
PyArmor Documentation
Release 5.1.1

Jondy Zhao

Feb 15, 2019

Contents

1 Installation 3
1.1 Verifying the installation . 3
1.2 Installed commands . 3

2 Using PyArmor 5
2.1 Obfuscating Python Scripts . 5
2.2 Distributing Obfuscated Scripts . 6
2.3 Generating License For Obfuscated Scripts . 6
2.4 Extending License Type . 7
2.5 Packing Obfuscated Scripts . 7

3 Runtime Module pytransform 9
3.1 Contents . 9
3.2 Examples . 10

4 The Security of PyArmor 11
4.1 Cross Protection for _pytransform . 11

5 Understanding Obfuscated Scripts 15
5.1 Global Capsule . 15
5.2 Obfuscated Scripts . 15
5.3 Bootstrap Code . 16
5.4 Runtime Files . 16
5.5 The license.lic . 16
5.6 Running Obfuscated Scripts . 16
5.7 Key Points to Use Obfuscated Scripts . 17
5.8 Two types of license.lic . 17

6 How PyArmor Does It 19
6.1 How to Obfuscate Python Scripts . 19
6.2 How to Run Obfuscated Script . 20
6.3 Special Handling of Entry Script . 22

7 How To Pack Obfuscated Scripts 25
7.1 Work with PyInstaller . 25
7.2 Work with py2exe . 26
7.3 Work with cx_Freeze 5 . 27

i

8 Using Project 29
8.1 Managing Obfuscated Scripts With Project . 29
8.2 Obfuscating Scripts With Different Modes . 30
8.3 Project Configuration File . 30

9 The Differences of Obfuscated Scripts 35

10 Advanced Topics 37
10.1 Obfuscating Python Scripts In Different Modes . 37
10.2 Restrict Mode . 39

11 Man Page 41
11.1 obfuscate . 41
11.2 licenses . 42
11.3 pack . 42
11.4 hdinfo . 42

12 When Things Go Wrong 43
12.1 Segment fault . 43
12.2 Could not find _pytransform . 43
12.3 The license.lic generated doesn’t work . 44
12.4 NameError: name ‘__pyarmor__’ is not defined . 44
12.5 Marshal loads failed when running xxx.py . 44
12.6 _pytransform can not be loaded twice . 44
12.7 Check restrict mode failed . 45

13 License 47
13.1 Purchase . 47

14 Indices and tables 49

ii

PyArmor Documentation, Release 5.1.1

Version PyArmor 5.1

Homepage http://pyarmor.dashingsoft.com/

Contact jondy.zhao@gmail.com

Authors Jondy Zhao

Copyright This document has been placed in the public domain.

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts. It protects Python scripts by the following ways:

• Obfuscate code object to protect constants and literal strings.

• Obfuscate co_code of each function (code object) in runtime.

• Clear f_locals of frame as soon as code object completed execution.

• Verify the license file of obfuscated scripts while running it.

PyArmor supports Python 2.6, 2.7 and Python 3.

PyArmor is tested against Windows, Mac OS X, and Linux.

PyArmor has been used successfully with FreeBSD and embedded platform such as Raspberry Pi, Banana
Pi, Orange Pi, TS-4600 / TS-7600 etc. but is not fullly tested against them.

Contents:

Contents 1

http://pyarmor.dashingsoft.com/
mailto:jondy.zhao@gmail.com

PyArmor Documentation, Release 5.1.1

2 Contents

CHAPTER 1

Installation

PyArmor is a normal Python package. You can download the archive from PyPi, but it is easier to install using pip
where is is available, for example:

pip install pyarmor

or upgrade to a newer version:

pip install --upgrade pyarmor

1.1 Verifying the installation

On all platforms, the command pyarmor should now exist on the execution path. To verify this, enter the command:

pyarmor --version

The result should show PyArmor Version X.Y.Z or PyArmor Trial Version X.Y.Z.

If the command is not found, make sure the execution path includes the proper directory.

1.2 Installed commands

The complete installation places these commands on the execution path:

• pyarmor is the main command. See Using PyArmor.

• pyarmor-webui is used to open a simple web ui of PyArmor.

If you do not perform a complete installation (installing via pip), these commands will not be installed as commands.
However, you can still execute all the functions documented below by running Python scripts found in the distribution
folder. The equivalent of the pyarmor command is pyarmor-folder/pyarmor.py, and of pyarmor-webui
is pyarmor-folder/pyarmor-webui.py.

3

https://pypi.python.org/pypi/pyarmor/
http://www.pip-installer.org/

PyArmor Documentation, Release 5.1.1

4 Chapter 1. Installation

CHAPTER 2

Using PyArmor

The syntax of the pyarmor command is:

pyarmor [command] [options]

2.1 Obfuscating Python Scripts

Use command obfuscate to obfuscate python scripts. In the most simple case, set the current directory to the
location of your program myscript.py and execute:

pyarmor obfuscate myscript.py

PyArmor obfuscates myscript.py and all the *.py in the same folder:

• Create .pyarmor_capsule.zip in the HOME folder if it doesn’t exists.

• Creates a folder dist in the same folder as the script if it does not exist.

• Writes the obfuscated myscript.py in the dist folder.

• Writes all the obfuscated *.py in the same folder as the script in the dist folder.

• Copy runtime files used to run obfuscated scripts to the dist folder.

In the dist folder you find the obfuscated scripts you distribute to your users:

myscript.py

_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.py
pytransform.key
license.lic

The rest files called Runtime Files, all of them are required to run the obfuscated script.

Normally you name one script on the command line. It’s entry script. The content of myscript.py would be like
this:

5

PyArmor Documentation, Release 5.1.1

from pytransfrom import pyarmor_runtime
pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x06\x0f...')

The first 2 lines called Bootstrap Code, are only in the entry script. They must be run before using any obfuscated
file. For all the other obfuscated *.py, there is only last line:

__pyarmor__(__name__, __file__, b'\x0a\x02...')

Run the obfuscated script:

cd dist
python myscript.py

By default, only the *.py in the same path as the entry script are obfuscated. To obfuscate all the *.py in the
sub-folder recursively, execute this command:

pyarmor obfuscate --recursive myscript.py

2.2 Distributing Obfuscated Scripts

Except the obfuscated scripts, all the Runtime Files need to be distributed to the end user.

About the security of obfuscated scripts, refer to The Security of PyArmor

2.3 Generating License For Obfuscated Scripts

Use command licenses to generate new license.lic for obfuscated scripts.

By default there is dist/license.lic generated by command obfuscate. It allows obfuscated scripts run in
any machine and never expired.

Generate an expired license for obfuscated script:

pyarmor licenses --expired 2019-01-01 code-001

PyArmor generates new license file:

• Read data from .pyarmor_capsule.zip in the HOME folder

• Create license.lic in the licenses/code-001 folder

• Create license.lic.txt in the licenses/code-001 folder

Overwrite default license with new one:

cp licenses/code-001/license.lic dist/

Run obfuscated script with new license, It will report error after Jan. 1, 2019:

cd dist
python myscript.py

Generate license to bind obfuscated scripts to fixed machine, first get hardware information:

6 Chapter 2. Using PyArmor

PyArmor Documentation, Release 5.1.1

pyarmor hdinfo

Then generate new license bind to harddisk serial number and mac address:

pyarmor licenses --bind-disk '100304PBN2081SF3NJ5T' --bind-mac '20:c1:d2:2f:a0:96'
→˓code-002

Run obfuscated script with new license:

cp licenses/code-002/license.lic dist/

cd dist/
python myscript.py

2.4 Extending License Type

It’s easy to extend any other licese type for obfuscated scripts: just add authentication code in the entry script. The
script can’t be changed any more after it is obfuscated, so write what ever you want by Python. For example, check
expired date by NTP server other than local time:

import ntplib
from time import mktime, strptime
c = ntplib.NTPClient()
response = c.request('europe.pool.ntp.org', version=3)
if response.tx_time > mktime(strptime('20190202', '%Y%m%d')):

sys.exit(1)

2.5 Packing Obfuscated Scripts

Use command pack to pack obfuscated scripts into the bundle.

First install PyInstaller:

pip install pyinstaller

Set the current directory to the location of your program myscript.py and execute:

pyarmor pack myscript.py

PyArmor packs myscript.py:

• Execute pyarmor obfuscate to obfuscate myscript.py

• Execute pyinstaller myscipt.py to create myscript.spec

• Update myscript.spec, replace original scripts with obfuscated ones

• Execute pyinstaller myscript.spec to bundle the obfuscated scripts

In the dist/myscript folder you find the bundled app you distribute to your users.

Run the final executeable file:

dist/myscript/myscript

2.4. Extending License Type 7

http://www.ntp.org

PyArmor Documentation, Release 5.1.1

Check the scripts have been obfuscated. It should return error:

rm dist/myscript/license.lic
dist/myscript/myscript

Generate an expired license for the bundle:

pyarmor licenses --expired 2019-01-01 code-003
cp licenses/code-003/license.lic dist/myscript

dist/myscript/myscript

Note that command pack maybe doesn’t work if .spec file of PyInstaller has been customed. You need edit .spec
file to pack obfuscated scripts, See How To Pack Obfuscated Scripts.

8 Chapter 2. Using PyArmor

http://www.pyinstaller.org/

CHAPTER 3

Runtime Module pytransform

If you have realized that the obfuscated scripts are black box for end users, you can do more in your own Python
scripts.In these cases, pytransform would be useful.

The pytransform module is distributed with obfuscated scripts, and must be imported before running any obfus-
cated scripts. It also can be used in your python scripts.

3.1 Contents

exception PytransformError
This is raised when any pytransform api failed. The argument to the exception is a string indicating the cause of
the error.

get_expired_days()
Return how many days left for time limitation license.

0: has been expired

-1: never expired

get_license_info()
Get license information of obfuscated scripts.

It returns a dict with keys expired, CODE, IFMAC.

The value of expired is == -1 means no time limitation.

Raise PytransformError if license is invalid, for example, it has been expired.

get_hd_info(hdtype, size=256)
Get hardware information by hdtype, hdtype could one of

HT_HARDDISK return the serial number of first harddisk

HT_IFMAC return mac address of first network card

Raise PytransformError if something is wrong.

9

PyArmor Documentation, Release 5.1.1

HT_HARDDISK, HT_IFMAC
Constant for hdtype when calling get_hd_info()

3.2 Examples

Show left days of license

from pytransform import PytransformError, get_license_info, get_expired_days
try:

code = get_license_info()['CODE']
left_days = get_expired_days()
if left_days == -1:

print('This license for %s is never expired' % code)
else:

print('This license for %s will be expired in %d days' % (code, left_days))
except PytransformError as e:

print(e)

Double check harddisk information

from pytransform import get_hd_info, HT_IFMAC
expected_mac_address = 'xx:xx:xx:xx:xx'
if get_hd_info(HT_IFMAC) != expected_mac_address:

sys.exit(1)

Check internet time by NTP server, expired on 2019-2-2

from ntplib import NTPClient
from time import mktime, strptime

NTP_SERVER = 'europe.pool.ntp.org'
EXPIRED_DATE = '20190202'

c = NTPClient()
response = c.request(NTP_SERVER, version=3)
if response.tx_time > mktime(strptime(EXPIRED_DATE, '%Y%m%d')):

sys.exit(1)

10 Chapter 3. Runtime Module pytransform

CHAPTER 4

The Security of PyArmor

PyArmor will obfuscate python module in two levels. First obfucate each function in module, then obfuscate the whole
module file. For example, there is a file foo.py:

def hello():
print('Hello world!')

def sum(a, b):
return a + b

if __name == '__main__':
hello()
print('1 + 1 = %d' % sum(1, 1))

PyArmor first obfuscates the function hello and sum, then obfuscates the whole moudle foo. In the runtime, only
current called function is restored and it will be obfuscated as soon as code object completed execution. So even trace
code in any c debugger, only a piece of code object could be got one time.

4.1 Cross Protection for _pytransform

The core functions of PyArmor are written by c in the dynamic library _pytransform. _pytransform protects itself
by JIT technical, and the obfuscated scripts is protected by _pytransform. On the other hand, the dynamic library
_pytransform is checked in the obfuscated script to be sure it’s not changed. This is called Cross Protection.

The dynamic library _pytransform.so uses JIT technical to achieve two tasks:

• Keep the des key used to encrypt python scripts from tracing by any c debugger

• The code segment can’t be changed any more. For example, change instruction JZ to JNZ, so that _pytrans-
form.so can execute even if checking license failed

How JIT works?

First PyArmor defines an instruction set based on GNU lightning.

Then write some core functions by this instruction set in c file, maybe like this:

11

PyArmor Documentation, Release 5.1.1

t_instruction protect_set_key_iv = {
// function 1
0x80001,
0x50020,
...

// function 2
0x80001,
0xA0F80,
...

}

t_instruction protect_decrypt_buffer = {
// function 1
0x80021,
0x52029,
...

// function 2
0x80001,
0xC0901,
...

}

Build _pytransform.so, calculate the codesum of code segment of _pytransform.so

Replace the related instructions with real codesum got before, and obfuscate all the instructions except “function 1” in
c file. The updated file maybe likes this:

t_instruction protect_set_key_iv = {
// plain function 1
0x80001,
0x50020,
...

// obfuscated function 2
0xXXXXX,
0xXXXXX,
...

}

t_instruction protect_decrypt_buffer = {
// plain function 1
0x80021,
0x52029,
...

// obfuscated function 2
0xXXXXX,
0xXXXXX,
...

}

Finally build _pytransform.so with this changed c file.

When running obfuscated script, _pytransform.so loaded. Once a proected function is called, it will

1. Generate code from function 1

12 Chapter 4. The Security of PyArmor

PyArmor Documentation, Release 5.1.1

2. Run function 1:

• check codesum of code segment, if not expected, quit

• check tickcount, if too long, quit

• check there is any debugger, if found, quit

• clear hardware breakpoints if possible

• restore next function function 2

3. Generate code from function 2

4. Run function 2, do same thing as function 1

After repeat some times, the real code is called. All of that is to be sure there is no breakpoint in protection code.

In order to protect _pytransform in Python script, some extra code will be inserted into the entry script before the line
if __name__ == '__main__' when obfuscating scripts:

def protect_pytransform():

import pytransform

#
Be sure the obfuscated script self is not hacked
#
def check_obfuscated_script():

CO_SIZES = 46, 36
CO_NAMES = set(['pytransform', 'pyarmor_runtime', '__pyarmor__',

'__name__', '__file__'])
co = pytransform.sys._getframe(3).f_code
if not ((set(co.co_names) <= CO_NAMES)

and (len(co.co_code) in CO_SIZES)):
raise RuntimeError('Unexpected obfuscated script')

#
Be sure pytransform._pytransform._name isn't hacked here
#
def check_mod_pytransform():

CO_NAMES = set(['Exception', 'LoadLibrary', 'None', 'PYFUNCTYPE',
'PytransformError', '__file__', '_debug_mode',
'_get_error_msg', '_handle', '_load_library',
'_pytransform', 'abspath', 'basename', 'byteorder',
'c_char_p', 'c_int', 'c_void_p', 'calcsize', 'cdll',
'dirname', 'encode', 'exists', 'exit',
'format_platname', 'get_error_msg', 'init_pytransform',
'init_runtime', 'int', 'isinstance', 'join', 'lower',
'normpath', 'os', 'path', 'platform', 'print',
'pyarmor_init', 'pythonapi', 'restype', 'set_option',
'str', 'struct', 'sys', 'system', 'version_info'])

colist = []

for name in ('dllmethod', 'init_pytransform', 'init_runtime',
'_load_library', 'pyarmor_init', 'pyarmor_runtime'):

colist.append(getattr(pytransform, name).{code})

for name in ('init_pytransform', 'init_runtime'):
colist.append(getattr(pytransform, name).{closure}[0].cell_contents.{code}

→˓)
(continues on next page)

4.1. Cross Protection for _pytransform 13

PyArmor Documentation, Release 5.1.1

(continued from previous page)

colist.append(pytransform.dllmethod.{code}.co_consts[1])

for co in colist:
if not (set(co.co_names) < CO_NAMES):

raise RuntimeError('Unexpected pytransform.py')

#
Be sure dynamic library file isn't hacked
#
def check_lib_pytransform(filename):

size = 0x{size:X}
n = size >> 2
with open(filename, 'rb') as f:

buf = f.read(size)
fmt = 'I' * n
checksum = sum(pytransform.struct.unpack(fmt, buf)) & 0xFFFFFFFF
if not checksum == 0x{checksum:X}:

raise RuntimeError("Unexpected %s" % filename)

try:
check_obfuscated_script()
check_mod_pytransform()
check_lib_pytransform(pytransform._pytransform._name)

except Exception as e:
print("Protection Fault: %s" % e)
pytransform.sys.exit(1)

protect_pytransform()

if __name__ == '__main__':
...

If you want to hide the code more thoroughly, try to use any other tool such as ASProtect, VMProtect to protect
dynamic library _pytransform which is distributed with obfuscatd scripts.

14 Chapter 4. The Security of PyArmor

http://www.aspack.com/
https://vmpsoft.com/

CHAPTER 5

Understanding Obfuscated Scripts

5.1 Global Capsule

The .pyarmor_capsule.zip in the HOME path called Global Capsule. It’s created implicitly when executing
command pyarmor obfuscate. PyArmor will read data from Global Capsule when obfuscating scripts or gener-
ating licenses for obfuscated scripts.

5.2 Obfuscated Scripts

After the scripts are obfuscated by PyArmor, in the dist folder you find all the files you distribute to your users:

myscript.py
mymodule.py

_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.py
pytransform.key
license.lic

The obfuscated scripts are normal Python scripts.

The module dist/mymodule.py would be like this:

__pyarmor__(__name__, __file__, b'\x06\x0f...')

The entry script dist/myscript.py would be like this:

from pytransfrom import pyarmor_runtime
pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x0a\x02...')

15

PyArmor Documentation, Release 5.1.1

5.3 Bootstrap Code

The first 2 lines in the entry script called Bootstrap Code. It’s only in the entry script:

from pytransfrom import pyarmor_runtime
pyarmor_runtime()

5.4 Runtime Files

Except obfuscated scripts, all the other files are called Runtime Files:

• pytransform.py, a normal python module

• _pytransform.so, or _pytransform.dll, or _pytransform.dylib a dynamic library implements core functions

• pytransform.key, data file

• license.lic, the license file for obfuscated scripts

All of them are required to run obfuscated scripts.

5.5 The license.lic

There is a special runtime file license.lic. The default one, which generated as executing pyarmor obfuscate,
allows obfuscated scripts run in any machine and never expired.

To change this behaviour, use command pyarmor licenses to generate new license.lic and overwrite the default
one.

5.6 Running Obfuscated Scripts

The obfuscated scripts is a normal python script, it can be run by normal python interpreter:

cd dist
python myscript.py

Firt Bootstrap Code is executed:

• Import pyarmor_runtime from pytransform.py

• Execute pyarmor_runtime

– Load dynamic library _pytransform by ctypes

– Check license.lic in the same path

– Add there builtin functions __pyarmor__, __enter_armor__, __exit_armor__

After that:

• Call __pyarmor__ to import the obfuscated module.

• Call __enter_armor__ to restore code object of function before executing each function

• Call __exit_armor__ to obfuscate code object of function after each function return

More information, refer to How to Obfuscate Python Scripts and How to Run Obfuscated Script

16 Chapter 5. Understanding Obfuscated Scripts

PyArmor Documentation, Release 5.1.1

5.7 Key Points to Use Obfuscated Scripts

• The obfuscated script is a normal python script, so it can be seamless to replace original script.

• There is only one thing changed, the following code must be run before using any obfuscated script:

from pytransform import pyarmor_runtime
pyarmor_runtime()

• It can be put in any script anywhere, only if it run in the same Python interpreter. It will create some builtin
function to deal with obfuscated code.

• The extra runtime file pytransform.py must be in any Python path in target machine. pytransform.py need load
dynamic library _pytransform by ctypes. It may be

– _pytransform.so in Linux

– _pytransform.dll in Windows

– _pytransform.dylib in MacOS

This file is dependent-platform, download the right one to the same path of pytransform.py according to target
platform. All the prebuilt dynamic libraries list here

http://pyarmor.dashingsoft.com/downloads/platforms/

• By default pytransform.py search dynamic library _pytransform in the same path. Check pytrans-
form._load_library to find the details.

• All the other Runtime Files should in the same path as dynamic library _pytransform

• If Runtime Files locate in some other path, change Bootstrap Code:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/runtime-files')

5.8 Two types of license.lic

In PyArmor, there are 2 types of license.lic

• license.lic of PyArmor, which locates in the source path of PyArmor. It’s required to run pyarmor

• license.lic of Obfuscated Scripts, which is generated as obfuscating scripts or generating new licenses. It’s
required to run obfuscated scripts.

The relation between 2 license.lic is:

license.lic of PyArmor --> .pyarmor_capsule.zip --> license.lic of Obfuscated Scripts

When obfuscating scripts with command pyarmor obfuscate or pyarmor build, the Global Capsule is used implicitly.
If there is no Global Capsule created, PyArmor will read license.lic of PyArmor as input to generate the Global
Capsule.

When runing command pyarmor licenses, it will generate a license.lic for obfuscated scripts. Here the Global Capsule
will be as input file to generate this license.lic of Obfuscated Scripts.

5.7. Key Points to Use Obfuscated Scripts 17

http://pyarmor.dashingsoft.com/downloads/platforms/

PyArmor Documentation, Release 5.1.1

18 Chapter 5. Understanding Obfuscated Scripts

CHAPTER 6

How PyArmor Does It

Look at what happened after foo.py is obfuscated by PyArmor. Here are the files list in the output path dist:

foo.py

_pytransform.so, or _pytransform.dll in Windows, _pytransform.dylib in MacOS
pytransform.py
pytransform.key
license.lic

dist/foo.py is obfuscated script, the content is:

from pytransfrom import pyarmor_runtime
pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x06\x0f...')

All the other extra files called Runtime Files, which are required to run or import obfuscated scripts. So long as runtime
files are in any Python path, obfuscated script dist/foo.py can be used as normal Python script. That is to say:

The original python scripts can be replaced with obfuscated scripts seamlessly.

6.1 How to Obfuscate Python Scripts

How to obfuscate python scripts by PyArmor?

First compile python script to code object:

char *filename = "foo.py";
char *source = read_file(filename);
PyCodeObject *co = Py_CompileString(source, "<frozen foo>", Py_file_input);

Then change code object as the following way

• Wrap byte code co_code within a try...finally block:

19

PyArmor Documentation, Release 5.1.1

wrap header:

LOAD_GLOBALS N (__armor_enter__) N = length of co_consts
CALL_FUNCTION 0
POP_TOP
SETUP_FINALLY X (jump to wrap footer) X = size of original byte code

changed original byte code:

Increase oparg of each absolute jump instruction by the size of wrap
→˓header

Obfuscate original byte code

...

wrap footer:

LOAD_GLOBALS N + 1 (__armor_exit__)
CALL_FUNCTION 0
POP_TOP
END_FINALLY

• Append function names __armor_enter, __armor_exit__ to co_consts

• Increase co_stacksize by 2

• Set CO_OBFUSCAED (0x80000000) flag in co_flags

• Change all code objects in the co_consts recursively

Next serializing reformed code object and obfuscate it to protect constants and literal strings:

char *string_code = marshal.dumps(co);
char *obfuscated_code = obfuscate_algorithm(string_code);

Finally generate obfuscated script:

sprintf(buf, "__pyarmor__(__name__, __file__, b'%s')", obfuscated_code);
save_file("dist/foo.py", buf);

The obfuscated script is a normal Python script, it looks like this:

__pyarmor__(__name__, __file__, b'\x01\x0a...')

6.2 How to Run Obfuscated Script

How to run obfuscated script dist/foo.py by Python Interpreter?

The first 2 lines, which called Bootstrap Code:

from pytransfrom import pyarmor_runtime
pyarmor_runtime()

It will fulfil the following tasks

• Load dynamic library _pytransform by ctypes

20 Chapter 6. How PyArmor Does It

PyArmor Documentation, Release 5.1.1

• Check dist/license.lic is valid or not

• Add 3 cfunctions to module builtins: __pyarmor__, __armor_enter__, __armor_exit__

The next code line in dist/foo.py is:

__pyarmor__(__name__, __file__, b'\x01\x0a...')

__pyarmor__ is called, it will import original module from obfuscated code:

static PyObject *
__pyarmor__(char *name, char *pathname, unsigned char *obfuscated_code)
{

char *string_code = restore_obfuscated_code(obfuscated_code);
PyCodeObject *co = marshal.loads(string_code);
return PyImport_ExecCodeModuleEx(name, co, pathname);

}

After that, in the runtime of this python interpreter

• __armor_enter__ is called as soon as code object is executed, it will restore byte-code of this code object:

static PyObject *
__armor_enter__(PyObject *self, PyObject *args)
{

// Got code object
PyFrameObject *frame = PyEval_GetFrame();
PyCodeObject *f_code = frame->f_code;

// Increase refcalls of this code object
// Borrow co_names->ob_refcnt as call counter
// Generally it will not increased by Python Interpreter
PyObject *refcalls = f_code->co_names;
refcalls->ob_refcnt ++;

// Restore byte code if it's obfuscated
if (IS_OBFUSCATED(f_code->co_flags)) {

restore_byte_code(f_code->co_code);
clear_obfuscated_flag(f_code);

}

Py_RETURN_NONE;
}

• __armor_exit__ is called so long as code object completed execution, it will obfuscate byte-code again:

static PyObject *
__armor_exit__(PyObject *self, PyObject *args)
{

// Got code object
PyFrameObject *frame = PyEval_GetFrame();
PyCodeObject *f_code = frame->f_code;

// Decrease refcalls of this code object
PyObject *refcalls = f_code->co_names;
refcalls->ob_refcnt --;

// Obfuscate byte code only if this code object isn't used by any function
// In multi-threads or recursive call, one code object may be referenced

(continues on next page)

6.2. How to Run Obfuscated Script 21

PyArmor Documentation, Release 5.1.1

(continued from previous page)

// by many functions at the same time
if (refcalls->ob_refcnt == 1) {

obfuscate_byte_code(f_code->co_code);
set_obfuscated_flag(f_code);

}

// Clear f_locals in this frame
clear_frame_locals(frame);

Py_RETURN_NONE;
}

6.3 Special Handling of Entry Script

Before obfuscating entry scipt, if there is line like this:

if __name__ == '__main__':

PyArmor will patch this entry script, insert some code to protect dynamic library before this line:

def protect_pytransform():

import pytransform

def check_obfuscated_script():
CO_SIZES = 46, 36
CO_NAMES = set(['pytransform', 'pyarmor_runtime', '__pyarmor__',

'__name__', '__file__'])
co = pytransform.sys._getframe(3).f_code
if not ((set(co.co_names) <= CO_NAMES)

and (len(co.co_code) in CO_SIZES)):
raise RuntimeError('Unexpected obfuscated script')

def check_mod_pytransform():
CO_NAMES = set(['Exception', 'LoadLibrary', 'None', 'PYFUNCTYPE',

'PytransformError', '__file__', '_debug_mode',
'_get_error_msg', '_handle', '_load_library',
'_pytransform', 'abspath', 'basename', 'byteorder',
'c_char_p', 'c_int', 'c_void_p', 'calcsize', 'cdll',
'dirname', 'encode', 'exists', 'exit',
'format_platname', 'get_error_msg', 'init_pytransform',
'init_runtime', 'int', 'isinstance', 'join', 'lower',
'normpath', 'os', 'path', 'platform', 'print',
'pyarmor_init', 'pythonapi', 'restype', 'set_option',
'str', 'struct', 'sys', 'system', 'version_info'])

colist = []

for name in ('dllmethod', 'init_pytransform', 'init_runtime',
'_load_library', 'pyarmor_init', 'pyarmor_runtime'):

colist.append(getattr(pytransform, name).{code})

for name in ('init_pytransform', 'init_runtime'):
colist.append(getattr(pytransform, name).{closure}[0].cell_contents.{code}

→˓) (continues on next page)

22 Chapter 6. How PyArmor Does It

PyArmor Documentation, Release 5.1.1

(continued from previous page)

colist.append(pytransform.dllmethod.{code}.co_consts[1])

for co in colist:
if not (set(co.co_names) < CO_NAMES):

raise RuntimeError('Unexpected pytransform.py')

def check_lib_pytransform(filename):
size = 0x{size:X}
n = size >> 2
with open(filename, 'rb') as f:

buf = f.read(size)
fmt = 'I' * n
checksum = sum(pytransform.struct.unpack(fmt, buf)) & 0xFFFFFFFF
if not checksum == 0x{checksum:X}:

raise RuntimeError("Unexpected %s" % filename)
try:

check_obfuscated_script()
check_mod_pytransform()
check_lib_pytransform(pytransform._pytransform._name)

except Exception as e:
print("Protection Fault: %s" % e)
pytransform.sys.exit(1)

protect_pytransform()

if __name__ == '__main__':
...

Besides, after the entry script is obfuscated, the Bootstrap Code will be inserted at the beginning of the obfuscated
script.

6.3. Special Handling of Entry Script 23

PyArmor Documentation, Release 5.1.1

24 Chapter 6. How PyArmor Does It

CHAPTER 7

How To Pack Obfuscated Scripts

The obfuscated scripts generated by PyArmor can replace Python scripts seamlessly, but there is an issue when packing
them into one bundle by PyInstaller, py2exe, py2app, cx_Freeze:

All the dependencies of obfuscated scripts CAN NOT be found at all

To solve this problem, the common solution is

1. Find all the dependenices by original scripts.

2. Add runtimes files required by obfuscated scripts to the bundle

3. Replace original scipts with obfuscated in the bundle

4. Replace entry scrirpt with obfuscated one

Depend on what tool used, there are different ways.

First obfuscate scripts to dist/obf:

pyarmor obfuscate --output dist/obf hello.py

7.1 Work with PyInstaller

Install pyinstaller:

pip install pyinstaller

Generate specfile, add the obfuscated entry script and data files required by obfuscated scripts:

pyinstaller --add-data dist/obf/*.lic
--add-data dist/obf/*.key
--add-data dist/obf/_pytransform.*
hello.py dist/obf/hello.py

25

PyArmor Documentation, Release 5.1.1

Update specfile hello.spec, insert the following lines after the Analysis object. The purpose is to replace all
the original scripts with obfuscated ones:

a.scripts[0] = 'hello', 'dist/obf/hello.py', 'PYSOURCE'
for i in range(len(a.pure)):

if a.pure[i][1].startswith(a.pathex[0]):
a.pure[i] = a.pure[i][0], a.pure[i][1].replace(a.pathex[0], os.path.abspath(

→˓'dist/obf'), a.pure[i][2]

Run patched specfile to build final distribution:

pyinstaller hello.spec

Check obfuscated scripts work:

It works
dist/hello/hello.exe

rm dist/hello/license.lic

It should not work
dist/hello/hello.exe

7.2 Work with py2exe

For Python3.3 and later:

pip install py2exe

Build bundle executable to dist with separated library:

build_exe --library library.zip hello.py

Build bundle executable with the obfuscated entry to dist/obf/dist, all the other obfuscated scripts should be
include by -i name or -p pkgname:

(cd dist/obf;
build_exe --library library.zip -i queens hello.py)

Update dist/obf/library.zip, which only includes the obfuscated scripts, merge all the dependenices files
from dist/library.zip into it.

Copy all the files to final output:

cp -a dist/obf/dist/* dist/

Copy runtime files required by obfuscated scripts to finial output:

(cd dist/obf;
cp *.key *.lic _pytransform.dll ../dist/)

Check obfuscated scripts work:

It works
dist/hello.exe

(continues on next page)

26 Chapter 7. How To Pack Obfuscated Scripts

PyArmor Documentation, Release 5.1.1

(continued from previous page)

rm dist/license.lic

It should not work
dist/hello.exe

For Python2, write a setup.py and run py2exe as the following way:

python setup.py py2exe hello.py

7.3 Work with cx_Freeze 5

Install cx_Freeze:

pip install cx_Freeze

Build bundle executable to dist:

cxfreeze --target-dir=dist hello.py

Build bundle executable with the obfuscated entry to dist/obf/dist, all the other obfuscated scripts should be
include by --include-modules NAMES:

cd dist/obf
cxfreeze --target-dir=dist --include-modules=queens hello.py

Update dist/obf/python34.zip, which only includes the obfuscated scripts, merge all the dependenices files
from dist/python34.zip into it.

Copy all the files to final output:

cp -a dist/obf/dist/* dist/

Copy runtime files required by obfuscated scripts to finial output:

(cd dist/obf;
cp *.key *.lic _pytransform.dll ../dist/)

Check obfuscated scripts work:

It works
dist/hello.exe

rm dist/license.lic

It should not work
dist/hello.exe

7.3. Work with cx_Freeze 5 27

PyArmor Documentation, Release 5.1.1

28 Chapter 7. How To Pack Obfuscated Scripts

CHAPTER 8

Using Project

Project is a folder include its own capsule and configuration file, which used to manage obfuscated scripts.

There are several advantages to manage obfuscated scripts by Project:

• Increment build, only updated scripts are obfuscated since last build

• Filter obfuscated scripts in the project, exclude some scripts

• More convenient to manage obfuscated scripts

8.1 Managing Obfuscated Scripts With Project

Use command init to create a project:

pyarmor init --src=examples/pybench --entry=pybench.py projects/pybench

The project path projects/pybench will be created, and ther are 2 files in it:

.pyarmor_config
pyarmor.bat or pyarmor

.pyarmor_config is project configuration of JSON format.

The next file is shell script to call pyarmor in this project.

The common usage for project is to do any thing in the project path:

cd projects/pybench

Show project information:

./pyarmor info

Obfuscate all the scripts in this project:

29

PyArmor Documentation, Release 5.1.1

./pyarmor build

Exclude the dist, test, the .py files in these folder will not be obfuscated:

./pyarmor config --manifest "include *.py, prune dist, prune test"

Force rebuild:

./pyarmor build --force

Run obfuscated script:

cd dist
python pybench.py

After some scripts changed, just run build again:

cd projects/pybench
./pyarmor build

8.2 Obfuscating Scripts With Different Modes

Configure mode to obfuscate scripts:

./pyarmor config --obf-mod=1 --obf-code=0

Obfuscating scripts in new mode:

./pyarmor build -B

8.3 Project Configuration File

Each project has a configure file. It’s a json file named .pyarmor_config stored in the project path.

• name

Project name.

• title

Project title.

• src

Base path to match files by manifest template string.

Generally it’s absolute path.

• manifest

A string specifies files to be obfuscated, same as MANIFEST.in of Python Distutils, default value is:

global-include *.py

30 Chapter 8. Using Project

PyArmor Documentation, Release 5.1.1

It means all files anywhere in the src tree matching.

Multi manifest template commands are spearated by comma, for example:

global-include *.py, exclude __mainfest__.py, prune test

Refer to https://docs.python.org/2/distutils/sourcedist.html#commands

• is_package

Available values: 0, 1, None

When it’s set to 1, the basename of src will be appended to output as the final path to save obfuscated
scripts, and runtime files are still in the path output

When init a project and no –type specified, it will be set to 1 if there is __init__.py in the path src,
otherwise it’s None.

• disable_restrict_mode

Available values: 0, 1, None

When it’s None or 0, obfuscated scripts can not be imported from outer scripts.

When it’s set to 1, it the obfuscated scripts are allowed to be imported by outer scripts.

By default it’s set to 0.

Refer to Restrict Mode

• entry

A string includes one or many entry scripts.

When build project, insert the following bootstrap code for each entry:

from pytransform import pyarmor_runtime
pyarmor_runtime()

The entry name is relative to src, or filename with absolute path.

Multi entries are separated by comma, for example:

main.py, another/main.py, /usr/local/myapp/main.py

Note that entry may be NOT obfuscated, if manifest does not specify this entry. In this case, bootstrap
code will be inserted into the header of entry script either. So that it can import other obfuscated
modules.

• output

A path used to save output of build. It’s relative to project path.

• capsule

Filename of project capsule. It’s relative to project path if it’s not absolute path.

• obf_module_mode [DEPRECRATED]

How to obfuscate whole code object of module:

– none

No obfuscate

– des

8.3. Project Configuration File 31

https://docs.python.org/2/distutils/sourcedist.html#commands

PyArmor Documentation, Release 5.1.1

Obfuscate whole code object by DES algorithm

The default value is des

• obf_code_mode [DEPRECRATED]

How to obfuscate byte code of each code object:

– none

No obfuscate

– des

Obfuscate byte-code by DES algorithm

– fast

Obfuscate byte-code by a simple algorithm, it’s faster than DES

– wrap

The wrap code is different from des and fast. In this mode, when code object start to
execute, byte-code is restored. As soon as code object completed execution, byte-code will
be obfuscated again.

The default value is wrap.

• obf_code

How to obfuscate byte code of each code object:

– 0

No obfuscate

– 1

Obfuscate each code object by default algorithm

Refer to Obfuscating Code Mode

• wrap_mode

Available values: 0, 1, None

Whether to wrap code object with try..final block.

Refer to Wrap Mode

• obf_mod

How to obfuscate whole code object of module:

– 0

No obfuscate

– 1

Obfuscate byte-code by DES algorithm

Refer to Obfuscating module Mode

• cross_protection

How to proect dynamic library in obfuscated scripts:

– 0

No protection

32 Chapter 8. Using Project

PyArmor Documentation, Release 5.1.1

– 1

Insert proection code with default template, refer to Special Handling of Entry Script

– String

Use customizing template

• runtime_path

None or any path.

When run obfuscated scripts, where to find dynamic library _pytransform. The default value is None,
it means it’s in the same path of pytransform.py.

It’s useful when obfuscated scripts are packed into a zip file, for example, use py2exe to package
obfuscated scripts. Set runtime_path to an empty string, and copy Runtime Files to same path of zip
file, will solve this problem.

8.3. Project Configuration File 33

PyArmor Documentation, Release 5.1.1

34 Chapter 8. Using Project

CHAPTER 9

The Differences of Obfuscated Scripts

There are something changed after Python scripts are obfuscated:

• Python Version in build machine must be same as in target machine. To be exact, the magic string value used to
recognize byte-compiled code files (.pyc files) must be same.

• If Python interpreter is compiled with Py_TRACE_REFS or Py_DEBUG, it will crash to run obfuscated scripts.

• The callback function set by sys.settrace, sys.setprofile, threading.settrace and
threading.setprofile will be ignored by obfuscated scripts.

• The attribute __file__ of code object in the obfuscated scripts will be <frozen name> other than real
filename. So in the traceback, the filename is shown as <frozen name>.

Note that __file__ of moudle is still filename. For example, obfuscate the script foo.py and run it:

def hello(msg):
print(msg)

The output will be 'foo.py'
print(__file__)

The output will be '<frozen foo>'
print(hello.__file__)

35

PyArmor Documentation, Release 5.1.1

36 Chapter 9. The Differences of Obfuscated Scripts

CHAPTER 10

Advanced Topics

10.1 Obfuscating Python Scripts In Different Modes

10.1.1 Obfuscating Code Mode

In a python module file, generally there are many functions, each function has its code object.

• obf_code == 0

The code object of each function will keep it as it is.

• obf_code == 1

In this case, the code object of each function will be obfuscated in different ways depending on wrap mode.

10.1.2 Wrap Mode

• wrap_mode == 0

When wrap mode is off, the code object of each function will be obfuscated as this form:

0 JUMP_ABSOLUTE n = 3 + len(bytecode)

3 ...
... Here it's obfuscated bytecode of original function
...

n LOAD_GLOBAL ? (__armor__)
n+3 CALL_FUNCTION 0
n+6 POP_TOP
n+7 JUMP_ABSOLUTE 0

When this code object is called first time

1. First op is JUMP_ABSOLUTE, it will jump to offset n

37

PyArmor Documentation, Release 5.1.1

2. At offset n, the instruction is to call PyCFunction __armor__. This function will restore those obfuscated
bytecode between offset 3 and n, and move the original bytecode at offset 0

3. After function call, the last instruction is to jump to offset 0. The really bytecode now is executed.

After the first call, this function is same as the original one.

• wrap_mode == 1

When wrap mode is on, the code object of each function will be wrapped with try. . . finally block:

LOAD_GLOBALS N (__armor_enter__) N = length of co_consts
CALL_FUNCTION 0
POP_TOP
SETUP_FINALLY X (jump to wrap footer) X = size of original byte code

Here it's obfuscated bytecode of original function

LOAD_GLOBALS N + 1 (__armor_exit__)
CALL_FUNCTION 0
POP_TOP
END_FINALLY

When this code object is called each time

1. __armor_enter__ will restore the obfuscated bytecode

2. Execute the real function code

3. In the final block, __armor_exit__ will obfuscate bytecode again.

10.1.3 Obfuscating module Mode

• obf_mod == 1

The final obfuscated scripts would like this:

__pyarmor__(__name__, __file__, b'\x02\x0a...', 1)

The third parameter is serialized code object of the Python script. It’s generated by this way:

PyObject *co = Py_CompileString(source, filename, Py_file_input);
obfuscate_each_function_in_module(co, obf_mode);
char *original_code = marshal.dumps(co);
char *obfuscated_code = obfuscate_algorithm(original_code);
sprintf(buffer, "__pyarmor__(__name__, __file__, b'%s', 1)", obfuscated_code);

• obf_mod == 0

In this mode, keep the serialized module as it is:

sprintf(buffer, "__pyarmor__(__name__, __file__, b'%s', 0)", original_code);

And the final obfuscated scripts would be:

__pyarmor__(__name__, __file__, b'\x02\x0a...', 0)

Refer to Obfuscating Scripts With Different Modes

38 Chapter 10. Advanced Topics

PyArmor Documentation, Release 5.1.1

10.2 Restrict Mode

From PyArmor 5.2, Restrict Mode is default setting. In restrict mode, obfuscated scripts must be one of the following
formats:

__pyarmor__(__name__, __file__, b'...')

Or

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')

Or

from pytransform import pyarmor_runtime
pyarmor_runtime('...')
__pyarmor__(__name__, __file__, b'...')

And obfuscated script must be imported from obfuscated script. No any other statement can be inserted into obfuscated
scripts.

For examples, it works:

$ cat a.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')

$ python a.py

It doesn’t work, because there is an extra code “print”:

$ cat b.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')
print(__name__)

$ python b.py

It works, import obfuscated script “c.py” from obfuscated script “d.py”:

$ cat d.py
import c
c.hello()

Then obfuscate d.py
$ cat d.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(__name__, __file__, b'...')

$ python d.py

It doesn’t work, because obfuscated script “c.py” can NOT be imported from no obfuscated scripts in restrict mode:

10.2. Restrict Mode 39

PyArmor Documentation, Release 5.1.1

$ cat c.py
__pyarmor__(__name__, __file__, b'...')

$ cat main.py
from pytransform import pyarmor_runtime
pyarmor_runtime()
import c

$ python main.py

So restrict mode can avoid obfuscated scripts observed from no obfuscated code.

Sometimes restrict mode is not suitable, for example, a package used by other scripts. Other clear scripts can not
import obfuscated package in restrict mode. So it need to disable restrict mode:

pyarmor obfuscate --restrict=0 foo.py

Besides, if the scripts is obfuscated without restrict mode, you should disable restrict mode either when generating
new licenses for it:

pyarmor licenses --restrict=0 --expired 2019-01-01 mycode

40 Chapter 10. Advanced Topics

CHAPTER 11

Man Page

PyArmor is a command line tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire
obfuscated scripts.

The syntax of the pyarmor command is:

pyarmor <command> [options]

The most commonly used pyarmor commands are:

obfuscate Obfuscate python scripts
licenses Generate new licenses for obfuscated scripts
pack Pack obfuscated scripts to one bundle
hdinfo Show hardware information

See pyarmor <command> -h for more information on a specific command.

11.1 obfuscate

Obfuscate python scripts.

SYNOPSIS:

pyarmor obfuscate <options> SCRIPT...

DESCRIPTION

PyArmor first checks whether .pyarmor_capsule.zip exists in the HOME path. If not, make it.

Then search all the .py files in the path of entry script, and obfuscate them in the default output path dist.

Next generate default license.lic for obfuscated scripts and make all the other Runtime Files in the dist path.

Finally insert Bootstrap Code into each entry script.

OPTIONS

41

PyArmor Documentation, Release 5.1.1

-O PATH, --output PATH Output path

-r, --recursive Match files recursively

--capsule CAPSULE Use this capsule to obfuscate scripts

11.2 licenses

Generate new licenses for obfuscated scripts.

SYNOPSIS:

pyarmor licenses <options> CODE

OPTIONS:

-C CAPSULE, --capsule CAPSULE Use this capsule to generate new licenses

-O OUTPUT, --output OUTPUT Output path

-e YYYY-MM-DD, --expired YYYY-MM-DD Expired date for this license

-d SN, --bind-disk SN Bind license to serial number of harddisk

-4 IPV4, --bind-ipv4 IPV4 Bind license to ipv4 addr

-m MACADDR, --bind-mac MACADDR Bind license to mac addr

11.3 pack

Obfuscate the scripts and pack them into one bundle.

SYNOPSIS:

pyarmor pack <options> SCRIPT

OPTIONS:

-t TYPE, --type TYPE cx_Freeze, py2exe, py2app, PyInstaller(default).

-O OUTPUT, --output OUTPUT Directory to put final built distributions in.

11.4 hdinfo

Show hardware information of this machine, such as serial number of hard disk, mac address of network card etc. The
information got here could be as input data to generate license file for obfuscated scripts.

SYNOPSIS:

pyarmor hdinfo

42 Chapter 11. Man Page

CHAPTER 12

When Things Go Wrong

Turn on debugging output to get more error information:

python -d pyarmor.py ...
PYTHONDEBUG=y pyarmor ...

12.1 Segment fault

In the following cases, obfuscated scripts will crash

• Running obfuscated script by the debug version Python

• Obfuscating scripts by Python 2.6 but running the obfuscated scripts by Python 2.7

12.2 Could not find _pytransform

Generally, the dynamic library _pytransform is in the same path of obfuscated scripts. It may be:

• _pytransform.so in Linux

• _pytransform.dll in Windows

• _pytransform.dylib in MacOS

First check whether the file exists. If it exists:

• Check the permissions of dynamic library

If there is no execute permissions in Windows, it will complain: [Error 5] Access is denied

• Check whether ctypes could load _pytransform:

from pytransform import _load_library
m = _load_library(path='/path/to/dist')

43

PyArmor Documentation, Release 5.1.1

• Try to set the runtime path in the Bootstrap Code of entry script:

from pytransform import pyarmor_runtime
pyarmor_runtime('/path/to/dist')

Still doesn’t work, report an issue

12.3 The license.lic generated doesn’t work

The key is that the capsule used to obfuscate scripts must be same as the capsule used to generate licenses.

If obfuscate scripts by command pyarmor obfuscate, Global Capsule is used implicitly. If obfuscate scripts by com-
mand pyarmor build, the project capsule is used.

When generating new licenses for obfuscated scripts, if run command pyarmor licenses in project path, the project
capsule is used implicitly, otherwise Global Capsule.

The Global Capsule will be changed if the trial license file of PyArmor is replaced with normal one, or it’s deleted
occasionally (which will be generated implicitly as running command pyarmor obfuscate next time).

In any cases, generating new license file with the different capsule will not work for the obfuscated scripts before. If
the old capsule is gone, one solution is to obfuscate these scripts by the new capsule again.

12.4 NameError: name ‘__pyarmor__’ is not defined

No Bootstrap Code are executed before importing obfuscated scripts.

When creating new process by Popen or Process in mod subprocess or multiprocessing, to be sure that Bootstrap Code
will be called before importing any obfuscated code in sub-process. Otherwise it will raise this exception.

12.5 Marshal loads failed when running xxx.py

1. Check whether the version of Python to run obfuscated scripts is same as the version of Python to obfuscate
script

2. Check whether the capsule is generated based on current license of PyArmor. Try to move global capsule
~/.pyarmor_capsule.zip to any other path, then obfuscate scripts again.

3. Be sure the capsule used to generated the license file is same as the capsule used to obfuscate the scripts. The
filename of the capsule will be shown in the console when the command is running.

12.6 _pytransform can not be loaded twice

When the function pyarmor_runtime is called twice, it will complaint _pytransform can not be loaded twice

For example, if an obfuscated module includes the following lines:

from pytransform import pyarmor_runtime
pyarmor_runtime()
__pyarmor__(....)

44 Chapter 12. When Things Go Wrong

https://github.com/dashingsoft/pyarmor/issues/

PyArmor Documentation, Release 5.1.1

When importing this module from entry script, it will report this error. The first 2 lines should be in the entry script
only, not in the other module.

This limitation is introduced from v5.1, to disable this check, just edit pytransform.py and comment these lines in
function pyarmor_runtime:

if _pytransform is not None:
raise PytransformError('_pytransform can not be loaded twice')

12.7 Check restrict mode failed

Use obfuscated scripts in wrong way, for more information, refer to Restrict Mode

12.7. Check restrict mode failed 45

PyArmor Documentation, Release 5.1.1

46 Chapter 12. When Things Go Wrong

CHAPTER 13

License

PyArmor is published as shareware. Free trial version never expires, the limitation is

• Global Capsule in trial version is fixed.

There are 2 basic types of licenses issued for the software. These are:

• A natural person usage license for home users. The user purchases one license to use the software on his own
computer.

Home users may use their natural person usage license on all computers and embedded devices which are
property of the license owner.

• A juridical person usage license for business users. The user purchases one license to use the software for one
product or one project of an organization.

Business users may use their juridical person usage license on all computers and embedded devices for one
product or project. But they require another license for different product or project.

13.1 Purchase

To buy a license, please visit the following url

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT{[}300871197{]}=1

A registration code will be sent to your immediately after payment is completed successfully.

After you receive the email which includes registration code, copy registration code only (no newline), then replace
the content of pyarmor-folder/license.lic with it.

Note that there are 2 types of license.lic, this one locates in the source path of PyArmor. It’s used by PyArmor.
The other locates in the same path as obfuscated scripts, It’s used by obfuscated scripts.

Check new license works, execute this command:

pyarmor --version

47

https://order.shareit.com/cart/add?vendorid=200089125&PRODUCT{[}300871197{]}=1

PyArmor Documentation, Release 5.1.1

The result should show PyArmor Version X.Y.Z and registration code.

After new license takes effect, you need obfuscate the scripts again, and a random Global Capsule will be generated
implicitly when you run command pyarmor obfuscate

The registration code is valid forever, it can be used permanently.

48 Chapter 13. License

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

49

PyArmor Documentation, Release 5.1.1

50 Chapter 14. Indices and tables

Index

G
get_expired_days() (built-in function), 9
get_hd_info() (built-in function), 9
get_license_info() (built-in function), 9

P
PytransformError, 9

51

	Installation
	Verifying the installation
	Installed commands

	Using PyArmor
	Obfuscating Python Scripts
	Distributing Obfuscated Scripts
	Generating License For Obfuscated Scripts
	Extending License Type
	Packing Obfuscated Scripts

	Runtime Module pytransform
	Contents
	Examples

	The Security of PyArmor
	Cross Protection for _pytransform

	Understanding Obfuscated Scripts
	Global Capsule
	Obfuscated Scripts
	Bootstrap Code
	Runtime Files
	The license.lic
	Running Obfuscated Scripts
	Key Points to Use Obfuscated Scripts
	Two types of license.lic

	How PyArmor Does It
	How to Obfuscate Python Scripts
	How to Run Obfuscated Script
	Special Handling of Entry Script

	How To Pack Obfuscated Scripts
	Work with PyInstaller
	Work with py2exe
	Work with cx_Freeze 5

	Using Project
	Managing Obfuscated Scripts With Project
	Obfuscating Scripts With Different Modes
	Project Configuration File

	The Differences of Obfuscated Scripts
	Advanced Topics
	Obfuscating Python Scripts In Different Modes
	Restrict Mode

	Man Page
	obfuscate
	licenses
	pack
	hdinfo

	When Things Go Wrong
	Segment fault
	Could not find _pytransform
	The license.lic generated doesn’t work
	NameError: name ‘__pyarmor__’ is not defined
	Marshal loads failed when running xxx.py
	_pytransform can not be loaded twice
	Check restrict mode failed

	License
	Purchase

	Indices and tables

