfuscated script will not
run, so this function will not return 0.

	
get_license_info()

	Get license information of obfuscated scripts.

It returns a dict with keys expired, CODE, IFMAC.

The value of expired is == -1 means no time limitation.

Raise PytransformError if license is invalid, for example,
it has been expired.

	
get_license_code()

	Return a string, which is specified as generating the licenses for
obfucated scripts.

Raise PytransformError if license is invalid.

	
get_hd_info(hdtype, size=256)

	Get hardware information by hdtype, hdtype could one of

HT_HARDDISK return the serial number of first harddisk

HT_IFMAC return mac address of first network card

Raise PytransformError if something is wrong.

	
HT_HARDDISK, HT_IFMAC

	Constant for hdtype when calling get_hd_info()

Examples

Copy those example code to any script, for example foo.py, obfuscate
it, then run the obfuscated script.

Show left days of license

from pytransform import PytransformError, get_license_info, get_expired_days
try:
 code = get_license_info()['CODE']
 left_days = get_expired_days()
 if left_days == -1:
 print('This license for %s is never expired' % code)
 else:
 print('This license for %s will be expired in %d days' % (code, left_days))
except PytransformError as e:
 print(e)

Double check harddisk information

from pytransform import get_hd_info, get_license_code, HT_IFMAC
expected_mac_address = get_license_code().split('-')[1]
if get_hd_info(HT_IFMAC) != expected_mac_address:
 sys.exit(1)

Then generate one expired license file for this obfuscated script

pyarmor licenses -e 2020-01-01 MAC-70:f1:a1:23:f0:94

Check internet time by NTP server

from ntplib import NTPClient
from time import mktime, strptime
from pytransform import get_license_code

NTP_SERVER = 'europe.pool.ntp.org'
EXPIRED_DATE = get_license_code()[4:]

c = NTPClient()
response = c.request(NTP_SERVER, version=3)
if response.tx_time > mktime(strptime(EXPIRED_DATE, '%Y-%m-%d')):
 sys.exit(1)

Also save the expired date in the license file, generate it by this command

pyarmor licenses NTP-2020-01-01

The Security of PyArmor

PyArmor will obfuscate python module in two levels. First obfucate
each function in module, then obfuscate the whole module file. For
example, there is a file foo.py:

def hello():
 print('Hello world!')

def sum(a, b):
 return a + b

if __name == '__main__':
 hello()
 print('1 + 1 = %d' % sum(1, 1))

PyArmor first obfuscates the function hello and sum, then
obfuscates the whole moudle foo. In the runtime, only current called
function is restored and it will be obfuscated as soon as code object
completed execution. So even trace code in any c debugger, only a
piece of code object could be got one time.

Cross Protection for _pytransform

The core functions of PyArmor are written by c in the dynamic
library _pytransform. _pytransform protects itself by JIT
technical, and the obfuscated scripts is protected by _pytransform.
On the other hand, the dynamic library _pytransform is checked in
the obfuscated script to be sure it’s not changed. This is called
Cross Protection.

The dynamic library _pytransform.so uses JIT technical to achieve
two tasks:

	Keep the des key used to encrypt python scripts from tracing by any
c debugger

	The code segment can’t be changed any more. For example, change
instruction JZ to JNZ, so that _pytransform.so can execute
even if checking license failed

How JIT works?

First PyArmor defines an instruction set based on GNU lightning.

Then write some core functions by this instruction set in c file, maybe like this:

t_instruction protect_set_key_iv = {
 // function 1
 0x80001,
 0x50020,
 ...

 // function 2
 0x80001,
 0xA0F80,
 ...
}

t_instruction protect_decrypt_buffer = {
 // function 1
 0x80021,
 0x52029,
 ...

 // function 2
 0x80001,
 0xC0901,
 ...
}

Build _pytransform.so, calculate the codesum of code segment of
_pytransform.so

Replace the related instructions with real codesum got before, and
obfuscate all the instructions except “function 1” in c file. The
updated file maybe likes this:

t_instruction protect_set_key_iv = {
 // plain function 1
 0x80001,
 0x50020,
 ...

 // obfuscated function 2
 0xXXXXX,
 0xXXXXX,
 ...
}

t_instruction protect_decrypt_buffer = {
 // plain function 1
 0x80021,
 0x52029,
 ...

 // obfuscated function 2
 0xXXXXX,
 0xXXXXX,
 ...
}

Finally build _pytransform.so with this changed c file.

When running obfuscated script, _pytransform.so loaded. Once a
proected function is called, it will

	Generate code from function 1

	
	Run function 1:

	
	check codesum of code segment, if not expected, quit

	check tickcount, if too long, quit

	check there is any debugger, if found, quit

	clear hardware breakpoints if possible

	restore next function function 2

	Generate code from function 2

	Run function 2, do same thing as function 1

After repeat some times, the real code is called. All of that is to be
sure there is no breakpoint in protection code.

In order to protect _pytransform in Python script, some extra code
will be inserted into the entry script, refer to Special Handling of Entry Script

The Performance of Obfuscated Scripts

Run command banchmark to check the performance of obfuscated
scripts:

pyarmor benchmark

Here it’s sample output:

INFO Start benchmark test ...
INFO Obfuscate module mode: 1
INFO Obfuscate code mode: 1
INFO Obfuscate wrap mode: 1
INFO Benchmark bootstrap ...
INFO Benchmark bootstrap OK.
INFO Run benchmark test ...
Test script: bfoo.py
Obfuscated script: obfoo.py

load_pytransform: 28.429590911694085 ms
init_pytransform: 10.701080723946758 ms
verify_license: 0.515428636879825 ms
total_extra_init_time: 40.34842417122847 ms

import_no_obfuscated_module: 9.601499631936461 ms
import_obfuscated_module: 6.858413569322354 ms

re_import_no_obfuscated_module: 0.007263492985840059 ms
re_import_obfuscated_module: 0.0058666674116400475 ms

run_empty_no_obfuscated_code_object: 0.015085716201360122 ms
run_empty_obfuscated_code_object: 0.0058666674116400475 ms

run_one_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_one_thousand_obfuscated_bytecode: 0.005307937181960043 ms

run_ten_thousand_no_obfuscated_bytecode: 0.003911111607760032 ms
run_ten_thousand_obfuscated_bytecode: 0.005587302296800045 ms

INFO Remove test path: .\.benchtest
INFO Finish benchmark test.

The total extra init time is about 40ms. It includes the time of
loading dynamic library, initialzing it and verifing license.

Note that the time of importing obfuscated module is less than of
importing no obfuscated module, because the obfuscated scripts has
been compiled as byte-code, the original scripts need extra time to
compile.

Checking the performance for other mode by this way:

pyarmor benchmark --wrap-mode 0

Look at the scripts used by this command:

pyarmor benchmark --debug

Understanding Obfuscated Scripts

Global Capsule

The .pyarmor_capsule.zip in the HOME path called Global
Capsule. It’s created implicitly when executing command pyarmor
obfuscate. PyArmor will read data from Global Capsule when
obfuscating scripts or generating licenses for obfuscated scripts.

Obfuscated Scripts

After the scripts are obfuscated by PyArmor, in the dist folder
you find all the required files to run obfuscated scripts:

myscript.py
mymodule.py

pytransform.py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

The obfuscated scripts are normal Python scripts. The module
dist/mymodule.py would be like this:

__pyarmor__(__name__, __file__, b'\x06\x0f...')

The entry script dist/myscript.py would be like this:

from pytransform import pyarmor_runtime
pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x0a\x02...')

Bootstrap Code

The first 2 lines in the entry script called Bootstrap Code. It’s
only in the entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime()

Runtime Files

Except obfuscated scripts, all the other files are called Runtime Files:

	pytransform.py, a normal python module

	_pytransform.so, or _pytransform.dll, or _pytransform.dylib a dynamic library implements core functions

	pytransform.key, data file

	license.lic, the license file for obfuscated scripts

All of them are required to run obfuscated scripts.

The License File for Obfuscated Script

There is a special runtime file license.lic. The default one,
which generated as executing pyarmor obfuscate, allows obfuscated
scripts run in any machine and never expired.

To change this behaviour, use command pyarmor licenses to generate
new license.lic and overwrite the default one.

Key Points to Use Obfuscated Scripts

	The obfuscated script is a normal python script, so it can be
seamless to replace original script.

	There is only one thing changed, the following code must be run
before using any obfuscated script:

from pytransform import pyarmor_runtime
pyarmor_runtime()

It must in the obfuscated script and only be called one time in the
same Python interpreter. It will create some builtin function to
deal with obfuscated code.

	The extra runtime file pytransform.py must be in any Python
path in target machine. pytransform.py need load dynamic
library _pytransform by ctypes. It may be

	_pytransform.so in Linux

	_pytransform.dll in Windows

	_pytransform.dylib in MacOS

This file is dependent-platform, download the right one to the same
path of pytransform.py according to target platform. All the
prebuilt dynamic libraries list here Support Platfroms

	By default pytransform.py search dynamic library _pytransform in
the same path. Check pytransform._load_library to find the
details.

	All the other Runtime Files should in the same path as
dynamic library _pytransform

	If Runtime Files locate in some other path, change
Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/runtime-files')

Running Obfuscated Scripts

The obfuscated scripts is a normal python script, it can be run by
normal python interpreter:

cd dist
python myscript.py

Firt Bootstrap Code is executed:

	Import pyarmor_runtime from pytransform.py

	
	Execute pyarmor_runtime

	
	Load dynamic library _pytransform by ctypes

	Check license.lic in the same path

	Add there builtin functions __pyarmor__, __enter_armor__, __exit_armor__

After that:

	Call __pyarmor__ to import the obfuscated module.

	Call __enter_armor__ to restore code object of function before executing each function

	Call __exit_armor__ to obfuscate code object of function after each function return

More information, refer to How to Obfuscate Python Scripts and How to Run Obfuscated Script

Search path for license.lic and pytransform.key

As the obfuscated script is running, it first searches the current
path, then search the path of runtime module pytransform.py to find
the file license.lic and pytransform.key.

Sometimes there is any of license.lic or pytransform.py in the
current path, but it’s not for obfuscated scripts. In this case, try
to run obfuscated scripts, it will report this error:

Invalid input packet.
Check license failed.

Two types of license.lic

In PyArmor, there are 2 types of license.lic

	license.lic of PyArmor, which locates in the source path of
PyArmor. It’s required to run pyarmor

	license.lic of Obfuscated Scripts, which is generated as
obfuscating scripts by the end user of PyArmor. It’s required to run
the obfuscated scripts.

The relation between 2 license.lic is:

license.lic of PyArmor --> .pyarmor_capsule.zip --> license.lic of Obfuscated Scripts

When obfuscating scripts with command pyarmor obfuscate or pyarmor
build, the Global Capsule is used implicitly. If there is no
Global Capsule, PyArmor will read license.lic of PyArmor as
input to generate the Global Capsule.

When runing command pyarmor licenses, it will generate a new
license.lic for obfuscated scripts. Here the Global Capsule
will be as input file to generate this license.lic of Obfuscated
Scripts.

How PyArmor Does It

Look at what happened after foo.py is obfuscated by PyArmor. Here
are the files list in the output path dist:

foo.py

pytransform.py
_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.key
license.lic

dist/foo.py is obfuscated script, the content is:

from pytransform import pyarmor_runtime
pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x06\x0f...')

All the other extra files called Runtime Files, which are required to run or
import obfuscated scripts. So long as runtime files are in any Python path,
obfuscated script dist/foo.py can be used as normal Python script. That is to say:

The original python scripts can be replaced with obfuscated scripts seamlessly.

How to Obfuscate Python Scripts

How to obfuscate python scripts by PyArmor?

First compile python script to code object:

char *filename = "foo.py";
char *source = read_file(filename);
PyCodeObject *co = Py_CompileString(source, "<frozen foo>", Py_file_input);

Then change code object as the following way

	Wrap byte code co_code within a try...finally block:

wrap header:

 LOAD_GLOBALS N (__armor_enter__) N = length of co_consts
 CALL_FUNCTION 0
 POP_TOP
 SETUP_FINALLY X (jump to wrap footer) X = size of original byte code

changed original byte code:

 Increase oparg of each absolute jump instruction by the size of wrap header

 Obfuscate original byte code

 ...

wrap footer:

 LOAD_GLOBALS N + 1 (__armor_exit__)
 CALL_FUNCTION 0
 POP_TOP
 END_FINALLY

	Append function names __armor_enter, __armor_exit__ to co_consts

	Increase co_stacksize by 2

	Set CO_OBFUSCAED (0x80000000) flag in co_flags

	Change all code objects in the co_consts recursively

Next serializing reformed code object and obfuscate it to protect
constants and literal strings:

char *string_code = marshal.dumps(co);
char *obfuscated_code = obfuscate_algorithm(string_code);

Finally generate obfuscated script:

sprintf(buf, "__pyarmor__(__name__, __file__, b'%s')", obfuscated_code);
save_file("dist/foo.py", buf);

The obfuscated script is a normal Python script, it looks like this:

__pyarmor__(__name__, __file__, b'\x01\x0a...')

How to Run Obfuscated Script

How to run obfuscated script dist/foo.py by Python Interpreter?

The first 2 lines, which called Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime()

It will fulfil the following tasks

	Load dynamic library _pytransform by ctypes

	Check dist/license.lic is valid or not

	Add 3 cfunctions to module builtins: __pyarmor__, __armor_enter__, __armor_exit__

The next code line in dist/foo.py is:

__pyarmor__(__name__, __file__, b'\x01\x0a...')

__pyarmor__ is called, it will import original module from obfuscated code:

static PyObject *
__pyarmor__(char *name, char *pathname, unsigned char *obfuscated_code)
{
 char *string_code = restore_obfuscated_code(obfuscated_code);
 PyCodeObject *co = marshal.loads(string_code);
 return PyImport_ExecCodeModuleEx(name, co, pathname);
}

After that, in the runtime of this python interpreter

	__armor_enter__ is called as soon as code object is executed, it
will restore byte-code of this code object:

static PyObject *
__armor_enter__(PyObject *self, PyObject *args)
{
 // Got code object
 PyFrameObject *frame = PyEval_GetFrame();
 PyCodeObject *f_code = frame->f_code;

 // Increase refcalls of this code object
 // Borrow co_names->ob_refcnt as call counter
 // Generally it will not increased by Python Interpreter
 PyObject *refcalls = f_code->co_names;
 refcalls->ob_refcnt ++;

 // Restore byte code if it's obfuscated
 if (IS_OBFUSCATED(f_code->co_flags)) {
 restore_byte_code(f_code->co_code);
 clear_obfuscated_flag(f_code);
 }

 Py_RETURN_NONE;
}

	__armor_exit__ is called so long as code object completed
execution, it will obfuscate byte-code again:

static PyObject *
__armor_exit__(PyObject *self, PyObject *args)
{
 // Got code object
 PyFrameObject *frame = PyEval_GetFrame();
 PyCodeObject *f_code = frame->f_code;

 // Decrease refcalls of this code object
 PyObject *refcalls = f_code->co_names;
 refcalls->ob_refcnt --;

 // Obfuscate byte code only if this code object isn't used by any function
 // In multi-threads or recursive call, one code object may be referenced
 // by many functions at the same time
 if (refcalls->ob_refcnt == 1) {
 obfuscate_byte_code(f_code->co_code);
 set_obfuscated_flag(f_code);
 }

 // Clear f_locals in this frame
 clear_frame_locals(frame);

 Py_RETURN_NONE;
}

Special Handling of Entry Script

There are 2 extra changes for entry script:

	Before obfuscating, insert protection code to entry script.

	After obfuscated, insert bootstrap code to obfuscated script.

Before obfuscating entry scipt, PyArmor will search the content line
by line. If there is line like this:

{PyArmor Protection Code}

PyArmor will replace this line with protection code.

If there is line like this:

{No PyArmor Protection Code}

PyArmor will not patch this script.

If both of lines aren’t found, insert protection code before the line:

if __name__ == '__main__'

Do nothing if no __main__ line found.

Here it’s the default template of protection code:

def protect_pytransform():

 import pytransform

 def check_obfuscated_script():
 CO_SIZES = 49, 46, 38, 36
 CO_NAMES = set(['pytransform', 'pyarmor_runtime', '__pyarmor__',
 '__name__', '__file__'])
 co = pytransform.sys._getframe(3).f_code
 if not ((set(co.co_names) <= CO_NAMES)
 and (len(co.co_code) in CO_SIZES)):
 raise RuntimeError('Unexpected obfuscated script')

 def check_mod_pytransform():
 CO_NAMES = set(['Exception', 'LoadLibrary', 'None', 'PYFUNCTYPE',
 'PytransformError', '__file__', '_debug_mode',
 '_get_error_msg', '_handle', '_load_library',
 '_pytransform', 'abspath', 'basename', 'byteorder',
 'c_char_p', 'c_int', 'c_void_p', 'calcsize', 'cdll',
 'dirname', 'encode', 'exists', 'exit',
 'format_platname', 'get_error_msg', 'init_pytransform',
 'init_runtime', 'int', 'isinstance', 'join', 'lower',
 'normpath', 'os', 'path', 'platform', 'print',
 'pyarmor_init', 'pythonapi', 'restype', 'set_option',
 'str', 'struct', 'sys', 'system', 'version_info'])

 colist = []

 for name in ('dllmethod', 'init_pytransform', 'init_runtime',
 '_load_library', 'pyarmor_init', 'pyarmor_runtime'):
 colist.append(getattr(pytransform, name).{code})

 for name in ('init_pytransform', 'init_runtime'):
 colist.append(getattr(pytransform, name).{closure}[0].cell_contents.{code})
 colist.append(pytransform.dllmethod.{code}.co_consts[1])

 for co in colist:
 if not (set(co.co_names) < CO_NAMES):
 raise RuntimeError('Unexpected pytransform.py')

 def check_lib_pytransform():
 filename = pytransform.os.path.join({rpath}, {filename})
 size = {size}
 n = size >> 2
 with open(filename, 'rb') as f:
 buf = f.read(size)
 fmt = 'I' * n
 checksum = sum(pytransform.struct.unpack(fmt, buf)) & 0xFFFFFFFF
 if not checksum == {checksum}:
 raise RuntimeError("Unexpected %s" % filename)
 try:
 check_obfuscated_script()
 check_mod_pytransform()
 check_lib_pytransform()
 except Exception as e:
 print("Protection Fault: %s" % e)
 pytransform.sys.exit(1)

protect_pytransform()

All the string template {xxx} will be replaced with real value by
PyArmor.

To prevent PyArmor from inserting this protection code, pass
–no-cross-protection as obfuscating the scripts:

pyarmor obfuscate --no-cross-protection foo.py

After the entry script is obfuscated, the Bootstrap Code will
be inserted at the beginning of the obfuscated script.

How To Pack Obfuscated Scripts

The obfuscated scripts generated by PyArmor can replace Python scripts
seamlessly, but there is an issue when packing them into one bundle by
PyInstaller, py2exe, py2app, cx_Freeze:

All the dependencies of obfuscated scripts CAN NOT be found at all

To solve this problem, the common solution is

	Find all the dependenices by original scripts.

	Add runtimes files required by obfuscated scripts to the bundle

	Replace original scipts with obfuscated in the bundle

	Replace entry scrirpt with obfuscated one

Depend on what tool used, there are different ways.

First obfuscate scripts to dist/obf:

pyarmor obfuscate --output dist/obf hello.py

Work with PyInstaller

Install pyinstaller:

pip install pyinstaller

Generate specfile, add the obfuscated entry script and data files
required by obfuscated scripts:

pyinstaller --add-data dist/obf/license.lic
 --add-data dist/obf/pytransform.key
 --add-data dist/obf/_pytransform.*
 hello.py dist/obf/hello.py

Update specfile hello.spec, insert the following lines after the
Analysis object. The purpose is to replace all the original
scripts with obfuscated ones:

a.scripts[-1] = 'hello', 'dist/obf/hello.py', 'PYSOURCE'
for i in range(len(a.pure)):
 if a.pure[i][1].startswith(a.pathex[0]):
 x = a.pure[i][1].replace(a.pathex[0], os.path.abspath('dist/obf'))
 if os.path.exists(x):
 a.pure[i] = a.pure[i][0], x, a.pure[i][2]

Run patched specfile to build final distribution:

pyinstaller hello.spec

Check obfuscated scripts work:

It works
dist/hello/hello.exe

rm dist/hello/license.lic

It should not work
dist/hello/hello.exe

Work with py2exe

For Python3.3 and later:

pip install py2exe

Build bundle executable to dist with separated library:

build_exe --library library.zip hello.py

Build bundle executable with the obfuscated entry to
dist/obf/dist, all the other obfuscated scripts should be include
by -i name or -p pkgname:

(cd dist/obf;
 build_exe --library library.zip -i queens hello.py)

Update dist/obf/library.zip, which only includes the obfuscated
scripts, merge all the dependenices files from dist/library.zip
into it.

Copy all the files to final output:

cp -a dist/obf/dist/* dist/

Copy runtime files required by obfuscated scripts to finial output:

(cd dist/obf;
 cp *.key *.lic _pytransform.dll ../dist/)

Check obfuscated scripts work:

It works
dist/hello.exe

rm dist/license.lic

It should not work
dist/hello.exe

For Python2, write a setup.py and run py2exe as the following way:

python setup.py py2exe hello.py

Work with cx_Freeze 5

Install cx_Freeze:

pip install cx_Freeze

Build bundle executable to dist:

cxfreeze --target-dir=dist hello.py

Build bundle executable with the obfuscated entry to
dist/obf/dist, all the other obfuscated scripts should be include
by --include-modules NAMES:

cd dist/obf
cxfreeze --target-dir=dist --include-modules=queens hello.py

Update dist/obf/python34.zip, which only includes the obfuscated
scripts, merge all the dependenices files from dist/python34.zip
into it.

Copy all the files to final output:

cp -a dist/obf/dist/* dist/

Copy runtime files required by obfuscated scripts to finial output:

(cd dist/obf;
 cp *.key *.lic _pytransform.dll ../dist/)

Check obfuscated scripts work:

It works
dist/hello.exe

rm dist/license.lic

It should not work
dist/hello.exe

Using Project

Project is a folder include its own configuration file, which used to
manage obfuscated scripts.

There are several advantages to manage obfuscated scripts by Project:

	Increment build, only updated scripts are obfuscated since last build

	Filter obfuscated scripts in the project, exclude some scripts

	More convenient to manage obfuscated scripts

Managing Obfuscated Scripts With Project

Use command init to create a project:

cd examples/pybench
pyarmor init --entry=pybench.py

It will create project configuration file .pyarmor_config in
the current path. Or create project in another path:

pyarmor init --src=examples/pybench --entry=pybench.py projects/pybench

The project path projects/pybench will be created, and
.pyarmor_config will be saved there.

The common usage for project is to do any thing in the project path:

cd projects/pybench

Show project information:

pyarmor info

Obfuscate all the scripts in this project:

pyarmor build

Exclude the dist, test, the .py files in these
folder will not be obfuscated:

pyarmor config --manifest "include *.py, prune dist, prune test"

Force rebuild:

pyarmor build --force

Run obfuscated script:

cd dist
python pybench.py

After some scripts changed, just run build again:

cd projects/pybench
pyarmor build

Obfuscating Scripts With Different Modes

Configure mode to obfuscate scripts:

pyarmor config --obf-mod=1 --obf-code=0

Obfuscating scripts in new mode:

pyarmor build -B

Project Configuration File

Each project has a configure file. It’s a json file named
.pyarmor_config stored in the project path.

	name

Project name.

	title

Project title.

	src

Base path to match files by manifest template string.

Generally it’s absolute path.

	manifest

A string specifies files to be obfuscated, same as MANIFEST.in of
Python Distutils, default value is:

global-include *.py

It means all files anywhere in the src tree matching.

Multi manifest template commands are spearated by comma, for
example:

global-include *.py, exclude __mainfest__.py, prune test

Refer to
https://docs.python.org/2/distutils/sourcedist.html#commands

	is_package

Available values: 0, 1, None

When it’s set to 1, the basename of src will be appended to
output as the final path to save obfuscated scripts, and
runtime files are still in the path output

When init a project and no –type specified, it will be set to
1 if there is __init__.py in the path src, otherwise it’s
None.

	disable_restrict_mode

Available values: 0, 1, None

When it’s None or 0, obfuscated scripts can not be imported from
outer scripts.

When it’s set to 1, it the obfuscated scripts are allowed to be
imported by outer scripts.

By default it’s set to 0.

Refer to Restrict Mode

	entry

A string includes one or many entry scripts.

When build project, insert the following bootstrap code for each
entry:

from pytransform import pyarmor_runtime
pyarmor_runtime()

The entry name is relative to src, or filename with absolute
path.

Multi entries are separated by comma, for example:

main.py, another/main.py, /usr/local/myapp/main.py

Note that entry may be NOT obfuscated, if manifest does not
specify this entry.

	output

A path used to save output of build. It’s relative to project path.

	capsule

Filename of project capsule. It’s relative to project path if it’s
not absolute path.

	obf_module_mode [DEPRECRATED]

How to obfuscate whole code object of module:

	none

No obfuscate

	des

Obfuscate whole code object by DES algorithm

The default value is des

	obf_code_mode [DEPRECRATED]

How to obfuscate byte code of each code object:

	none

No obfuscate

	des

Obfuscate byte-code by DES algorithm

	fast

Obfuscate byte-code by a simple algorithm, it’s faster than
DES

	wrap

The wrap code is different from des and fast. In this
mode, when code object start to execute, byte-code is
restored. As soon as code object completed execution,
byte-code will be obfuscated again.

The default value is wrap.

	obf_code

How to obfuscate byte code of each code object:

	0

No obfuscate

	1

Obfuscate each code object by default algorithm

Refer to Obfuscating Code Mode

	wrap_mode

Available values: 0, 1, None

Whether to wrap code object with try..final block.

Refer to Wrap Mode

	obf_mod

How to obfuscate whole code object of module:

	0

No obfuscate

	1

Obfuscate byte-code by DES algorithm

Refer to Obfuscating module Mode

	cross_protection

How to proect dynamic library in obfuscated scripts:

	0

No protection

	1

Insert proection code with default template, refer to
Special Handling of Entry Script

	Filename

Read the template of protection code from this file other than
default template.

	runtime_path

None or any path.

When run obfuscated scripts, where to find dynamic library
_pytransform. The default value is None, it means it’s in the
same path of pytransform.py.

It’s useful when obfuscated scripts are packed into a zip file,
for example, use py2exe to package obfuscated scripts. Set
runtime_path to an empty string, and copy Runtime Files to
same path of zip file, will solve this problem.

	plugins

None or list of string

Extend license type of obfuscated scripts, multi-plugins are
supported. For example:

plugins: ["check_ntp_time", "show_license_info"]

About the usage of plugin, refer to Using Plugin to Extend License Type

The Differences of Obfuscated Scripts

There are something changed after Python scripts are obfuscated:

	The major version of Python in build machine should be same as in
target machine. Because the scripts will be compiled to byte-code
before they’re obfuscated, so the obfuscated scripts can’t be run by
all the Python versions as the original scripts could. Especially
for Python 3.6, it introduces word size instructions, and it’s
totally different from Python 3.5 and before. It’s recommeded to run
the obfuscated scripts with same major version of Python.

	If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it
will crash to run obfuscated scripts.

	The callback function set by sys.settrace, sys.setprofile,
threading.settrace and threading.setprofile will be ignored by
obfuscated scripts.

	The attribute __file__ of code object in the obfuscated scripts
will be <frozen name> other than real filename. So in the
traceback, the filename is shown as <frozen name>.

Note that __file__ of moudle is still filename. For example,
obfuscate the script foo.py and run it:

def hello(msg):
 print(msg)

The output will be 'foo.py'
print(__file__)

The output will be '<frozen foo>'
print(hello.__file__)

	Some Python C API are required by obfuscated scripts, so other
third-party interpreter, for example Jython, maybe not work.

Advanced Topics

Obfuscating Many Packages

There are 3 packages: pkg1, pkg2, pkg2. All of them will be
obfuscated, and use shared runtime files.

First change to work path, create 3 projects:

mkdir build
cd build

pyarmor init --src /path/to/pkg1 --entry __init__.py pkg1
pyarmor init --src /path/to/pkg2 --entry __init__.py pkg2
pyarmor init --src /path/to/pkg3 --entry __init__.py pkg3

Then make runtime files, save them in the path dist:

pyarmor build --output dist --only-runtime pkg1

Next obfuscate 3 packages, save them in the dist:

pyarmor build --output dist --no-runtime pkg1
pyarmor build --output dist --no-runtime pkg2
pyarmor build --output dist --no-runtime pkg3

Check all the output and test these obfuscated packages:

ls dist/

cd dist
python -c 'import pkg1
import pkg2
import pkg3'

Distributing Obfuscated Scripts To Other Platform

First list and download dynalic library of target platform by command
download:

pyarmor download --list
pyarmor download linux_x86_64

Then specify platform name as obfuscating the scripts:

pyarmor obfuscate --platform linux_x86_64 foo.py

For project:

pyarmor build --platform linux_x86_64

Obfuscating Scripts By Other Version Of Python

If there are multiple Python versions installed in the machine, the
command pyarmor uses default Python. In case the scripts need to be
obfuscated by other Python, run pyarmor by this Python explicitly.

For example, first find pyarmor.py:

find /usr/local/lib -name pyarmor.py

Generally it should be in the
/usr/local/lib/python2.7/dist-packages/pyarmor in most of linux.

Then run pyarmor as the following way:

/usr/bin/python3.6 /usr/local/lib/python2.7/dist-packages/pyarmor/pyarmor.py

Obfuscating Python Scripts In Different Modes

Obfuscating Code Mode

In a python module file, generally there are many functions, each
function has its code object.

	obf_code == 0

The code object of each function will keep it as it is.

	obf_code == 1

In this case, the code object of each function will be obfuscated in
different ways depending on wrap mode.

Wrap Mode

	wrap_mode == 0

When wrap mode is off, the code object of each function will be
obfuscated as this form:

0 JUMP_ABSOLUTE n = 3 + len(bytecode)

3 ...
 ... Here it's obfuscated bytecode of original function
 ...

n LOAD_GLOBAL ? (__armor__)
n+3 CALL_FUNCTION 0
n+6 POP_TOP
n+7 JUMP_ABSOLUTE 0

When this code object is called first time

	First op is JUMP_ABSOLUTE, it will jump to offset n

	At offset n, the instruction is to call PyCFunction
__armor__. This function will restore those obfuscated bytecode
between offset 3 and n, and move the original bytecode at offset 0

	After function call, the last instruction is to jump to
offset 0. The really bytecode now is executed.

After the first call, this function is same as the original one.

	wrap_mode == 1

When wrap mode is on, the code object of each function will be wrapped
with try…finally block:

LOAD_GLOBALS N (__armor_enter__) N = length of co_consts
CALL_FUNCTION 0
POP_TOP
SETUP_FINALLY X (jump to wrap footer) X = size of original byte code

Here it's obfuscated bytecode of original function

LOAD_GLOBALS N + 1 (__armor_exit__)
CALL_FUNCTION 0
POP_TOP
END_FINALLY

When this code object is called each time

	__armor_enter__ will restore the obfuscated bytecode

	Execute the real function code

	In the final block, __armor_exit__ will obfuscate bytecode again.

Obfuscating module Mode

	obf_mod == 1

The final obfuscated scripts would like this:

__pyarmor__(__name__, __file__, b'\x02\x0a...', 1)

The third parameter is serialized code object of the Python
script. It’s generated by this way:

PyObject *co = Py_CompileString(source, filename, Py_file_input);
obfuscate_each_function_in_module(co, obf_mode);
char *original_code = marshal.dumps(co);
char *obfuscated_code = obfuscate_algorithm(original_code);
sprintf(buffer, "__pyarmor__(__name__, __file__, b'%s', 1)", obfuscated_code);

	obf_mod == 0

In this mode, keep the serialized module as it is:

sprintf(buffer, "__pyarmor__(__name__, __file__, b'%s', 0)", original_code);

And the final obfuscated scripts would be:

__pyarmor__(__name__, __file__, b'\x02\x0a...', 0)

Refer to Obfuscating Scripts With Different Modes

Restrict Mode

From PyArmor 5.2, Restrict Mode is default setting. In restrict mode,
obfuscated scripts must be one of the following formats:

__pyarmor__(__name__, __file__, b'...')

Or

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')

Or

from pytransform import pyarmor_runtime
pyarmor_runtime('...')
__pyarmor__(__name__, __file__, b'...')

And obfuscated script must be imported from obfuscated script. No any
other statement can be inserted into obfuscated scripts.

For examples, it works:

$ cat a.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')

$ python a.py

It doesn’t work, because there is an extra code “print”:

$ cat b.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')
print(__name__)

$ python b.py

Restrict mode could be disabled by this way if required:

pyarmor obfuscate --restrict=0 foo.py

Using Plugin to Extend License Type

PyArmor could extend license type for obfuscated scripts by
plugin. For example, check internet time other than local time.

First create plugin check_ntp_time.py:

Uncomment the next 2 lines for debug as the script isn't obfuscated,
otherwise runtime module "pytransform" isn't available in development
from pytransform import pyarmor_init
pyarmor_init()

from pytransform import get_license_code
from ntplib import NTPClient
from time import mktime, strptime
import sys

NTP_SERVER = 'europe.pool.ntp.org'
EXPIRED_DATE = get_license_code()[4:]

def check_expired():
 c = NTPClient()
 response = c.request(NTP_SERVER, version=3)
 if response.tx_time > mktime(strptime(EXPIRED_DATE, '%Y%m%d')):
 sys.exit(1)

Then insert 2 comments in the entry script foo.py:

...

{PyArmor Plugins}

...

def main():
 # PyArmor Plugin: check_expired()

if __name__ == '__main__':
 logging.basicConfig(level=logging.INFO)
 main()

Now obfuscate entry script:

pyarmor obfuscate --plugin check_ntp_time foo.py

By this way, the content of check_ntp_time.py will be insert
after the first comment:

{PyArmor Plugins}

... the conent of check_ntp_time.py

At the same time, the prefix of second comment will be stripped:

def main():
 check_expired()

So the plugin takes effect.

If the plugin file isn’t in the current path, use absolute path instead:

pyarmor obfuscate --plugin /usr/share/pyarmor/check_ntp_time foo.py

Or set environment variable PYARMOR_PLUGIN. For example:

export PYARMOR_PLUGIN=/usr/share/pyarmor/plugins
pyarmor obfuscate --plugin check_ntp_time foo.py

Finally generate one license file for this obfuscated script:

pyarmor licenses NTP:20190501

Bundle Obfuscated Scripts To One Executable File

Run the following command to pack the script foo.py to one
executable file dist/foo.exe. Here foo.py isn’t obfuscated, it
will be obfuscated before packing:

pyarmor pack -e " --onefile" foo.py
dist/foo.exe

If you don’t want to bundle the license.lic of the obfuscated
scripts into the executable file, but put it outside of the executable
file. For example:

dist/foo.exe
dist/license.lic

So that we could generate different licenses for different users
later easily. Here are basic steps:

	First create runtime-hook script copy_licese.py:

import sys
from os.path import join, dirname
with open(join(dirname(sys.executable), 'license.lic'), 'rb') as fs:
 with open(join(sys._MEIPASS, 'license.lic'), 'wb') as fd:
 fd.write(fs.read())

	Then pack the scirpt with extra options:

pyarmor pack --clean --without-license \
 -e " --onefile --icon logo.ico --runtime-hook copy_license.py" foo.py

Option –without-license tells pyamor not to bundle the license.lic of
obfuscated scripts to the final executable file. By option –runtime-hook of
PyInstaller, the specified script copy_licesen.py will be executed before
any obfuscated scripts are imported. It will copy outer license.lic to right
path.

Try to run dist/foo.exe, it should report license error.

	Finally run pyarmor licenses to generate new license for the
obfuscated scripts, and copy new license.lic and dist/foo.exe
to end users:

pyarmor licenses -e 2020-01-01 tom
cp license/tom/license.lic dist/

dist/foo.exe

Man Page

PyArmor is a command line tool used to obfuscate python scripts, bind
obfuscated scripts to fixed machine or expire obfuscated scripts.

The syntax of the pyarmor command is:

pyarmor <command> [options]

The most commonly used pyarmor commands are:

obfuscate Obfuscate python scripts
licenses Generate new licenses for obfuscated scripts
pack Pack obfuscated scripts to one bundle
hdinfo Show hardware information

The commands for project:

init Create a project to manage obfuscated scripts
config Update project settings
build Obfuscate all the scripts in the project

info Show project information
check Check consistency of project

The other commands:

benchmark Run benchmark test in current machine
register Make registration code work
download Download platform-dependent dynamic libraries

See pyarmor <command> -h for more information on a specific command.

obfuscate

Obfuscate python scripts.

SYNOPSIS:

pyarmor obfuscate <options> SCRIPT...

OPTIONS

	-O, --output PATH

	Output path, default is dist

	-r, --recursive

	Search scripts in recursive mode

	--exclude PATH

	Exclude the path in recusrive mode. Multiple paths are allowed, separated by “,”, or use this option multiple times

	--exact

	Only obfuscate list scripts

	--no-bootstrap

	Do not insert bootstrap code to entry script

	--no-cross-protection

	Do not insert protection code to entry script

	--plugin NAME

	Insert extra code to entry script

	--platform NAME

	Distribute obfuscated scripts to other platform

DESCRIPTION

PyArmor first checks whether Global Capsule exists in the
HOME path. If not, make it.

Then find all the scripts to be obfuscated. There are 3 modes to
search the scripts:

	Normal: find all the .py files in the same path of entry script

	Recursive: find all the .py files in the path of entry script recursively

	Exact: only these scripts list in the command line

If there is an entry script, PyArmor will modify it, insert cross
protection code into the entry script.

Next obfuscate all these scripts in the default output path dist.

After that generate default license.lic for obfuscated scripts
and make all the other Runtime Files in the dist path.

Finally insert Bootstrap Code into entry script.

The entry script is only the first script if there are more than one
script in command line.

Option –plugin is used to extend license type of obfuscated
scripts, it will insert the content of plugin into entry script. The
corresponding filename of plugin is NAME.py. Name may be absolute
path if it’s not in the current path, or specify plugin path by
environment variable PYARMOR_PLUGIN.

About the usage of plugin, refer to Using Plugin to Extend License Type

Option –platform is used to specify the target platform of
obfuscated scripts if target platform is different from build platform.

EXAMPLES

	Obfuscate all the .py only in the current path:

pyarmor obfuscate foo.py

	Obfuscate all the .py in the current path recursively:

pyarmor obfuscate --recursive foo.py

	Obfuscate all the .py in the current path recursively, exclude all
the .py in the path build and tests:

pyarmor obfuscate --recursive --exclude build,tests foo.py
pyarmor obfuscate --recursive --exclude build --exclude tests foo.py

	Obfuscate only two scripts foo.py, moda.py exactly:

pyarmor obfuscate --exact foo.py moda.py

	Obfuscate all the .py file in the path mypkg/:

pyarmor obfuscate --output dist/mypkg mypkg/__init__.py

	Obfuscate all the .py files in the current path, but do not insert
cross protection code into obfuscated script dist/foo.py:

pyarmor obfuscate --no-cross-protection foo.py

	Obfuscate all the .py files in the current path, but do not insert
bootstrap code at the beginning of obfuscated script
dist/foo.py:

pyarmor obfuscate --no-bootstrap foo.py

	Insert the content of check_ntp_time.py into foo.py, then
obfuscating foo.py:

pyarmor obfuscate --plugin check_ntp_time foo.py

	Obfuscate the scripts in Macos and run obfuscated scripts in
Ubuntu:

pyarmor download --list
pyarmor download linux_x86_64

pyarmor obfuscate --platform linux_x86_64 foo.py

licenses

Generate new licenses for obfuscated scripts.

SYNOPSIS:

pyarmor licenses <options> CODE

OPTIONS

	-O, --output OUTPUT

	Output path

	-e, --expired YYYY-MM-DD

	Expired date for this license

	-d, --bind-disk SN

	Bind license to serial number of harddisk

	-4, --bind-ipv4 IPV4

	Bind license to ipv4 addr

	-m, --bind-mac MACADDR

	Bind license to mac addr

DESCRIPTION

In order to run obfuscated scripts, it’s necessarey to hava a
:flile:`license.lic`. As obfuscating the scripts, there is a default
license.lic created at the same time. In this license the
obfuscated scripts can run on any machine and never expired.

This command is used to generate new licenses for obfuscated
scripts. For example:

pyarmor licenses --expired 2019-10-10 mycode

An expired license will be generated in the default output path plus
code name licenses/mycode, then overwrite the old one in the same
path of obfuscated script:

cp licenses/mycode/license.lic dist/

Another example, bind obfuscated scripts in mac address and expired on
2019-10-10:

pyarmor licenses --expired 2019-10-10 --bind-mac 2a:33:50:46:8f tom
cp licenses/tom/license.lic dist/

Before this, run command hdinfo to get hardware information:

pyarmor hdinfo

There maybe have whitespace in the serial number of harddisk for some
machines, just quote it in the command line:

pyarmor licenses --bind-disk "100304PBN2081SF3NJ5T " jondy

pack

Obfuscate the scripts and pack them into one bundle.

SYNOPSIS:

pyarmor pack <options> SCRIPT

OPTIONS

	-t, --type TYPE

	cx_Freeze, py2exe, py2app, PyInstaller(default).

	-O, --output OUTPUT

	Directory to put final built distributions in.

	-e, --options OPTIONS

	Extra options to run external tool

	-x, --xoptions OPTIONS

	Extra options to obfuscate scripts

	--without-license

	Do not generate license for obfuscated scripts

	--clean

	Remove last build path before packing

	--debug

	Do not remove build files after packing

DESCRIPTION

PyArmor first packes the script by calling the third-party tool such
as PyInstaller, gets the dependencies and other required files.

Then obfuscates all the .py files in the same path of entry script.

Next replace the original scripts with the obfuscated ones.

Finally pack all of them into one bundle.

Option –options could pass any extra options to external
tool. PyInstaller is called by this way:

pyinstaller --distpath DIST -y EXTRA_OPTIONS SCRIPT

EXTRA_OPTIONS is replaced with this option.

Option –xoptions could pass any extra options to obfuscate
scripts. By default, pack will obfuscate scripts like this:

pyarmor obfuscate -r --output DIST EXTRA_OPTIONS SCRIPT

EXTRA_OPTIONS is replaced with this option.

For more information, refer to How To Pack Obfuscated Scripts.

EXAMPLES

	Obfuscate foo.py and pack them into the bundle dist/foo:

pyarmor pack foo.py

	Pass extra options to run PyInstaller:

pyarmor pack -e " -w --icon app.ico" foo.py

	Pass extra options to obfuscate scripts:

pyarmor pack -x " --exclude venv --exclude test" foo.py

hdinfo

Show hardware information of this machine, such as serial number of
hard disk, mac address of network card etc. The information got here
could be as input data to generate license file for obfuscated
scripts.

SYNOPSIS:

pyarmor hdinfo

init

Create a project to manage obfuscated scripts.

SYNOPSIS:

pyarmor init <options> PATH

OPTIONS

	-t, --type <auto,app,pkg>

	Project type, default value is auto

	-s, --src SRC

	Base path of python scripts, default is current path

	-e, --entry ENTRY

	Entry script of this project

DESCRIPTION

This command will create a project in the specify PATH, and a
.pyarmor_config will be created at the same time, which is
project configuration of JSON format.

If the option –type is set to auto, which is the default value,
the project type will set to pkg if the entry script is
__init__.py, otherwise to app.

The init command will set the properties disable_restrict_mode and
is_package of this project to 1 if the new project is configured
as pkg, otherwise they’re set to 0.

After project is created, use command config to change the project
settings.

EXAMPLES

	Create a project in the current path:

pyarmor init --entry foo.py

	Create a project in the build path obf:

pyarmor init --entry foo.py obf

	Create a project for package:

pyarmor init --entry __init__.py

	Create a project in the path obf, manage the scripts in the path
/path/to/src:

pyarmor init --src /path/to/src --entry foo.py obf

config

Update project settings.

SYNOPSIS:

pyarmor config <options> [PATH]

OPTIONS

	--name NAME

	Project name

	--title TITLE

	Project title

	--src SRC

	Project src

	--output OUTPUT

	Output path for obfuscated scripts

	--manifest TEMPLATE

	Manifest template string

	--entry SCRIPT

	Entry script of this project

	--is-package <0,1>

	Set project as package or not

	--disable-restrict-mode <0,1>

	Disable or enable restrict mode

	--obf-mod <0,1>

	Disable or enable to obfuscate module

	--obf-code <0,1>

	Disable or enable to obfuscate function

	--wrap-mode <0,1>

	Disable or enable to wrap mode

	--cross-protection <0,1>

	Disable or enable to insert cross protection code into entry script

	--runtime-path RPATH

	Set the path of runtime files in target machine

	--plugin NAME

	Insert extra code to entry script

DESCRIPTION

Run this command in project path to change project settings:

pyarmor config --option new-value

Or specify the project path at the end:

pyarmor config --option new-value /path/to/project

Option –manifest is comma-separated list of manifest template
command, same as MANIFEST.in of Python Distutils.

Option –entry is comma-separated list of entry scripts, relative to
src path of project.

EXAMPLES

	Change project name and title:

pyarmor config --name "project-1" --title "My PyArmor Project"

	Change project entries:

pyarmor config --entry foo.py,hello.py

	Exclude path build and dist, do not search .py file from these
paths:

pyarmor config --manifest "global-include *.py, prune build, prune dist"

	Obfuscate script with wrap mode off:

pyarmor config --wrap-mode 0

	Set plugin for entry script. The content of check_ntp_time.py will
be insert into entry script as building project:

pyarmor config --plugin check_ntp_time.py

	Clear all plugins:

pyarmor config --plugin clear

build

Build project, obfuscate all scripts in the project.

OPTIONS

	-B, --force

	Force to obfuscate all scripts

	-r, --only-runtime

	Generate extra runtime files only

	-n, --no-runtime

	DO NOT generate runtime files

	-O, --output OUTPUT

	Output path, override project configuration

	--platform NAME

	Distribute obfuscated scripts to other platform

DESCRIPTION

Run this command in project path:

pyarmor build

Or specify the project path at the end:

pyarmor build /path/to/project

EXAMPLES

	Only obfuscate the scripts which have been changed since last
build:

pyarmor build

	Force build all the scripts:

pyarmor build -B

	Generate runtime files only, do not try to obfuscate any script:

pyarmor build -r

	Obfuscate the scripts only, do not generate runtime files:

pyarmor build -n

	Save the obfuscated scripts to other path, it doesn’t change the
output path of project settings:

pyarmor build -B -O /path/to/other

	Build project in Macos and run obfuscated scripts in Ubuntu:

pyarmor download --list
pyarmor download linux_x86_64

pyarmor build -B --platform linux_x86_64

info

Show project information.

SYNOPSIS:

pyarmor info [PATH]

DESCRIPTION

Run this command in project path:

pyarmor info

Or specify the project path at the end:

pyarmor info /path/to/project

check

Check consistency of project.

SYNOPSIS:

pyarmor check [PATH]

DESCRIPTION

Run this command in project path:

pyarmor check

Or specify the project path at the end:

pyarmor check /path/to/project

banchmark

Check the performance of obfuscated scripts.

SYNOPSIS:

pyarmor benchmark <options>

OPTIONS:

	-m, --obf-mode <0,1>

	Whether to obfuscate the whole module

	-c, --obf-code <0,1>

	Whether to obfuscate each function

	-w, --wrap-mode <0,1>

	Whether to obfuscate each function with wrap mode

	--debug

	Do not remove test path

DESCRIPTION

This command will generate a test script, obfuscate it and run it,
then output the elapsed time to initialize, import obfuscated module,
run obfuscated functions etc.

EXAMPLES

	Test performance with default mode:

pyarmor benchmark

	Test performance with no wrap mode:

pyarmor benchmark --wrap-mode 0

	Check the test scripts which saved in the path .benchtest:

pyarmor benchmark --debug

register

Make registration code effect, backup and restore it.

SYNOPSIS:

pyarmor register <options> CODE

OPTIONS:

	-b, --backup

	Backup current registration code

	-r, --restore

	Restore license file from last backup

DESCRIPTION

Make registration code effect by this way:

pyarmor register CODE

Check it works:

pyarmor -v

It’s better to backup this code after everything is fine:

pyarmor register --backup

The code will be saved in the file ~/.pyarmor_config

Note

If something is wrong, PyArmor maybe could not start. In this case,
try to remove license.lic in the installed path of PyArmor, then
run pyarmor again.

download

List and download platform-dependent dynamic libraries.

SYNOPSIS:

pyarmor download <options> PLAT-ID

OPTIONS:

	--list PATTERN

	List available dynamic libraries in different platforms

	-O, --output NAME

	Save downloaded file to another path

DESCRIPTION

In some machines maybe PyArmor could not recognize the platform and
raise error. For example:

ERROR: Unsupport platform linux32/armv7l

In this case, check all the available prebuilt libraries:

pyarmor download --list

And download armv7 from this list:

pyarmor download --output linux32/armv7l armv7

Filter could be applied to list the platforms, for example:

pyarmor download --list linux32

Examples

Here are some examples.

Obfuscating and Packing PyQt Application

There is a tool easy-han based on PyQt. Here list the main files:

config.json

main.py
ui_main.py
readers/
 __init__.py
 msexcel.py

tests/
vnev/py36

Here the shell script used to pack this tool by PyArmor:

cd /path/to/src
pyarmor pack -e " --name easy-han --hidden-import comtypes --add-data 'config.json;.'" \
 -x " --exclude vnev;tests" -s "easy-han.spec" main.py

cd dist/easy-han
./easy-han

By option -e passing extra options to run PyInstaller, to be sure
these options work with PyInstaller:

cd /path/to/src
pyinstaller --name easy-han --hidden-import comtypes --add-data 'config.json;.' main.py

cd dist/easy-han
./easy-han

By option -x passing extra options to obfuscate the scripts, there
are many .py files in the path tests and vnev, but all of them
need not to be obfuscated. By passing option –exclude to exclude
them, to be sure these options work with command obfuscate:

cd /path/to/src
pyarmor obfuscate --exclude vnev;tests main.py

By option -s to specify the .spec filename, because PyInstaller
changes the default filename of .spec by option –name, so it tell
command pack the right filename.

When Things Go Wrong

Turn on debugging output to get more error information:

python -d pyarmor.py ...
PYTHONDEBUG=y pyarmor ...

Segment fault

In the following cases, obfuscated scripts will crash

	Running obfuscated script by the debug version Python

	Obfuscating scripts by Python 2.6 but running the obfuscated scripts by Python 2.7

Could not find _pytransform

Generally, the dynamic library _pytransform is in the same path of
obfuscated scripts. It may be:

	_pytransform.so in Linux

	_pytransform.dll in Windows

	_pytransform.dylib in MacOS

First check whether the file exists. If it exists:

	Check the permissions of dynamic library

If there is no execute permissions in Windows, it will complain:
[Error 5] Access is denied

	Check whether ctypes could load _pytransform:

from pytransform import _load_library
m = _load_library(path='/path/to/dist')

	Try to set the runtime path in the Bootstrap Code of entry
script:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/dist')

Still doesn’t work, report an issue [https://github.com/dashingsoft/pyarmor/issues/]

The license.lic generated doesn’t work

The key is that the capsule used to obfuscate scripts must be same as
the capsule used to generate licenses.

If obfuscate scripts by command pyarmor obfuscate, Global Capsule is used implicitly. If obfuscate scripts by command pyarmor
build, the project capsule is used.

When generating new licenses for obfuscated scripts, if run command
pyarmor licenses in project path, the project capsule is used
implicitly, otherwise Global Capsule.

The Global Capsule will be changed if the trial license file of
PyArmor is replaced with normal one, or it’s deleted occasionally
(which will be generated implicitly as running command pyarmor
obfuscate next time).

In any cases, generating new license file with the different capsule
will not work for the obfuscated scripts before. If the old capsule is
gone, one solution is to obfuscate these scripts by the new capsule
again.

NameError: name ‘__pyarmor__’ is not defined

No Bootstrap Code are executed before importing obfuscated
scripts.

When creating new process by Popen or Process in mod subprocess
or multiprocessing, to be sure that Bootstrap Code will be
called before importing any obfuscated code in sub-process. Otherwise
it will raise this exception.

Marshal loads failed when running xxx.py

	Check whether the version of Python to run obfuscated scripts is
same as the version of Python to obfuscate script

	Check whether the capsule is generated based on current license of
PyArmor. Try to move global capsule ~/.pyarmor_capsule.zip to any
other path, then obfuscate scripts again.

	Be sure the capsule used to generated the license file is same as
the capsule used to obfuscate the scripts. The filename of the
capsule will be shown in the console when the command is running.

_pytransform can not be loaded twice

When the function pyarmor_runtime is called twice, it will complaint
_pytransform can not be loaded twice

For example, if an obfuscated module includes the following lines:

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(....)

When importing this module from entry script, it will report this
error. The first 2 lines should be in the entry script only, not in
the other module.

This limitation is introduced from v5.1, to disable this check, just
edit pytransform.py and comment these lines in function
pyarmor_runtime:

if _pytransform is not None:
 raise PytransformError('_pytransform can not be loaded twice')

Note

This limitation has been removed from v5.3.5.

Check restrict mode failed

Use obfuscated scripts in wrong way, by default all the obfuscated
scripts can’t be changed any more.

Besides packing the obfuscated scripts will report this error
either. Do not pack the obfuscated scripts, but pack the plain scripts
directly.

For more information, refer to Restrict Mode

Protection Fault: unexpected xxx

Use obfuscated scripts in wrong way, by default, all the runtime files
can’t be changed any more. Do not touch the following files

	pytransform.py

	_pytransform.so/.dll/.dylib

For more information, refer to Special Handling of Entry Script

Warning: code object xxxx isn’t wrapped

It means this function isn’t been obfuscated, because it includes some
special instructions.

For example, there is 2-bytes instruction JMP 255, after the code
object is obfuscated, the operand is increased to 267, and the
instructions will be changed to:

EXTEND 1
JMP 11

In this case, it’s complex to obfuscate the code object with wrap
mode. So the code object is left as it’s, but all the other code
objects still are obfuscated.

In later version, it will be obfuscated with non wrap mode.

In current version add some unused code in this function so that the
operand isn’t the critical value may avoid this warning.

Error: Try to run unauthorized function

If there is any file license.lic or pytransform.key in the current
path, pyarmor maybe reports this error. One solution is to remove all
of that files, the other solution to upgrade PyArmor to v5.4.5 later.

Check license failed: Invalid input packet.

If print this error as running the obfuscated scripts, check if there
is any of license.lic or pytransform.key in the current path. To
be sure they’re generated for the obfuscated scripts. If not, rename
them or move them to other path.

Because the obfuscated scripts will first search the current path,
then search the path of runtime module pytransform.py to find the
file license.lic and pytransform.key. If they’re not generated for
the obfuscated script, this error will be reported.

License

The software is distributed as Free To Use But Restricted. Free trial
version never expires, the limitations are

	The maximum size of code object is 35728 bytes in trial version

	The scripts obfuscated by trial version are not private. It means
anyone could generate the license file which works for these
obfuscated scripts.

	Without permission the trial version may not be used for the Python
scripts of any commercial product.

About the license file of obfuscated scripts, refer to The License File for Obfuscated Script

A registration code is required to obfuscate big code object or
generate private obfuscated scripts.

There are 2 basic types of licenses issued for the software. These are:

	A natural person usage license for home users. The user purchases one
license to use the software on his own computer.

Home users may use their natural person usage license to obfuscate
all the python scripts which are property of the license owner, to
generate private license files for the obfuscated scripts and
distribute them and all the required files to any other machine or
device.

	A juridical person usage license for business users. The user
purchases one license to use the software for one product serials of
an organization.

Business users may use their juridical person usage license on all
computers and embedded devices to obfuscate all the python scripts
of this product serials, to generate private license files for these
obfuscated scripts and distribute them and all the required files to
any other machine and device.

Without permission of the software owner the license purchased for
one product serials should not be used for other product
serials. Business users should purchase new license for different
product serials.

Purchase

To buy a license, please visit the following url

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT[300871197]=1

A registration code will be sent to your immediately after payment is
completed successfully.

After you receive the email which includes registration code, run the
following command to make it effective:

pyarmor register CODE

Note that command register is introduced from PyArmor 5.3.3,
please upgrade the old version to the latest one, or directly replace
the content of license.lic in the PyArmor installed path with the
registration code only (no newline).

Check new license works by this command:

pyarmor --version

The result should show PyArmor Version X.Y.Z and registration code.

After new license takes effect, you need obfuscate the scripts again,
and a random Global Capsule will be generated implicitly when
you run command pyarmor obfuscate

The registration code is valid forever, it can be used permanently.

Support Platfroms

The core of PyArmor is written by C, the prebuilt dynamic libraries
include the common platforms and some embeded platforms.

Some of them are distributed with PyArmor package, refer to
Prebuilt Libraries Distributed with PyArmor.

Some of them are not, refer to All The Others Prebuilt Libraries For
PyArmor. In these platforms, in order to run pyarmor, first
download the corresponding prebuilt dynamic library, then put it in
the installed path of PyArmor package.

Contact jondy.zhao@gmail.com if you’d like to run PyArmor in other
platform.

Table-1. Prebuilt Libraries Distributed with PyArmor

	OS

	Arch

	Download

	Description

	Windows

	i686

	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/platforms/win32/_pytransform.dll]

	Cross compile by i686-pc-mingw32-gcc in cygwin

	Windows

	AMD64

	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/platforms/win_amd64/_pytransform.dll]

	Cross compile by x86_64-w64-mingw32-gcc in cygwin

	Linux

	i686

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/linux_i386/_pytransform.so]

	Built by GCC

	Linux

	x86_64

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/linux_x86_64/_pytransform.so]

	Built by GCC

	MacOSX

	x86_64, intel

	_pytransform.dylib [http://pyarmor.dashingsoft.com/downloads/platforms/macosx_x86_64/_pytransform.dylib]

	Built by CLang with MacOSX10.11

	Linux

	armv7

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/armv7/_pytransform.so]

	32-bit Armv7 Cortex-A, hard-float, little-endian

	Linux

	aarch64

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/armv8.64-bit/_pytransform.so]

	64-bit Armv8 Cortex-A, little-endian

Table-2. All The Others Prebuilt Libraries For PyArmor

	OS

	Arch

	Download

	Description

	Windows

	x86

	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/platforms/vs2015/x86/_pytransform.dll]

	Built by VS2015

	Windows

	x64

	_pytransform.dll [http://pyarmor.dashingsoft.com/downloads/platforms/vs2015/x64/_pytransform.dll]

	Built by VS2015

	Linux

	armv5

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/armv5/_pytransform.so]

	32-bit Armv5 (arm926ej-s)

	Linux

	aarch32

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/armv8.32-bit/_pytransform.so]

	32-bit Armv8 Cortex-A, hard-float, little-endian

	Linux

	ppc64le

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/ppc64le/_pytransform.so]

	For POWER8

	iOS

	arm64

	_pytransform.dylib [http://pyarmor.dashingsoft.com/downloads/platforms/ios.arm64/_pytransform.dylib]

	Built by CLang with iPhoneOS9.3.sdk

	FreeBSD

	x86_64

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/freebsd/_pytransform.so]

	Not support harddisk serial number

	Alpine Linux

	x86_64

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/alpine/_pytransform.so]

	Built with musl-1.1.21 for Docker

	Inel Quark

	i586

	_pytransform.so [http://pyarmor.dashingsoft.com/downloads/platforms/intel-quark/_pytransform.so]

	Cross compile by i586-poky-linux

Change Logs

5.4.6

	Add option –without-license for command pack. Sample usage refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#bundle-obfuscated-scripts-to-one-executable-file

	Add option –debug for command pack. If this option isn’t set, all the build files will be removed after packing.

5.4.5

	Enhancement: In Linux support to get the serial number of NVME harddisk

	Fix issue: After run command register, pyarmor could not generate capsule if there is license.lic in the current path

5.4.4

	Fix issue: In Linux could not get the serial number of SCSI harddisk

	Fix issuse: In Windows the serial number is not right if the leading character is alpha number

5.4.3

	Add function get_license_code in runtime module pytransform, which mainly used in plugin to extend license type.
Refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

	Fix issue: the command download always shows trial version

5.4.2

	Option –exclude can use multiple times in command obfuscate

	Exclude build path automatically in command pack

5.4.1

	New feature: do not obfuscate functions which name starts with lambda_

	Fix issue: it will raise Protection Fault as packing obfuscated scripts to one file

5.4.0

	Do not obfuscate lambda functions by default

	Fix issue: local variable platname referenced before assignment

5.3.13

	Add option –url for command download

5.3.12

	Add integrity checks for the downloaded binaries (#85)

5.3.11

	Fix issue: get wrong harddisk’s serial number for some special cases in Windows

5.3.10

	Query harddisk’s serial number without administrator in Windows

5.3.9

	Remove the leading and trailing whitespace of harddisk’s serial number

5.3.8

	Fix non-ascii path issue in Windows

5.3.7

	Fix bug: the bootstrap code isn’t inserted correctly if the path of entry script is absolute path.

5.3.6

	Fix bug: protection code can’t find the correct dynamic library if distributing obfuscated scripts to other platforms.

	Document how to distribute obfuscated scripts to other platforms
https://pyarmor.readthedocs.io/en/latest/advanced.html#distributing-obfuscated-scripts-to-other-platform

5.3.5

	The bootstrap code could run many times in same Python interpreter.

	Remove extra . from the bootstrap code of __init__.py as building project without runtime files.

5.3.4

	Add command download used to download platform-dependent dynamic libraries

	Keep shell line for obfuscated entry scripts if there is first line starts with #!

	Fix issue: if entry script is not in the src path, bootstrap code will not be inserted.

5.3.3

	Refine benchmark command

	Document the performance of obfuscated scripts https://pyarmor.readthedocs.io/en/latest/performance.html

	Add command register to take registration code effects

	Rename trial license file license.lic to license.tri

5.3.2

	Fix bug: if there is only one comment line in the script it will raise IndexError as obfuscating this script.

5.3.1

	Refine pack command, and make output clear.

	Document plugin usage to extend license type for obufscated scripts. Refer to
https://pyarmor.readthedocs.io/en/latest/advanced.html#using-plugin-to-extend-license-type

5.3.0

	In the trial version of PyArmor, it will raise error as obfuscating the code object which size is greater than 32768 bytes.

	Add option –plugin in command obfuscate

	Add property plugins for Project, and add option –plugin in command config

	Change default build path for command pack, and do not remove it after command finished.

5.2.9

	Fix segmentation fault issue for python3.5 and before: run too big obfuscated code object (>65536 bytes) will crash (#67)

	Fix issue: missing bootstrap code for command pack (#68)

	Fix issue: the output script is same as original script if obfuscating scripts with option –exact

5.2.8

	Fix issue: pyarmor -v complains not enough arguments for format string

5.2.7

	In command obfuscate add new options –exclude, –exact,
–no-bootstrap, –no-cross-protection.

	In command obfuscate deprecate the options –src, –entry,
–cross-protection.

	In command licenses deprecate the option –bind-file.

5.2.6

	Fix issue: raise codec exception as obfuscating the script of utf-8 with BOM

	Change the default path to user home for command capsule

	Disable restrict mode by default as obfuscating special script __init__.py

	Refine log message

5.2.5

	Fix issue: raise IndexError if output path is ‘.’ as building project

	For Python3 convert error message from bytes to string as checking license failed

	Refine version information

5.2.4

	Fix arm64 issue: verify rsa key failed when running the obufscated scripts(#63)

	Support ios (arm64) and ppc64le for linux

5.2.3

	Refine error message when checking license failed

	Fix issue: protection code raises ImportError in the package file __init.py__

5.2.2

	Improve the security of dynamic library.

5.2.1

	Fix issue: in restrict mode the bootstrap code in __init__.py will raise exception.

	Add option –cross-protection in command obfuscate

5.2.0

	Use global capsule as default capsule for project, other than creating new one for each project

	Add option –obf-code, –obf-mod, –wrap-mode, –cross-protection in command config

	Add new attributes for project: obf_code, obf_mod, wrap_mode, cross_protection

	Deprecrated project attributes obf_code_mode, obf_module_mode, use obf_code, obf_mod, wrap_mode instead

	Change the behaviours of restrict mode, refer to https://pyarmor.readthedocs.io/en/latest/advanced.html#restrict-mode

	Change option –restrict in command obfuscate and licenses

	Remove option –no-restrict in command obfuscate

	Remove option –clone in command init

5.1.2

	Improve the security of PyArmor self

5.1.1

	Refine the procedure of encrypt script

	Reform module pytransform.py

	Fix issue: it will raise exception if no entry script when obfuscating scripts

	Fix issue: ‘gbk’ codec can’t decode byte 0xa1 in position 28 (#51)

	Add option –upgrade for command capsule

	Merge runtime files pyshield.key, pyshield.lic and product.key into pytransform.key

Upgrade notes

The capsule created in this version will include a new file
pytransform.key which is a replacement for 3 old runtime files:
pyshield.key, pyshield.lic and product.key.

The old capsule which created in the earlier version still works, it
stills use the old runtime files. But it’s recommended to upgrade the
old capsule to new version. Just run this command:

pyarmor capsule --upgrade

All the license files generated for obfuscated scripts by old capsule
still work, but all the scripts need to be obfuscated again to take
new capsule effects.

5.1.0

	Add extra code to protect dynamic library _pytransform when obfuscating entry script

	Fix compling error when obfuscating scripts in windows for Python 26/30/31 (newline issue)

5.0.5

	Refine protect_pytransform to improve security, refer to https://pyarmor.readthedocs.io/en/latest/security.html

5.0.4

	Fix get_expired_days issue, remove decorator dllmethod

	Refine output message of pyarmor -v

5.0.3

	Add option -q, –silent, suppress all normal output when running any PyArmor command

	Refine runtime error message, make it clear and more helpful

	Add new function get_hd_info in module pytransform to get hardware information

	Remove function get_hd_sn from module pytransform, use get_hd_info instead

	Remove useless function version_info, get_trial_days from module pytransform

	Remove attribute lib_filename from module pytransform, use _pytransform._name instead

	Add document https://pyarmor.readthedocs.io/en/latest/pytransform.html

	Refine document https://pyarmor.readthedocs.io/en/latest/security.html

5.0.2

	Export lib_filename in the module pytransform in order to protect
dynamic library _pytransform. Refer to

https://pyarmor.readthedocs.io/en/latest/security.html

5.0.1

Thanks to GNU lightning, from this version, the core routines are
protected by JIT technicals. That is to say, there is no binary code
in static file for core routines, they’re generated in runtime.

Besides, the pre-built dynamic library for linux arm32/64 are packed
into the source package.

Fixed issues:

	The module multiprocessing starts new process failed in obfuscated script:

AttributeError: ‘__main__’ object has no attribute ‘f’

4.6.3

	Fix backslash issue when running pack command with PyInstaller

	When PyArmor fails, if sys.flags.debug is not set, only print error message, no traceback printed

4.6.2

	Add option –options for command pack

	For Python 3, there is no new line in the output when pack command fails

4.6.1

	Fix license issue in 64-bit embedded platform

4.6.0

	Fix crash issue for special code object in Python 3.6

4.5.5

	Fix stack overflow issue

4.5.4

	Refine platform name to search dynamic library _pytransform

4.5.3

	Print the exact message when checking license failed to run obfuscated scripts.

4.5.2

	Add documentation https://pyarmor.readthedocs.io/en/latest/

	Exclude dist, build folder when executing pyarmor obfuscate –recursive

4.5.1

	Fix #41: can not find dynamic library _pytransform

4.5.0

	Add anti-debug code for dynamic library _pytransform

4.4.2

	Change default capsule to user home other than the source path of pyarmor

4.4.2

This patch mainly changes webui, make it simple more:

	WebUI : remove source field in tab Obfuscate, and remove ipv4 field in tab Licenses

	WebUI Packer: remove setup script, add output path, only support PyInstaller

4.4.1

	Support Py2Installer by a simple way

	For command obfuscate, get default src and entry from first argument, –src is not required.

	Set no restrict mode as default for new project and command obfuscate, licenses

4.4.0

	Pack obfuscated scripts by command pack

In this version, introduces a new command pack used to pack
obfuscated scripts with py2exe and cx_Freeze. Once the setup
script of py2exe or cx_Freeze can bundle clear python scripts,
pack could pack obfuscated scripts by single command: pyarmor
pack –type cx_Freeze /path/to/src/main.py

	Pack obfuscated scripts by WebUI packer

WebUI is well reformed, simple and easy to use.

http://pyarmor.dashingsoft.com/demo/index.html

4.3.4

	Fix start pyarmor issue for pip install in Python 2

4.3.3

	Fix issue: missing file in wheel

4.3.2

	Fix pip install issue in MacOS

	Refine sample scripts to make workaround for py2exe/cx_Freeze simple

4.3.1

	Fix typos in examples

	Fix bugs in sample scripts

4.3.0

In this version, there are three significant changes:

[Simplified WebUI](http://pyarmor.dashingsoft.com/demo/index.html)
[Clear Examples](src/examples/README.md), quickly understand the most features of Pyarmor
[Sample Shell Scripts](src/examples), template scripts to obfuscate python source files

	Simply webui, easy to use, only input one filed to obfuscate python scripts

	The runtime files will be always saved in the same path with obfuscated scripts

	Add shell scripts obfuscate-app, obfuscate-pkg,
build-with-project, build-for-2exe in src/examples, so that
users can quickly obfuscate their python scripts by these template
scripts.

	If entry script is __init__.py, change the first line of bootstrap
code from pytransform import pyarmor runtime to from .pytransform
import pyarmor runtime

	Rewrite examples/README.md, make it clear and easy to understand

	Do not generate entry scripts if only runtime files are generated

	Remove choice package for option –type in command init, only pkg reserved.

4.2.3

	Fix pyarmor-webui can not start issue

	Fix runtime-path issue in webui

	Rename platform name macosx_intel to macosx_x86_64 (#36)

4.2.2

	Fix webui import error.

4.2.1

	Add option –recursive for command obfuscate

4.1.4

	Rewrite project long description.

4.1.3

	Fix Python3 issue for get_license_info

4.1.2

	Add function get_license_info in pytransform.py to show license information

4.1.1

	Fix import main from pyarmor issue

4.0.3

	Add command capsule

	Find default capsule in the current path other than –src in command obfuscate

	Fix pip install issue #30

4.0.2

	Rename pyarmor.py to pyarmor-depreted.py

	Rename pyarmor2.py to pyarmor.py

	Add option –capsule, -disable-restrict-mode and –output for command licenses

4.0.1

	Add option –capsule for command init, config and obfuscate

	Deprecate option –clone for command init, use –capsule instead

	Fix sys.settrace and sys.setprofile issues for auto-wrap mode

3.9.9

	Fix segmentation fault issues for asyncio, typing modules

3.9.8

	Add documentation for examples (examples/README.md)

3.9.7

	Fix windows 10 issue: access violation reading 0x000001ED00000000

3.9.6

	Fix the generated license bind to fixed machine in webui is not correct

	Fix extra output path issue in webui

3.9.5

	Show registration code when printing version information

3.9.4

	Rewrite long description of package in pypi

3.9.3

	Fix issue: __file__ is not really path in main code of module when import obfuscated module

3.9.2

	Replace option –disable-restrict-mode with –no-restrict in command obfuscate

	Add option –title in command config

	Change the output path of entry scripts when entry scripts belong to package

	Refine document user-guide.md and mechanism.md

3.9.1

	Add option –type for command init

	Refine document user-guide.md and mechanism.md

3.9.0

This version introduces a new way auto-wrap to protect python code when it’s imported by outer scripts.

Refer to [Mechanism Without Restrict Mode](src/mechanism.md#mechanism-without-restrict-mode)

	Add new mode wrap for –obf-code-mode

	Remove func.__refcalls__ in __wraparmor__

	Add new project attribute is_package

	Add option –is-package in command config

	Add option –disable-restrict-mode in command obfuscate

	Reset build_time when project configuration is changed

	Change output path when is_package is set in command build

	Change default value of project when find __init__.py in comand init

	Project attribute entry supports absolute path

3.8.10

	Fix shared code object issue in __wraparmor__

3.8.9

	Clear frame as long as tb is not Py_None when call __wraparmor__

	Generator will not be obfucated in __wraparmor__

3.8.8

	Fix bug: the frame.f_locals still can be accessed in callback function

3.8.7

	The frame.f_locals of wrapper and wrapped function will return an empty dictionary once __wraparmor__ is called.

3.8.6

	The frame.f_locals of wrapper and wrapped function return an empty dictionary, all the other frames still return original value.

3.8.5

	The frame.f_locals of all frames will always return an empty dictionary to protect runtime data.

	Add extra argument tb when call __wraparmor__ in decorator wraparmor, pass None if no exception.

3.8.4

	Do not touch frame.f_locals when raise exception, let decorator wraparmor to control everything.

3.8.3

	Fix issue: option –disable-restrict-mode doesn’t work in command licenses

	Remove freevar func from frame.f_locals when raise exception in decorator wraparmor

3.8.2

	Change module filename to <frozen modname> in traceback, set attribute __file__ to real filename when running obfuscated scripts.

3.8.1

	Try to access original func_code out of decorator wraparmor is forbidden.

3.8.0

	Add option –output for command build, it will override the value in project configuration file.

	Fix issue: defalut project output path isn’t relative to project path.

	Remove extra file “product.key” after obfuscating scripts.

3.7.5

	Remove dotted name from filename in traceback, if it’s not a package.

3.7.4

	Strip __init__ from filename in traceback, replace it with package name.

3.7.3

	Remove brackets from filename in traceback, and add dotted prefix.

3.7.2

	Change filename in traceback to <frozen [modname]>, other than original filename

3.7.1

	Fix issue #12: module attribute __file__ is filename in build machine other than filename in target machine.

	Builtins function __wraparmor__ only can be used in the decorator wraparmor

3.7.0

	Fix issue #11: use decorator “wraparmor” to obfuscate func_code as soon as function returns.

	Document usage of decorator “wraparmor”, refer to src/user-guide.md#use-decorator-to-protect-code-objects-when-disable-restrict-mode

3.6.2

	Fix issue #8 (Linux): option –manifest broken in shell script

3.6.1

	Add option “Restrict Mode” in web ui

	Document restrict mode in details (user-guide.md)

3.6.0

	Introduce restrict mode to avoid obfuscated scripts observed from no obfuscated scripts

	Add option –disable-restrict-mode for command “config”

3.5.1

	Support pip install pyarmor

3.5.0

	Fix Python3.6 issue: can not run obfuscated scripts, because it uses a 16-bit wordcode instead of bytecode

	Fix Python3.7 issue: it adds a flag in pyc header

	Fix option –obf-module-mode=none failed

	Add option –clone for command “init”

	Generate runtime files to separate path “runtimes” when project runtime-path is set

	Add advanced usages in user-guide

3.4.3

	Fix issue: raise exception when project entry isn’t obfuscated

3.4.2

	Add webui to manage project

3.4.1

	Fix README.rst format error.

	Add title attribute to project

	Print new command help when option is -h, –help

3.4.0

Pyarmor v3.4 introduces a group new commands. For a simple package,
use command obfuscate to obfuscate scripts directly. For
complicated package, use Project to manage obfuscated scripts.

Project includes 2 files, one configure file and one project
capsule. Use manifest template string, same as MANIFEST.in of Python
Distutils, to specify the files to be obfuscated.

To create a project, use command init, use command info to
show project information. config to update project settings, and
build to obfuscate the scripts in the project.

Other commands, benchmark to metric performance, hdinfo to
show hardware information, so that command licenses can generate
license bind to fixed machine.

All the old commands capsule, encrypt, license are
deprecated, and will be removed from v4.

A new document src/user-guide.md is written for
this new version.

3.3.1

	Remove unused files in distribute package

3.3.0

In this version, new obfuscate mode 7 and 8 are introduced. The main
difference is that obfuscated script now is a normal python file (.py)
other than compiled script (.pyc), so it can be used as common way.

Refer to https://github.com/dashingsoft/pyarmor/blob/v3.3.0/src/mechanism.md

	Introduce new mode: 7, 8

	Change default mode from 3 to 8

	Change benchmark.py to test new mode

	Update webapp and tutorial

	Update usage

	Fix issue of py2exe, now py2exe can work with python scripts obfuscated by pyarmor

	Fix issue of odoo, now odoo can load python modules obfuscated by pyarmor

3.2.1

	Fix issue: the traceback of an exception contains the name “<pytransform>” instead of the correct module name

	Fix issue: All the constant, co_names include function name, variable name etc still are in clear text.
Refer to https://github.com/dashingsoft/pyarmor/issues/5

3.2.0

From this version, a new obfuscation mode is introduced. By this way,
no import hooker, no setprofile, no settrace required. The performance
of running or importing obfuscation python scripts has been remarkably
improved. It’s significant for Pyarmor.

	Use this new mode as default way to obfuscate python scripts.

	Add new script “benchmark.py” to check performance in target machine: python benchmark.py

	Change option “–bind-disk” in command “license”, now it must be have a value

3.1.7

	Add option “–bind-mac”, “–bind-ip”, “–bind-domain” for command “license”

	Command “hdinfo” show more information(serial number of hdd, mac address, ip address, domain name)

	Fix the issue of dev name of hdd for Banana Pi

3.1.6

	Fix serial number of harddisk doesn’t work in mac osx.

3.1.5

	Support MACOS

3.1.4

	Fix issue: load _pytransfrom failed in linux x86_64 by subprocess.Popen

	Fix typo in error messge when load _pytransfrom failed.

3.1.3

A web gui interface is introduced as Pyarmor WebApp， and support MANIFEST.in

	In encrypt command, save encrypted scripts with same file structure of source.

	Add a web gui interface for pyarmor.

	Support MANIFEST.in to list files for command encrypt

	Add option –manifest, file list will be written here

	DO NOT support absolute path in file list for command encrypt

	Option –main support format “NAME:ALIAS.py”

3.1.2

	Refine decrypted mechanism to improve performance

	Fix unknown opcode problem in recursion call

	Fix wrapper scripts generated by -m in command ‘encrypt’ doesn’t work

	Raise ImportError other than PytransformError when import encrypted module failed

3.1.1

In this version, introduce 2 extra encrypt modes to improve
performance of encrypted scripts.

	Fix issue when import encrypted package

	Add encrypted mode 2 and 3 to improve performance

	Refine module pyimcore to improve performance

3.0.1

It’s a milestone for Pyarmor, from this version, use ctypes import
dynamic library of core functions, other than by python extensions
which need to be built with every python version.

Besides, in this version, a big change which make Pyarmor could avoid
soure script got by c debugger.

	Use ctypes load core library other than python extentions which need
built for each python version.

	“__main__” block not running in encrypted script.

	Avoid source code got by c debugger.

	Change default outoupt path to “build” in command “encrypt”

	Change option “–bind” to “–bind-disk” in command “license”

	Document usages in details

2.6.1

	Fix encrypted scripts don’t work in multi-thread framework (Django).

2.5.5

	Add option ‘-i’ for command ‘encrypt’ so that the encrypted scripts will be saved in the original path.

2.5.4

	Verbose tracelog when checking license in trace mode.

	In license command, change default output filename to “license.lic.txt”.

	Read bind file when generate license in binary mode other than text mode.

2.5.3

	Fix problem when script has line “from __future__ import with_statement”

	Fix error when running pyarmor by 32bit python on the 64bits Windows.

	(Experimental)Support darwin_15-x86_64 platform by adding extensions/pytransform-2.3.3.darwin_15.x86_64-py2.7.so

2.5.2

	License file can mix expire-date with fix file or fix key.

	Fix log error: not enough arguments for format string

2.5.1

	License file can bind to ssh private key file or any other fixed file.

2.4.1

	Change default extension “.pyx” to “.pye”, because it confilcted with CPython.

	Custom the extension of encrypted scripts by os environment variable: PYARMOR_EXTRA_CHAR

	Block the hole by which to get bytescode of functions.

2.3.4

	The trial license will never be expired (But in trial version, the
key used to encrypt scripts is fixed).

2.3.3

	Refine the document

2.3.2

	Fix error data in examples of wizard

2.3.1

	Implement Run function in the GUI wizard

	Make license works in trial version

2.2.1

	Add a GUI wizard

	Add examples to show how to use pyarmor

2.1.2

	Fix syntax-error when run/import encrypted scripts in linux x86_64

2.1.1

	Support armv6

2.0.1

	Add option ‘–path’ for command ‘encrypt’

	Support script list in the file for command ‘encrypt’

	Fix issue to encrypt an empty file result in pytransform crash

1.7.7

	Add option ‘–expired-date’ for command ‘license’

	Fix undefined ‘tfm_desc’ for arm-linux

	Enhance security level of scripts

1.7.6

	Print exactaly message when pyarmor couldn’t load extension
“pytransform”

	Fix problem “version ‘GLIBC_2.14’ not found”

	Generate “license.lic” which could be bind to fixed machine.

1.7.5

	Add missing extensions for linux x86_64.

1.7.4

	Add command “licene” to generate more “license.lic” by project
capsule.

1.7.3

	Add information for using registration code

1.7.2

	Add option –with-extension to support cross-platform publish.

	Implement command “capsule” and add option –with-capsule so that we
can encrypt scripts with same capsule.

	Remove command “convert” and option “-K/–key”

1.7.1

	Encrypt pyshield.lic when distributing source code.

1.7.0

	Enhance encrypt algorithm to protect source code.

	Developer can use custom key/iv to encrypt source code

	Compiled scripts (.pyc, .pyo) could be encrypted by pyshield

	Extension modules (.dll, .so, .pyd) could be encrypted by pyshield

Index

 G
 | P

G

 	
 	get_expired_days() (built-in function)

 	get_hd_info() (built-in function)

 	
 	get_license_code() (built-in function)

 	get_license_info() (built-in function)

P

 	
 	PytransformError

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 PyArmor’s Documentation

 		
 Installation

 		
 Verifying the installation

 		
 Installed commands

 		
 Using PyArmor

 		
 Obfuscating Python Scripts

 		
 Distributing Obfuscated Scripts

 		
 Generating License For Obfuscated Scripts

 		
 Extending License Type

 		
 Obfuscating Single Module

 		
 Obfuscating Whole Package

 		
 Packing Obfuscated Scripts

 		
 Runtime Module pytransform

 		
 Contents

 		
 Examples

 		
 The Security of PyArmor

 		
 Cross Protection for _pytransform

 		
 The Performance of Obfuscated Scripts

 		
 Understanding Obfuscated Scripts

 		
 Global Capsule

 		
 Obfuscated Scripts

 		
 Bootstrap Code

 		
 Runtime Files

 		
 The License File for Obfuscated Script

 		
 Key Points to Use Obfuscated Scripts

 		
 Running Obfuscated Scripts

 		
 Search path for license.lic and pytransform.key

 		
 Two types of license.lic

 		
 How PyArmor Does It

 		
 How to Obfuscate Python Scripts

 		
 How to Run Obfuscated Script

 		
 Special Handling of Entry Script

 		
 How To Pack Obfuscated Scripts

 		
 Work with PyInstaller

 		
 Work with py2exe

 		
 Work with cx_Freeze 5

 		
 Using Project

 		
 Managing Obfuscated Scripts With Project

 		
 Obfuscating Scripts With Different Modes

 		
 Project Configuration File

 		
 The Differences of Obfuscated Scripts

 		
 Advanced Topics

 		
 Obfuscating Many Packages

 		
 Distributing Obfuscated Scripts To Other Platform

 		
 Obfuscating Scripts By Other Version Of Python

 		
 Obfuscating Python Scripts In Different Modes

 		
 Obfuscating Code Mode

 		
 Wrap Mode

 		
 Obfuscating module Mode

 		
 Restrict Mode

 		
 Using Plugin to Extend License Type

 		
 Bundle Obfuscated Scripts To One Executable File

 		
 Man Page

 		
 obfuscate

 		
 licenses

 		
 pack

 		
 hdinfo

 		
 init

 		
 config

 		
 build

 		
 info

 		
 check

 		
 banchmark

 		
 register

 		
 download

 		
 Examples

 		
 Obfuscating and Packing PyQt Application

 		
 When Things Go Wrong

 		
 Segment fault

 		
 Could not find _pytransform

 		
 The license.lic generated doesn’t work

 		
 NameError: name ‘__pyarmor__’ is not defined

 		
 Marshal loads failed when running xxx.py

 		
 _pytransform can not be loaded twice

 		
 Check restrict mode failed

 		
 Protection Fault: unexpected xxx

 		
 Warning: code object xxxx isn’t wrapped

 		
 Error: Try to run unauthorized function

 		
 Check license failed: Invalid input packet.

 		
 License

 		
 Purchase

 		
 Support Platfroms

 		
 Change Logs

 		
 5.4.6

 		
 5.4.5

 		
 5.4.4

 		
 5.4.3

 		
 5.4.2

 		
 5.4.1

 		
 5.4.0

 		
 5.3.13

 		
 5.3.12

 		
 5.3.11

 		
 5.3.10

 		
 5.3.9

 		
 5.3.8

 		
 5.3.7

 		
 5.3.6

 		
 5.3.5

 		
 5.3.4

 		
 5.3.3

 		
 5.3.2

 		
 5.3.1

 		
 5.3.0

 		
 5.2.9

 		
 5.2.8

 		
 5.2.7

 		
 5.2.6

 		
 5.2.5

 		
 5.2.4

 		
 5.2.3

 		
 5.2.2

 		
 5.2.1

 		
 5.2.0

 		
 5.1.2

 		
 5.1.1

 		
 5.1.0

 		
 5.0.5

 		
 5.0.4

 		
 5.0.3

 		
 5.0.2

 		
 5.0.1

 		
 4.6.3

 		
 4.6.2

 		
 4.6.1

 		
 4.6.0

 		
 4.5.5

 		
 4.5.4

 		
 4.5.3

 		
 4.5.2

 		
 4.5.1

 		
 4.5.0

 		
 4.4.2

 		
 4.4.2

 		
 4.4.1

 		
 4.4.0

 		
 4.3.4

 		
 4.3.3

 		
 4.3.2

 		
 4.3.1

 		
 4.3.0

 		
 4.2.3

 		
 4.2.2

 		
 4.2.1

 		
 4.1.4

 		
 4.1.3

 		
 4.1.2

 		
 4.1.1

 		
 4.0.3

 		
 4.0.2

 		
 4.0.1

 		
 3.9.9

 		
 3.9.8

 		
 3.9.7

 		
 3.9.6

 		
 3.9.5

 		
 3.9.4

 		
 3.9.3

 		
 3.9.2

 		
 3.9.1

 		
 3.9.0

 		
 3.8.10

 		
 3.8.9

 		
 3.8.8

 		
 3.8.7

 		
 3.8.6

 		
 3.8.5

 		
 3.8.4

 		
 3.8.3

 		
 3.8.2

 		
 3.8.1

 		
 3.8.0

 		
 3.7.5

 		
 3.7.4

 		
 3.7.3

 		
 3.7.2

 		
 3.7.1

 		
 3.7.0

 		
 3.6.2

 		
 3.6.1

 		
 3.6.0

 		
 3.5.1

 		
 3.5.0

 		
 3.4.3

 		
 3.4.2

 		
 3.4.1

 		
 3.4.0

 		
 3.3.1

 		
 3.3.0

 		
 3.2.1

 		
 3.2.0

 		
 3.1.7

 		
 3.1.6

 		
 3.1.5

 		
 3.1.4

 		
 3.1.3

 		
 3.1.2

 		
 3.1.1

 		
 3.0.1

 		
 2.6.1

 		
 2.5.5

 		
 2.5.4

 		
 2.5.3

 		
 2.5.2

 		
 2.5.1

 		
 2.4.1

 		
 2.3.4

 		
 2.3.3

 		
 2.3.2

 		
 2.3.1

 		
 2.2.1

 		
 2.1.2

 		
 2.1.1

 		
 2.0.1

 		
 1.7.7

 		
 1.7.6

 		
 1.7.5

 		
 1.7.4

 		
 1.7.3

 		
 1.7.2

 		
 1.7.1

 		
 1.7.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

